





# Phase Noise and Jitter in Digital Electronics

**Enrico Rubiola** CNRS FEMTO-ST Institute, Besancon, France

### Outline

- Basics
- FPGAs Mechanisms / Examples / Facts
- ADCs Basics / Examples
- DDSs Basics / Advanced / Examples
- $\cdot$  Dividers  $\Pi$  and  $\Lambda$  / Microwave

### home page http://rubiola.org

## Acknowledgments

This tutorials gathers a wealth of (mostly unpublished) material developed by

#### The Go Digital Team@ FEMTO-ST, Besancon, F

chiefly Pierre-Yves "PYB" Bourgeois Gwenhael "Gwen" Goavec-Merou Jean-Michel Friedt Yannick Gruson

#### Claudio Calosso, INRIM, Torino, Italy

...and myself

### Caveat

Only a fraction of this can be taught at a 1–2 H session



# Jitter

### $v(t) = V_0 \left[1 + \alpha(t)\right] \cos\left[2\pi\nu_0 t + \varphi(t)\right]$

- $\mathbf{x}(t) = \frac{\varphi(t)}{2\pi\nu_0}$
- ITU defines jitter as the variations in the significant instants of a clock or data signal, vs a "perfect" clock
- Jitter —> Usually fast phase changes f > a few tens of Hz
- Wander —> Usually slower phase changes (due to temperature, voltage, etc)
- Designers first care about consistency of logic functions,
  - First, maximum timing error
  - Sometimes RMS value and probability distribution
- Time and Frequency community focuses on
  - PM noise spectra
  - Delay spectra
  - Two-sample variances (ADEV, TDEV, etc.)

# Phase Time x(t) — or Jitter

- Let's allow  $\varphi(t)$  to exceed  $\pm \pi$ , and count the no of turns
- This is easily seen by scaling  $\omega$  down (up) to  $\omega = 1$  rad/s using a noise-free gear work
- The phase-time fluctuation associated to  $\varphi(t)$  is

 $\mathbf{x}(\mathbf{t}) = \boldsymbol{\varphi}(\mathbf{t}) / \boldsymbol{\omega}_0$ 



### Physical Concept of PSD S(f)

### **Power Spectral Density**



- The PSD is the distribution of power vs. frequency (power in 1-Hz bandwidth)
- The PS is the distribution of energy vs. frequency (energy in 1-Hz bandwidth)
- Frequency can be continuous or discrete (histogram),
- In mathematics,
  - the power is a square quantity
  - the energy is power integrated in time
- Power (energy) in physics is a square (integrated) quantity
  - PSD -> W/Hz (or V<sup>2</sup>/Hz, A<sup>2</sup>/ Hz, etc.)

### **The Polynomial Law** $v(t) = V_0 [1 + \alpha(t)] \cos [2\pi\nu_0 t + \varphi(t)]$



Phase Noise PSD 
$$_0$$
  
 $S_{arphi}(f) = \sum_{i \leq -4} \mathsf{b}_i f^i$ 

Jitter (phase-time) PSD  $x(t) = \frac{\varphi(t)}{2\pi\nu_0}_0$   $S_x(f) = \sum_{i \le -4} k_i f^i$ 

#### **Fractional Frequency PSD**

$$\mathbf{y}(t) = \dot{\mathbf{x}}(t) = \frac{\dot{\varphi}(t)}{2\pi\nu_0}$$
$$S_{\mathbf{y}}(f) = \sum_{i < -2}^{2} \mathbf{h}_i f^i$$

# **Converting PM noise to TDEV**

b<sub>0</sub>

 $b_0$ 

 $\overline{2(2\pi\nu_0)^2\tau}$ 

Τ

 $rac{2\ln(2) \mathsf{b}_{-1}}{(2\pi 
u_0)^2}$ 

Sa

 $\sigma_{\chi}(\tau)$ 

#### random phase

8



phase-time (fluctuation)



TDEV σ<sub>x</sub>(τ) same as ADEV, but we use x(t) instead of y(t)

### You may be more familiar to $\sigma_y^2(\tau) = h_0/2\tau + 2\ln(2)h_{-1}$

# **Phase Noise Sampling**



#### Sampling occurs at the edges

- (in some cases, only at rising or falling edges)
- Square wave signals need analog bandwidth at least
  - 3 v<sub>max</sub> ... 4 v<sub>max</sub>
- Aliasing is expected

# **Aliasing Over-Simplified**



- The Parseval Theorem states that the total energy (or power) calculated in the time domain and in the frequency domain is the same
- Ergodicity allows to interchange time domain and statistical ensemble

### *N'B'* = *N"B"*



10

...and PM noise scales up with the reciprocal of the carrier frequency

# Aliasing and 1/f Noise



And virtually no effect with  $1/f^2$ ,  $1/f^3$ ,  $1/f^4$  ...



