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The Magic of  
Correlation Measurements

• Statistics 
• Spectral measure and estimation 
• Theory of the cross spectrum 
• Applications

Enrico Rubiola 
FEMTO-ST Institute, Besancon, France
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Correlation measurements
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a(t), b(t) –> instrument noise!
c(t) –> DUT noise

Two separate instruments!
measure the same DUT.!
Only the DUT noise is common

noise measurements
DUT noise, 
normal use

a, b c instrument noise 
DUT noise

background, 
ideal case

a, b c = 
0

instrument noise 
no DUT

background, 
real case

a, b c ≠ 
0

c is the correlated 
instrument noise 
Zero DUT noise
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Statistics
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Boring but necessary exercises



• A random process x(t) is defined through a random experiment e that 
associates a function xe(t) with each outcome e. 
• The set of all the possible xe(t) is called ensemble  
• The function xe(t) is called realization or sample function. 
• The ensemble average is called mathematical expectation 
• A random process is said stationary if its statistical properties are 

independent of time. 
• Often we restrict the attention to some statistical properties. 
• In physics, this is the concept of repeatability. 
• A random process x(t) said ergodic if a realization observed in time 

has the statistical properties of the ensemble. 
• Ergodicity makes sense only for stationary processes. 
• Often we restrict the attention to some statistical properties. 
• In physics, this is the concept of reproducibility.

Vocabulary of statistics
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E{ }

Example: thermal noise of a resistor of value R
• The experiment e is the random choice of a resistor e 
• The realization xe(t) is the noise waveform measured across the resistor e 
• We always measure <x2>=4kTRB, so the process is stationary 
• After measuring many resistors, we conclude that <x2>=4kTRB always 

holds.  The process is ergodic.



A theorem states that 
there is no a-priori relation 

between PDF1 and spectral measure 
 
 

For example, white noise can originate from  

• Poisson process (emission of a particle at random time)  
• Random telegraph (random switch between two level) 
• Thermal noise (Gaussian)

A relevant property of random noise 
5

(1) PDF = Probability Density Function



Why Gaussian White Noise?

• Whenever randomness occurs at microscopic level, 
noise tends to be Gaussian (central-limit theorem) 

• Most environmental effects are not “noise” in strict 
sense (often, they are more disturbing than noise) 

• Colored noise types (1/ƒ, 1/ƒ2, etc) can be 
whitened, analyzed, and un-whitened 

• Of course, GW noise is easy to understand

6



Properties of Gaussian White 
noise with zero mean
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x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

2N degrees of freedom

X'
f1 f2

X"

statistically independent

f0 fN–1/2

statistically independent

statistically
independent

1. x(t)  <=>  X(ıf)  are Gaussian 
2. X(ıf1)  and X(ıf2) , f1 ≠ f2  

1. are statistically independent, 
2. var{X(ıf1)} = var{X(ıf2)} 

3. real and imaginary part: 
1. X’ and X” are statistically  

independent 
2. var{X’} = var{X”} = var{X}/2 

4. Y = X1 + X2  
1. Y is Gaussian 
2. var{Y} = var{X1} + var{X2} 

5. Y = X1 × X2  
1. is Gaussian 
2. var{Y} = var{X1} var{X2}



Properties of parametric noise

1. Pair   x(t) <=> X(ıf) 
1. there is no a-priori relation between the 

distribution of x(t) and X(ıf) (theorem) 
2. Central limit theorem: x(t) and X(ıf) end 

up to be Gaussian 
2. X(ıf1)  and X(ıf2) 

1. generally, statistically independent 
2. var{X(ıf1)} ≠ var{X(ıf2)}  in general 

3. Real and imaginary part, same frequency 
1. X’ and X” can be correlated 
2. var{X’} ≠ var{X”} ≠ var{X}/2 

4. Y = X1 + X2, zero-mean independent 
Gaussian r.v.  
var{Y} = var{X1} + var{X2} 

5. If X1 and X2 are zero-mean independent 
Gaussian r.v. 

1. Y = X1 × X2 is zero-mean Gaussian 
2.  var{Y} = var{X1} var{X2}
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x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