- Noise Mechanisms
- Examples
- Additional Facts

# Noise Mechanisms

13

# **FPGA Interconnection Structure**<sup>14</sup>



**Device dependent blocks** 

- Input/Output
- RAM
- PLL
- NCO
- ...etc.

#### **Delay & jitter**

- General routing through switch points
  - Delay & jitter rather uniform in a block
  - Large spread over the interconnect matrix
- Dedicated clock lines managed separately
  - Low and predictable delay & jitter

# **Output Jitter Limitations**

- Output can be synchronized to the clock
- Jitter cannot be smaller than
  - External clock signal
  - Clock input stage
  - Clock distribution
- Output stage internal data ck in ck in



out

# Phase Noise in the Input Stage



# Phase Noise in the Input Stage<sup>17</sup>

**Sinusoidal signal** 

 $v(t) = V_0 [1 + \alpha(t)] \cos [2\pi\nu_0 t + \varphi(t)] \implies SR = 2\pi\nu_0 V_0$ 



φ-type noise

 $S_{\varphi}(f) = \frac{S_n(f)}{V_0^2}$ 

constant vs  $\nu_0$ 

# φ-type PM Noise

Remember that white noise is subject to aliasing, flicker is not



Power law  $S_n(f) = \sum h_i f^i$  [do not mistake with  $S_y(f)$ ]

## **φ-type Jitter**



Power law  $S_x(f) = \sum k_i f^i$  and  $S_n(f) = \sum h_i f^i$ 

# **Internal Delay Fluctuation**

### x-type noise



- The internal delay fluctuates by an amount x(t)
- This has nothing to do with threshold and frequency

## **x-type Jitter**

Remember that white noise is subject to aliasing, flicker is not



Power law  $S_x(f) = \sum k_i f^i$ 

## x-Type PM Noise

Remember that white noise is subject to aliasing, flicker is not



### **Full Noise Mechanism**



- The φ-type noise noise may show up or not, depending on input noise and SR
- At the comparator out, the edges attain full SR and bandwidth of the technology
- Complex distribution -> independent fluctuations add up  $x(t) = \sum_{i} x_i(t)$  and  $\langle x^2(t) \rangle = \sum_{i} \langle x_i^2(t) \rangle$



# **Summary of the Noise Types**

| Noise class             | Dependence on $\nu_0$ |                 |
|-------------------------|-----------------------|-----------------|
|                         | $S_{\varphi}(f)$      | $S_{x}(f)$      |
| Pure $\varphi$ -type    | $C$ vs. $\nu_0$       | $1/\nu_{0}^{2}$ |
| Aliased $\varphi$ -type | $1/ u_{0}$            | $1/ u_{0}^{3}$  |
| Pure x-type             | $ u_0^2 $             | $C$ vs. $\nu_0$ |
| Aliased x-type          | $ u_0 $               | $1/ u_{0}$      |

- Pure x-type. High speed circuits, inside the device. Must be 1/f, otherwise aliasing shows up
- Aliased x-type. High speed circuits, inside the device, at low switching frequency. The clock must be either high frequency sin(), or sharp square wave, so that the threshold has no effect.

# **Noise Types and AVAR**



26

# Examples

Measurements are performed with the Symmetricom (Microsemi) DS 5125 and DS 5120 dual-channel phase meter



Allow (input frequency) ≠ (ref frequency)

# Cyclone III Clock Buffer



### Flicker

- High v<sub>0</sub> -> scales as v<sub>0</sub> (x-type)
- Low v<sub>0</sub>, -> to φ-type (bumps 0.1–10 Hz)

### White

• Aliasing shows up at low v<sub>0</sub>

# Cyclone III Output Buffer



# MAX 3000 CPLD [300 nm] (1)



### Flicker region –> Negligible aliasing

- The Π divider is still not well explained
- The  $\Lambda$  divider exhibits low 1/f and low white noise

# MAX 3000 CPLD [300 nm] (2)



- Slope  $1/\tau$ , typical of white and flicker PM noise
- The  $\Lambda$  divider performs 2×10<sup>-14</sup> at  $\tau$  = 1 s, 10 MHz output

# Max V CPLD [180 nm]

### We do not trust this spectrum (bump -> supply voltage?)



- Two lambda dividers
  - output-to-output and common clock,
  - low f, emphasizes the 1/f noise
- Same, only output-tooutput and common clock



# Max V CPLD [180 nm]

We do not trust this spectrum (bump -> supply voltage?)