The process has N … 2N degrees 
of freedom, depending on 

correlation between X’ and X”

X'
f1 f2

X"

can be
correlated

f0 fN–1/2

statistically independent

statistically independent



Rayleigh 
x = √(x12+x22)

Children 
of the Gaussian distribution 
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Bessel K0  
x = x1 x2

Chi-square 
χ2 = ∑i xi2



Spectral measure1 
and estimation
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(1) Engineers call it Power Spectral Density (PSD)



The Spectral Measure
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Autocovariance 
Improperly referred to as the correlation 
and denoted with Rxx(τ)

for stationary random process x(t)

For ergodic process, interchange 
ensemble and  time average  
process x(t)  –>  realization x(t) 

Spectral measure (two-sided)

autocorrelation function

R
xx

(⇥) =

1

�2

E
n

[x(t)� µ][x(t� ⇥)� µ]

o

Wiener Khinchin theorem 
for stationary ergodic processes

In experiments we use the single-sided PSDSI(f) = 2SII(⇥/2�) , f > 0

S(�) = lim
T!1

1
T

XT (�)X⇤T (�) = lim
T!1

1
T

|XT (�)|2

µ = E
�
x

 

S(!) = F
�
C(⌧)

 
=

Z 1

�1
C(⌧) e�i!⌧d⌧

C(⌧) = E
�
[x(t)� µ][x(t� ⌧)� µ]⇤

 

C(⌧) = lim
T!1

Z T/2

�T/2
[x(t)� µ][x(t� ⌧)� µ]⇤ dt

Fourier transform

F
�
⇠
 
=

Z 1

�1
⇠(t) e�i!tdt



1. The sum of Gaussian distributed random variables has Gaussian 
PDF 

2.  The central limit theorem states that 
        For large m, the PDF of the the sum of m statistically  
        independent processes tends to a Gaussian distribution  
Let X = X1+X2+…+Xm be the sum of m processes of mean µ1, µ2, … 
µm and variance σ12, σ22, … σm2.  The process X has Gaussian PDF 
expectation E{X} = µ1+µ2+…+µm, and variance σ2 = σ12+σ22+…+σm2 

3. Similarly, the average <X>m = (X1+X2+…+Xm)/m has  
Gaussian PDF,  E{X} = (µ1+µ2+…+µm)/m, and σ2 = (σ12+σ22+…+σm2)/m 

4. Since white noise and flicker noise arise from the sum of a large 
number of small-scale phenomena, they are Gaussian distributed

Sum of random variables
12

PDF = Probability Density Function



Product of independent zero-mean 
Gaussian-distributed random variables 
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x1 and x2 are normal distributed with 
zero mean and variance σ12, σ22

x has Bessel K0 distribution 
with variance σ = σ12 σ22

f(x) =
1

�⇥
K0

✓
� |x|

⇥

◆

E{f(x)} = 0

E{|f(x)� E{f(x)}|2} = ⇥2

x = x1 x2

Thanks to the central limit 
theorem, the average 
             <X>m = (X1+X2+…+Xm)/m 
of m products has 
• Gaussian PDF,   
• average E{X} = 0 
• variance  V{X} = σ2

quick



Spectral Measure Sxx(ƒ) 
(Power Spectral Density)
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Normalization: in 1 Hz bandwidth  
var{X}= 1,   and  var{X’}= var{X”}= 1/2

Spectrum

white, Gaussian,  
avg = 0, var = 1/2

X is white Gaussian noise 
Take one frequency, S(f) –> S.  Same applies to all frequencies

white, χ2, with 2m degrees of freedom 
avg = 1, var = 1/m

the Sxx track on the  
FFT-SA shrinks as 1/m1/2

dev
avg

=
�

1
m

hS
xx

i
m

= 1
T

hXX⇤i
m

= 1
T

h(X 0 + iX 00)⇥ (X 0 � iX 00)i
m

= 1
T

⌦
(X 0)2 + (X 00)2

↵
m



Estimation of |Sxx(ƒ)|
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Running the measurement, m increases and 
Sxx shrinks => better confidence level
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Cross Spectrum Theory
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Getting close to the real game
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Syx with correlated term  (1)
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Cross-spectrum

Expand using

A, B = instrument background 
C = DUT noise 
channel 1     X = A + C 
channel 2     Y = B + C 
A, B, C are independent Gaussian noises 
Re{ } and Im{ } are independent Gaussian noises

Split Syx into three sets

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2 

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

�Syx⇥m = �Syx⇥m

��
instr

+ �Syx⇥m

��
mixed

+ �Syx⇥m

��
DUT

background 
only

background 
and DUT noise

DUT noise 
only

... and work it out !!!

hS
yx

i
m

= 1
T

hY X⇤i
m

= 1
T

h(Y 0 + iY 00)⇥ (X 0 � iX 00)i
m

X = (A0 + iA00) + (C 0 + iC 00) and Y = (B0 + iB00) + (C 0 + iC 00)



Real

Imaginary

Syx with correlated term κ≠0 (2)
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Gaussian,  
avg = 0, var = 1/2m

Gaussian,  
avg = 0, var = κ2/2m

white, χ2 
2m deg. of freedom 
avg = κ2, var = κ4/m

A, B, C are independent Gaussian noises 
Re{ } and Im{ } are independent Gaussian noises

Bessel K0,  
avg=0, var=κ2/4

Gaussian,  
avg = 0, var = κ2/2m

white, χ2, 2 DF  
avg = κ2, var = κ4

Gaussian,  
avg = 0, var = 1/2m

Gaussian,  
avg = 0, var = κ2/2m

Bessel K0,  
avg = 0, var = 1/4

Bessel K0,  
avg = 0, var = κ2/4

Gaussian,  
avg = 0, var = κ2/2m

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2 

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

Gaussian,  avg = 0,  var = (1+2κ2)/2m

Gaussian,  avg = 0,  var = (1+2κ2)/2m

var=1/2 var= κ2/2var=1/2 var= κ2/2

Bessel K0,  
avg=0,  var=1/4
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Set A
Set C

Set B

var= κ2/2var=1/2

All the DUT signal goes in Re{Syx}, Im{Syx} contains only noise

<
�
hS

yx

i
m

 
= 1

T

�
hB0A0 +B00A00i

m

+ hB0C 0 +B00C 00i
m

+ hA0C 0 +A00C 00i
m

+
⌦
(C 0)2 + (C 00)2

↵
m

 

=
�
hS

yx

i
m

 
= 1

T

{hB00A0 +B0A00i
m

+ hB00C 0 �B0C 00i
m

+ hA0C 00 �A00C 0i
m

}



Estimator   Ŝ = |<Syx>m|
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| hS
yx

i
m

| =
1
T

q
[< {hY X⇤i

m

}]2 + [= {hY X⇤i
m

}]2

=
1
T

q
[hA i
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+ hC̃ i
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]2 + [hBi
m

]2 .

κ → 0   Rayleigh distribution

hZ im =
q

[hA im]2 + [hBim]2 .

E{hZ i
m

} =
r

⇡

4m
=

0.886p
m

V{hZ i
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Probability density f(x)figure:  xsp�Gauss�Rayleigh�pdf
sourcealmost�all�plots
E. Rubiola, nov 2009

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2 

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

The instrument default

background ImDUTbackground Re



Estimator  Ŝ = Re{<Syx>m}
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0 dB SNR requires that m=1/2κ4. 
Example κ=0.1 (DUT noise 20 dB lower than single-channel background) 

averaging on 5x103 spectra is necessary to get SNR = 0 dB.