- Two lambda dividers
  - output-to-output and common clock,
  - low f, emphasizes the 1/f noise
- Clock, difference between the two outputs

# **Cyclone II A Divider [90 nm]**



# **Cyclone II Clock Buffer [90 nm]**<sup>35</sup>



# Zynq (28 nm), Λ Divider


## 74S140 – Old TTL 50 $\Omega$ Driver



# Some Facts Related to Phase and Noise

- Volume Law
- Input Chatter
- Internal PLL
- Thermal Effects

#### **Rationale for the Volume Law**





- Flicker coeff b<sub>-1</sub> is ≈ independent of power
- The flicker of a branch is not increased by splitting the input power
- The carrier adds up coherently, the phase noise adds up statistically
- Hence, the 1/f phase noise is reduced by a factor m

#### Gedankenexperiment

- Flicker is of microscopic origin (Gaussian -> central limit theorem)
- Join the m branches of a parallel device forming a compound
- 1/f PM is proportional to the inverse size of the active region

### **The Volume Law!**



**Details in file DevicesComparison.doc** 

## Input Chatter (1/3)



Chatter occurs when the RMS Slew Rate of noise exceeds the slew rate of the pure signal

#### **Pure signal**

$$v(t) = V_0 \cos(2\pi\nu_0 t)$$

$$SR = 2\pi\nu_0 V_0$$

#### Wide band noise

$$\left< \text{SR}^2 \right> = 4\pi^2 \int_0^B f^2 S_V(f) \, df$$
$$= \frac{4\pi^2}{3} \sigma_V^2 B^2 \quad \text{(rms)}$$

#### **Chatter threshold**

$$\nu_0^2 = \frac{1}{3} \, \frac{S_v B^3}{V_0^2}$$

With high-speed devices, chatter can occur at unexpectedly high frequencies

#### Example

- V<sub>0</sub> = 100 mV peak
- 10 nV/√Hz noise
- 650 MHz max -> 2 GHz noise BW
- Chatter threshold v = 5.2 MHz

### Simulation of Chatter (2/3)



 $v_0 = 1 Hz$ ,  $V_0 = 1 V_{peak}$  $\sqrt{\langle v_0^2 \rangle} = 10 \text{ mV}$ rms noise Noise BW

increases in powers of 2

**De-normalize for** your needs

### Input Chatter – Example (3/3)

#### **Good agreement with theory**





#### **Experiment**

- Cyclone III FPGA
- Estimated noise 10 nV/√Hz

43

- Estimated BW 2 GHz
- $V_0 = 50 \text{ mV} (100 \text{ mV}_{pp})$  $v_0 = 4.7 \text{ MHz}$
- $V_0 = 100 \text{ mV} (200 \text{ mV}_{pp})$  $v_0 = 4.7 \text{ MHz}$

Asymmetry shows up Explanation takes a detailed electrical model, which we have not

# **Cyclone III Internal PLL (1/4)**

44



A Λ divider (inside the FPGA) enables the measurement

- The divider noise is low enough
- A trick to work at low frequency

# **Cyclone III Internal PLL (2/4)**<sup>45</sup>



- Low-Q LC oscillator (Q  $\approx$  10), 0.6–1.3 GHz
- Optional ÷2 always present
- We set D = 1 (for lowest noise)
- QUARTUS decides C and N

#### **Cyclone III Internal PLL (3/4)** PLL used as a buffer



Crossover between phi-type and x-type at 20 MHz



#### x-type -> analog noise in the phase detector

#### **Cyclone III Internal PLL (4/4) PLL used as a frequency multiplier**



**Stability** 1.5x10<sup>-12</sup> @ 1 s  $(f_{\rm H} = 500 \text{ Hz})$ 

47

-115 dB + 20 log<sub>10</sub>(v<sub>0</sub>) in MHz



#### 1/f phase noise is dominant

• Scales as  $N^2 \rightarrow analog$  noise in the phase detector

# Thermal Effects (1/3)

#### **Principle**

- FPGA dissipation change  $\Delta P$  by acting on frequency
- Energy  $E = CV^2$  dissipated by the gate capacitor in a cycle

#### Conditions

- Cyclone III used as a clock buffer
- Environment temperature fluctuations are filtered out with a small blanket (necessary)
- Two separate measurements (phase meter and counter) -> trusted result

#### Outcome

- (1) Thermal transient, due to the change of the FPGA dissipation
- (2) Slow thermal drift, due to the environment
- (3) Overall effect of  $\Delta P$



### Thermal Effects (2/3)



Warning: In real applications, other parts of the same FPGA impact on the temperature, thus on phase – drift is possible

## Thermal Effects (3/3)



## **Cyclone III, Voltage Supply**



- All but one low-noise voltage supplies
- The noise is critical only in the core supply

# Threshold-Noise Measurement<sup>52</sup>

Vdd

Gnd

out





- Measure the voltage (current) fluctuation needed to stabilise at the threshold
- Works only on simple (old) circuits
- Threshold-mismatched cascade -> gain not accessible
- FPGAs complexity make the analog gain inaccessible





# **Transfer Function & Quantization**



Kester W (ed), Analog-Digital Conversion, Fig.2.15, p.2.14, Analog Devices 2004, ISBN 0-916550-27-3

#### **Spectrum of the Quantization Noise**





Ergodicity suggests that the quantization noise can be calculated statistically

$$\sigma^2 = \frac{V_q}{12}$$





#### **Quantization & Sinusoidal Signals**

sampting frequency fs Signal power  $P_0 = \frac{V_{PP}^2}{8} = \frac{A^2 V_{FSR}^2}{8}$ VFSR VFF=AVFSR A<1 Noise power  $SNR = (3/2) 2^{2m}$  $O^2 = \frac{V_{LSB}}{12}$ 6.02 m + 1.76 dB Parseval theorem  $S_v = \frac{\sigma^2}{B} \Rightarrow S_v = \frac{V_{LSB}^2}{6fs}$ Warning: We assume that the noise power is equally dietributed in O-B. A This is not true Sr 02/B in our case because sampling and carrier are highly coherent. See Widraw. Koller Phase noise Sup = bo ( white)  $b_{0} = \frac{S_{V}}{P_{0}} \quad b_{0} = \frac{V_{LSB}}{V_{FSR}^{2}} \cdot \frac{4}{3A^{2}f_{s}}$  $b_a = \frac{1}{(2^m)^2} \frac{4}{3A^2 f_s} = \frac{6.02 \text{ m} + 1.25}{-10 \log_{10} f_s \text{ dB}}$ Apendix 9 for details. Anyway, we tempozarily accept the uniform dictribution, hoping that the reality to not too par-Aproximation (fairly large Vp) A2=213 (-1.8 db) > box (2mj2 fs

#### **Phase Noise**



6 = (2My2 3A2fs  $\approx \frac{1}{(2^m)^2} \frac{2}{\beta_s}$ ь, Cost of 6 dB improvenue fs · factor-of-4 Obvious conclusion; practical ADCs feature

lower bo at low for becreun

of the higher no of bits





- Analog noise is higher than quantization noise
- Given a voltage V -> random distribution of output N
- This correct  $\rightarrow V^2 = V^2_{analog} + V^2_{quant}$ (don't spoil the resolution with insufficient no of bits)

**Information (bits)** 

$$I = \sum_{i} -p_i \log_2(p_i)$$

Equivalent No of Bits

$$ENoB = log_2$$



## **Digital Filter and Decimation**



- Convolution with low-pass h(t)
- 127 coeff. Blackman-Harris kernel provides 70 dB stop-band attenuation
- Future: we will use >>127 coefficients



## **Digital Down Conversion**



62

# Examples

### Hardware

| ADC type                       | AD9467 / Single<br>Alazartech | LTC2145 / Dual<br>Red Pitaya                        | LTC2158 / Dual<br>Eval board |
|--------------------------------|-------------------------------|-----------------------------------------------------|------------------------------|
| Platform                       | Computer                      | Zynq (onboard)                                      | Zynq (separated)             |
| Sampling <i>f</i><br>Input BW  | 250 MHz<br>900 MHz            | 125 MHz<br>750 MHz                                  | 310 MHz<br>1250 MHz          |
| Bits / ENoB                    | 16 / 12                       | 14 / 12                                             | 14 / 12                      |
| Exp.noise (2V <sub>fsr</sub> ) | -158 dBV <sup>2</sup> /Hz     | -155 dBV <sup>2</sup> /Hz                           | -159 dBV <sup>2</sup> /Hz    |
| Delay / Jitter                 | <b>1.2 ns / 60 fs</b>         | <b>0?</b> / 100 fs diff<br><b>0?</b> / 80 fs single | 1 ns / 150 fs                |
| Power supply                   | 1.8 V & 3.3 V<br>1.33 W       | 1.8 V<br>190 mW                                     | 1.8 V<br>725 mW              |

**Dissipation is relevant to thermal stability** 

| For reference, 100 fs jitter is equivalent to |          |                                          |                             |  |
|-----------------------------------------------|----------|------------------------------------------|-----------------------------|--|
| carrier f                                     | φrms     | $S\varphi(f) = b_0$                      | 10 log <sub>10</sub> [L(f)] |  |
| 10 MHz                                        | 6.3 µrad | 4x10 <sup>-18</sup> rad <sup>2</sup> /Hz | –177 dBc/Hz                 |  |
| 100 MHz                                       | 63 µrad  | 4x10 <sup>-17</sup> rad <sup>2</sup> /Hz | –167 dBc/Hz                 |  |

### **Sampling Frequency**



# **Transition Noise Measurement** <sup>66</sup>



The differential clock jitter introduces additional noise due to the asymmetry between AM and PM