⌅Z ⇧m = ⌅A ⇧m + ⌅C̃ ⇧m

E {⌅Z ⇧m} = �2

V {⌅Z ⇧m} =
1 + 2�2 + 2�4

2m

dev {⌅Z ⇧m} =

�
1 + 2�2 + 2�4

2m
� 1 + �2

⌃
2m

dev {⌅Z ⇧m}
E {⌅Z ⇧m} =

⌃
1 + 2�2 + 2�4

�2
⌃

2m
� 1 + �2

�2
⌃

2m

negative values

f(x)

x

κ
2

P
N
P
P

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2 

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

PN = P{x < 0} =
1
2
erfc

✓
2

p
2 �

◆

Best (unbiased) estimator

background, Re DUT



Ergodicity
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Ergodicity allows to interchange time statistics and ensemble statistics, 
thus the running index i of the sequence and the frequency f. 

The average and the deviation calculated on the frequency axis are the 
same as the average and the deviation of the sequence of spectra.
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File: xsp-ergodicity-3d
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Let’s collect a sequence of spectra



Example: 
Measurement of |Syx|
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file mce!syx!32
E.Rubiola, apr 2008
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E.Rubiola, apr 2008

Measurement (C≠0), |Syx|
23

Running the measurement, m increases 
Sxx shrinks => better confidence level 

Syx decreases => higher single-channel noise rejection



Applications

24

The real fun starts here



Applications
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• Radio-astronomy (Hanbury-Brown, 1952) 
• Early implementations 
• Radiometry (Allred, 1962) 
• Noise calibration (Spietz, 2003) 
• Frequency noise (Vessot 1964) 
• Phase noise (Walls 1976) 
• Dual delay line system (Lance, 1982) 
• Phase noise (Rubiola 2000 & 2002) 
• Effect of amplitude noise (Rubiola, 2007) 
• Frequency stability of a resonator (Rubiola) 
• Dual-mixer time-domain instrument (Allan 1975, Stein 1983) 
• Amplitude noise & laser RIN (Rubiola 2006) 
• Noise of a power detector (Grop & Rubiola, in progress) 
• Noise in chemical batteries (Walls 195) 
• Semiconductors (Sampietro RSI 1999) 
• Electromigration in thin films (Stoll 1989) 
• Fundamental definition of temperature 
• Hanbury Brown - Twiss effect (Hanbury-Brown & Twiss 1956, Glattli 2004)



Radio-astronomy
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R. Hanbury Brown & al., Nature 170(4338) p.1061-1063, 20 Dec 1952 
R. Hanbury Brown, R. Q. Twiss, Phyl. Mag. ser.7 no.366 p.663-682 

Measurement of the 
apparent angular size of 

stellar radio sources   
  

Jodrell Bank, Manchester 

• The radio link breaks the 
hypothesis of symmetry of the 
two channels, introducing a 
phase θ 

• The cross spectrum is complex 

• The the antenna directivity 
results from the phase 
relationships 

• The phase of the cross spectrum 
indicates the direction of the 
radio source

500 m2
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f = 125 MHz 
B = 200 kHz

wave planes
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Thermal noise compensation
27

DUT
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CP2

interferometer

isolation

is
o
la
ti
o
n

Correlation-and-averaging 
rejects the thermal noise

E.Rubiola, V.Giordano, RSI 73(6), Jun 2002



Radiometry & Johnson thermometry
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C. M. Allred, A precision noise spectral density comparator, J. Res. NBS 66C no.4 p.323-330, Oct-Dec 1962

correlation and anti-correlation

noise comparator
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Re-definition of the Kelvin?
29

shot noise

thermal noise S = kT
S = 2qIavgR

high accuracy of Iavg 
with a dc instrument

Poisson process
μ = σ2

Thermal noise
N = kT

DC
voltmeter

Allred noise 
comparator

Josephson effect
VDC =   hν / 2e

null

Boltzmann constant

Planck constant
Electron charge
Second  (Cesium)

Property of the Poisson process  
  µ = σ2



Noise calibration
30

L. Spietz & al., Primary electronic thermometry 
using the shot noise of a tunnel junction, 
Science 300(20) p. 1929-1932, jun 2003

shot noise

thermal noise S = kT
S = 2qIavgR high accuracy of Iavg 

with a dc instrument

Compare shot and thermal noise with a noise bridge

This idea could turn into a re-
definition of the temperature

plifier gains (18, 19). A promising noise ther-
mometer based on the ac Josephson standard is
being investigated by a collaboration of several
standards labs (20). This thermometer shares
with the SNT the prospect of relating tempera-
ture to the Josephson voltage standard.