At 10 MHz input,  $\approx$ 100 fs the effect of jitter does not show up

#### LT 2158 Noise



10 MHz,  $V_{pp} \approx 0.95 V_{FSR}$ 

## LT2145 (Red Pitaya) Noise



10 MHz,  $V_{pp} \approx 0.95 V_{FSR}$ 

## **AD9467 (Alazartech) Noise**



**10 MHz, V**<sub>pp</sub> ≈ **0.95 V**<sub>FSR</sub>

69

# 70 Application to 10 GHz Cryogenic Oscillators



- Rejects the common-path jitter
- Takes in the differential jitter

### Results



- Background noise 5–6 dB higher than that of the TSC5125
- We use 2 channel cross spectrum
- TSC5125 uses 4 channel cross spectrum

#### **The Four-Channel Scheme**


## **Background Noise**



### **Compared to a Commercial Instrument**

- this is done only to make sure that there is no calibration mistake -



## Conclusions

### White noise

- Depends on Fs and ENoB
- Fits well the expectation
- Flicker –110 dBV<sup>2</sup>/Hz best found
- First phase noise measurements, (direct & beat)
- Background –185 dBc with 4-channel scheme
- Modeling common-mode and differential jitter in progress
- Unwanted correlated effects still unknown

# 4 – DDSs

- Basics
- Advanced
- Experiments



### **Basic DDS scheme**



 $\Im\{z\}$ 

time  $t = k/\nu_c$ 

## AD9912, a popular fast DDS

79

#### 48 bit accumulator, 14 bit DAC, 1 GHz clock



### AD9854, a popular DDS

48 bit accumulator, 300 MHz clock, 12 bit DAC, I-Q output, AM/PM/FM capability



### The noise-free synthesizer



- The noise-free synthesizer propagates the jitter x (phase time)
  - So, it scales the phase  $\phi$  as N/D,
  - and the phase spectrum  $\pmb{S}_{\phi}$  as  $(\pmb{N}/\pmb{D})^2$
- Notice the absence of sampling

## The Egan model

for phase noise in frequency dividers



#### For N/D <<1, the scaled-down noise hits the output-stage limit

W.F. Egan, Modeling phase noise in frequency dividers, TUFFC 37(4), July 1990

### **Quantization noise**

W. R. Bennett, Spectra of quantized signals, Bell System Tech J. 27(4), July 1948





### **Background noise**



Sigual power  $P_0 = \frac{V_{PP}^2}{8} = \frac{A^2 V_{FSR}}{8}$ Noise power  $O^2 = \frac{V_{LSB}^2}{12}$ Parseval theorem  $S_v = \frac{\sigma^2}{B} = \frac{1}{2} f_s = \frac{V_{LSR}}{6} f_s$ Phase noise Scp = bo (white)  $b_{0} = \frac{S_{V}}{P_{0}} \quad b_{0} = \frac{V_{LSB}}{V_{FSR}^{2}} \cdot \frac{4}{3A^{2}f_{s}}$ ba = 1/2 3A2 fs Aproxima teon (fairly large Up) A2 = 213 (-1.8 db) > box (2mj2 fs

### **Background noise**



1 (2M)2 x b,

Cost of 6 dBimpsovement . 16ct . jactor-of-4 fs

Obvious conclusion: practical ADCs feature lower boat low for beceun of the higher no. of bits

## Advanced

### **State-variable truncation**

88



Spurs -> next

### **Truncation generates spurs**



The power of spurs comes at expenses of white noise – yet not as one-to-one

## **Nonlinearity generates spurs**



### **PLL clock multiplier**



## 3.3 V: lower PM noise than 1.8 V

### Probably related to the cell size and to the dynamic range





#### AD9956 0 48 bit accu. 14 bit dac single output -10 f\_=400MHz, 1.8V cmos -20 -30 -40 -50 -60 $b_{-1} = -101 \text{ dB}$ -(f) (dBc/Hz) -70 $b_0 = -152 \text{ dB}$ -80 $b_{-1} = -113 \text{ dB}$ -90 $b_0 = -159 \text{ dB}$ -100 -110 -120--130--140 -150 -160 -170 100 1k 10k 100k 10

FREQUENCY (Hz)





#### AD9951, AD9952, AD9953, AD9954



E. Rubiola, Mar 2007 (adapted from the Analog Devices data sheets)

#### Plots originally used to extract the noise parameters

### **High-Frequency DDSs**

#### AD9914 12 bit, 3.5 GHz 64 bit accumulator (190 pHz res)

#### AD9915 12 bit, 2.5 GHz 64 bit accumulator (135 pHz res)



Residual noise is close to that of the gear-box model Plots are from the manufacturer data sheet Whether spurs are removed or not, is not said

# Experiments

- AD9912 demo board
- AD9854 (9914) demo board
- Claudio's AD9854 board
  - V1 Current feedback OPA output stage
    - 25Ω input impedance, 8 nV/√Hz noise, kHz coupled
  - V2 Balun and MAV-11 RF output amplifier
    - F = 3.6 dB, AC coupled (≥1–2) MHz
      - Specified above 50 MHz, yet works well below

## Experimental method (PM noise)

- Pseudorandom noise, slow beat (days)
- The probability that two accumulators are in phase is  $\approx 0$
- Two separate DDS driven by the same clock have a random and constant delay
- The delay de-correlates the two realizations, which makes
  the phase measurement possible

### **Single channel**

### **Dual channel**

kind of virtual mixer, after (sub)sampling & direct ADC





## **Claudio's prototypes**







### PM noise vs. output frequency



### AD9912 noise vs. out frequency – low Fourier frequencies –



### PM noise vs. output frequency



- The –140 dB floor is due to AD8002 at the DDS output
- The flicker is unchanged (comes from the DDS)

#### AD9854 noise AD9852, AD9854 -100two outputs: 48 bit accu, 12 bit dac cos+aux / I-Q f\_=300MHz, 3.3V cmos -110 Specs, -120 PHASE NOISE (dBc/Hz) regular output -130 A<sub>OUT</sub> = 80MHz $b_0 = -159 \text{ dB}$ -140 -149 dB -150 -160A<sub>OUT</sub> = 5MHz -170 10 100 1k 10k 100k 1M **FREQUENCY (Hz)**

### Flicker is in fair agreement White is made low by spurs

Basic formula for white noise  $rad^2/Hz$  $b_0 =$  $\overline{3}$  $\overline{2^{2n} \nu_s}$ meas, dB clock, MHz who math, dB 300 -159 -155.8specs YG -158 -155.0 250 -162.5 CC -153.6180





### AD9854 I-Q noise

#### AD9854 ck 180 MHz I-Q PM noise. Take away 3 dB 1.40625 MHz -60for 2 equal outputs (DACs) 2.8125 MHz Flicker is in quite a good 5.625 MHz Phase Noise Power Spectrum $dB_{ m rad^2/Hi}$ agreement between YG and CC 11.25 MHz $b_{1} = -118 \text{ dB},$ -8022.5 MHz scales as 1/v<sup>2</sup> 45 MHz I-Q spectra cannot be -100compared to specs -140 dB@ 180 MHz: (opa AD8002 white) -30 -120 'dds3\_clock\_250MHz\_out\_IQ 'dds3\_clock250MHz\_out\_IQ\_I 'dds3\_clock\_250MHz\_out\_IQ\_20M 'dds3\_clock250MHz\_out\_IQ\_4 'dds3\_clock250MHz\_out\_IQ\_8 -40-50 -140-60 -70hits b\_1 = -132 dB 250 MHz clock, I–Q noise -160-80INRIM -90 10<sup>-1</sup> 10<sup>0</sup> $10^{1}$ $10^{-4}$ 10<sup>-3</sup> 10<sup>-2</sup> $10^{2}$ $10^{4}$ 10<sup>5</sup> $10^{6}$ $10^{3}$ -100Fourier Frequency (Hz)-110-120hits -158 dB -130-140-150-160-170-18010 100 1000 10000 100000 f (Hz)

# PM noise vs. output amplitude



- PM noise scales 6 dB per factor-of-two output amplitude
- Signature of digital multiplication: lower amplitude is obtained by reducing the integer number at the DAC input

### **High-frequency DDSs**

#### AD9915 12 bit, 2.5 GHz 64 bit accumulator (135 pHz res)



### PM noise vs. clock amplitude



### The effect of the clock frequency



## **Thermal effects**



- f (Hz)
   Low-frequency temperature fluctuations induce phase noise
- A large thermal mass helps



### **AD9912 Voltage sensitivity**



# **AD9912 temperature sensitivity**<sup>108</sup>



• Temperature control (chamber)

Measured: -2 ps/K

 Includes cables, baluns etc


## AD9912 sensitivity to temperature (alternate)

# **AD9912 temperature sensitivity**<sup>110</sup>



High frequency: –2 ps/K, constant

Low frequency: 1/v<sup>3</sup> law

### PM noise of the AD 9912



- At 50 MHz and 10/12.5 MHz we get ≈15 dB lower flicker than the data-sheet spectrum
- Experimental conditions unclear in the data sheets

### **Spurs reduce the white noise**



### Spurs can be amazing



### More about a PM-noise bump

- Low PSRR (power-supply rejection ratio) of PM noise
- For instance The AD9912 at 25 MHz out has 15 ps/% supply-voltage sensitivity
- No bump at 10<sup>3</sup>–10<sup>5</sup> Hz is seen in the data-sheet spectra
- DC regulator may show a similar bump, alone or or with the output capacitor



114

X7R SMD capacitor shows low ESR ( $\leq 5 \text{ m}\Omega$ )

### **PLL clock multiplier**





### **PLL clock multiplier**

116

AD9912: 10->640->10, carrier at 1.3 MHz



### **PLL clock multiplier**



## Effect of other parts on the PCB



A blinking LED somewhere on the PCB spoils the output spectrum

### **ADEV vs. clock frequency**



### **ADEV vs. output frequency**



### **ADEV vs. output frequency**



### Experimental method (AM noise) Cross-spectrum



$$v_a(t) = 2k_a P_a \alpha(t) + \text{noise}$$
  
 $v_b(t) = 2k_a P_b \alpha(t) + \text{noise}$ 

The cross spectrum  $S_{ba}(f)$  rejects the single-channel noise because the two channels are independent.

$$S_{ba}(f) = \frac{1}{4k_a k_b P_a P_b} S_\alpha(f)$$



E. Rubiola, The measurement of AM noise of oscillators, arXiv:physics/0512082, Dec. 2005 E. Rubiola, F. Vernotte, The cross-spectrum experimental method, arXiv:1003.0113v1 [physics.ins-det], Feb. 2010

## AM noise (1)





## AM noise (2)



f(Hz)

-180

### Conclusions

125

- Noise theory and model for the DDS
- A lot of still-not-published experimental data
  - Phase noise
  - Allan deviation
  - Amplitude noise
- Experiments done at INRIM and at FEMTO-ST
- Model and experimental data are in fair agreement

### http://rubiola.org

**5 – Dividers** 

- $\Pi$  and  $\Lambda$  Dividers
- Microwave Dividers

## Π and Λ Dividers

### Motivations

### Seminal article by W. F. Egan (1990)

- Milestone in the domain, never forget it
- However, TTL and ECL logic families are now obsolete
- Microwave (photonics) –> highest spectral purity
- Transfer the spectral purity to HF/VHF
  - Dividers are more comfortable than multipliers
    - NIST now uses analog dividers

### Nowadays digital electronics is fantastic

- CPLD & FPGA -> Easy to duplicate
- High number of gates for cheap
- High toggling frequency (1.5 GHz)

W. F. Egan Egan WF, Modeling phase noise in frequency dividers, IEEE T UFFC 37(4), July 1990
E. Rubiola & al, Phase noise in the regenerative frequency dividers, IEEE T IM 41(3), June 1992
A. Hati & al, Ultra-low-noise regenerative frequency divider..., Proc IEEE IFCS, May 2012

### **The Gear Work Model**

129





W. F. Egan Egan WF, Modeling phase noise in frequency dividers, IEEE T UFFC 37(4), July 1990

### **Parseval Theorem**

The energy calculated in the time domain is equal to the energy calculated in the frequency domain



For ergodic signals, the time average is equal to the ensemble average

### **Sampling and Aliasing**

**Energy conservation applies to the unfiltered signal** 



 Multiple aliases overlap to the main part of the spectrum 131

 With white noise, the PSD increases by B/f<sub>N</sub> (Bandwidth / Nyquist f)

**Downsampling increases the (PM) noise spectrum** 

High  $f_N$ Low  $f_N$  $-N = \sigma^2 / f_N$  $N = \sigma^2 / f_N$  $f_N$  $f_N$ 

### Aliasing and 1/f Noise



# **PM-Noise Aliasing in the Input Stage**



Convert the input sinusoid into a square wave, as appropriate



- Edge-sampling at 2v<sub>i</sub> inherent in the sin-to-square conversion
- Full-bandwidth (B) noise is taken in
- The phase-noise Nyquist frequency is vi
- The sampling process increases the noise by B/v<sub>i</sub>

Eventually, clipping removes the AM noise [Pfaff 1974]

### Aliasing in **Π** Divider

Regular synchronous divider The Greek letter Π recalls the square wave ΠΠΠΠ



output sampling frequency  $\nu_o = 2\frac{1}{D}\nu_i$ 

- The gearbox scales Sφ down by 1/D<sup>2</sup>
- The divider takes 1 edge out of D
  - Raw decimation without low-pass filter
  - Aliasing increases Sφ by D
- Overall, Sφ scales down by 1/D



# The Λ Divider – Little/no Aliasing

**New divider architecture Series of Greek letters** AAAAA recalls the triangular wave



- Gearbox and aliasing -> 1/D law
- Add *D* independent realizations shifted by 1/2 input clock,
- reduce the phase noise by 1/D,
- ... and get back the  $1/D^2$  law



The names Π and Λ derive from the shape of the weight functions in our article on frequency counters E. Rubiola, On the measurement of frequency ... with high-resolution counters, RSI 76 054703, 2005

### **Experimental Method**

#### Large input PM noise is used to emphasize the effect of aliasing

- Intentionally high PM noise at the input
- The scaled-down input noise is higher than the output-stage noise





Correlation reduces the background

### **Dividers Under Test**

EPM3064A CPLD (Altera MAX 3000 Series, 64 macro-cells, speed grade 7 ns)



**Π** divider

**Multi-buffer** Π divider





**A divider** 

The outputs are arguably independent Try to reduce the output-stage noise

White noise: The clock edges are independent **Correct for aliasing** 

### As Simple as That...



### **Results – Test on Aliasing**



- Flicker region
  - Negligible aliasing
  - 1/D<sup>2</sup> law (-20 dB)

- White region
- Aliasing in the front-end -> +4 dB
- 1/D law and 1/D<sup>2</sup> law

### **Phase Noise of Real Dividers**



- Flicker region –> Negligible aliasing
- The multibuffer Π divider is still not well explained
- The  $\Lambda$  divider exhibits low 1/f and low white noise

# Allan Deviation in Real Dividers



• Slope  $1/\tau$ , typical of white and flicker PM noise

• The  $\Lambda$  divider performs  $2 \times 10^{-14}$  at  $\tau = 1$  s, 10 MHz output



## The **A Divider Versus the DDS**



- The  $\Lambda$  divider performs  $2 \times 10^{-14}$  at  $\tau = 1$  s, 10 MHz output
- Thermal effects make the DDS worse at τ > 1 s
- The Λ divider is free from thermal effects – at the scale shown



### **The Bottom Line**

144

- Aliasing in traditional dividers
  - Increases white noise
  - Has little effect on flicker
- Flicker in multi-buffer Π divider not understood yet
- The new Λ divider
  - Is little/no affected by aliasing
  - Exhibits the lowest PM noise flicker:  $b_{-1} \approx -130 \text{ dB}$  white:  $b_0 \approx -165 \text{ dB}$
  - Features  $2 \times 10^{-14}$  at  $\tau = 1$  s, 10 MHz output
  - Is free from the thermal effects seen in DDSs at  $\tau > 1$  s

#### home page http://rubiola.org

Thanks – J. Groslambert, V. Giordano, M. Siccardi, J.-M. Friedt Grants from ANR (Oscillator IMP and First-TF network), and Region Franche Comte
# **Microwave Dividers**

#### **NB7L32M ÷2 µWave Divider** 10 GHz ÷ 2 = 5 GHz Method



#### Compare two dividers

Use 5.01 GHz as a common oscillator, and beat

- Digital PM noise measurement at 10 MHz
- O-I: Two equal dividers
- O-O: Two outputs of the same divider
- Shown: spectrum of one divider

#### NB7L32M ÷2 µWave Divider

Phase noise vs input frequency



### NB7L32M ÷2 µWave Divider

Works fairy well even at low input power (useful)



#### Notes

 At –16 dBm the white noise increases by 3 dB

- The critical power where (b<sub>0</sub>)<sub>φ</sub> = (b<sub>0</sub>)<sub>x</sub> is –16 dBm
- Hence

   (b<sub>0</sub>)<sub>x-type</sub> ≈ -140 dB

## NBSG53A SiGe ÷2 µWave Divider



#### Method

- Use 5.01 (2.51) GHz as a pivot oscillator, and mixers
- Digital PM noise measurement at 10 MHz
- One divider shown

1/f -> pure gearbox model (as expected)

White -> aliased gearbox model (as expected)
 Debugged:
 -97.5 and -137\* Likely, 1 dB discrepancy in w and 1/f (mixer response)

# **NBSG53A SiGe** ÷2 µWave Divider



More noise and less tolerance to low power

## **NBSG53A SiGe ÷2 µWave Divider**

**Output vs Output gives info about the output stage** 



The problem seems in the gear box, rather in the output stage

## Hittite HMC-C040, ÷10 Divider



# **Microwave Dividers Compared**<sup>153</sup>

|           | 10 GHz ÷2 | 5 GHz ÷2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5 GHz ÷2 | lower |                              |
|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------------------------------|
| NB7L32M   | -100      | -109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -109       | -109  | 600 MHz<br>1.2 GHz ÷2        |
| NBSG53A   | 97.5      | -103.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | -104  | 800 MHz<br>1.6 GHz ÷2        |
| HMC-C040  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -113  | <b>1 GHz</b><br>10 GHz ÷10   |
| HMC705LP4 |           | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |            | -121  | <b>0.5 GHz</b><br>2.5 GHz ÷5 |

# Suggested Readings

## Suggested Reading

155

Bernard Widrow, Istvan Kollar *Quantization Noise* Cambridge 2008 ISBN 978-0-511-40990-5

 Chapter 15: Roundoff noise in FIR digital filters and in FFT calculations

 Appendix G: Quantization of a sinusoidal input

## Quantization Noise

Roundoff Error in Digital Computation, Signal Processing, Control, and Communications

> Bernard Widrow István Kollár

#### **ANALOG-DIGITAL CONVERSION**

Walt Kester

Editor



## Suggested Reading

Walt Kester (editor)

Analog-Digital Conversion

Analog Devices 2004 ISBN 0-916550-27-3

#### Marcel J.M. Pelgrom

# Analog-to-Digital Conversion





## Suggested Reading

Marcel J. M. Pelgrom Analog-to-Digital Conversion Springer 2010 ISBN 978-90-481-8888-8