Although not of direct interest for most
noise thermometry experiments, another impor-
tant type of electrical noise is shot noise, first
described by Schottky in 1918 (21). Shot noise
appears in any system in which current consists
of random discrete tunneling events, such as a
tunnel junction or a vacuum tube. Shot noise is
both frequency- and temperature-independent
and has the current spectral density SI ! 2eI,
where I is current. The junction noise used for
the SNT displays both shot noise and Johnson
noise, with a voltage-dependent transition
between the two regimes. This temperature-
dependent transition voltage allows us to deter-
mine temperature with only the use of a mea-
surement of the dc voltage and a relative noise
power measurement.

A tunnel junction can be modelled as a
pair of ideal Fermi reservoirs separated by a
tall, thin energy barrier. The tunneling rate
from a given energy level in one metal into
the other metal can be evaluated by Fermi’s
golden rule. It is well known that the tunnel-
ing rates are given by

"r31(13r) !
2#

$
%&1'M(E)'r*

2
D2(E)

fr(1) (E)[1 + f1(r)(E)]dE (1)

where &lM(E)r* is the tunneling matrix el-
ement from the left to the right side of the
junction, D(E) is the density of states, and
fl(E) and fr(E) ! fl(E + eV ) are Fermi func-
tions used to count the empty and filled states
on the left and right reservoirs, respectively
(22). For a sufficiently tall, thin barrier, the
tunneling amplitude and the density of states
near the Fermi energy can be considered to be
independent of energy. The occupation prob-
ability of any given state in one of the metals
is given by a Fermi function. Thus, under the
conditions that [eVbias, kBT] ,, Ebarrier, all
the terms can be moved outside of the inte-
gral except the Fermi functions. The current
through the junction can be found by taking
the difference of these two rates to get

I ! Ir + Il !
2#e
$
&1M(EF)r*

2

D(EF)2% [ fr(E)+f1(E)- dE ! V / R (2)

In other words, under these conditions, the
junction is just an ohmic resistor with no
temperature dependence. To find the current
spectral density of the noise, we just evaluate
the sum of the rates across the barrier instead
of the difference. Evaluation of the integral
gives the well-known result (23–25)

SI(V)!
2

R
%{ fr(E)[1+f l(E)]. f1(E)[1+fr(E)]}

dE!
2eV
R

coth! eV
2kBT"!2eIcoth! eV

2kBT"
(3)

Unlike the current, this expression has a
temperature-dependent scale that follows di-
rectly from the Fermi-Dirac distribution.
Evaluation of Eq. 3 at zero bias voltage yields
the Johnson result SI ! 4kBT/R, as required
by the fluctuation-dissipation theorem (26 ),
whereas in the limit eV // kBT Eq. 3 reduces
to SI ! 2eI, or shot noise (Fig. 1). As a
function of voltage, the junction noise chang-
es smoothly from Johnson noise to shot noise
in a way that depends only on kB, e, and a
simple analytic function. Thus, the voltage
dependence of the noise in Eq. 3 is analogous
to the equation of state of the ideal gas.

By measuring the noise as a function of
voltage, the temperature can be determined
from the voltage scaling of this transition
independent of the gain or noise of the am-
plifier chain and detector. This frees us from
the major limitations of traditional noise ther-
mometry: the need to calibrate gain, noise
temperature, and bandwidth to high accuracy.
The elimination of the need for absolute ac-
curacy in the amplifier chain calibrations al-
lows much more freedom in the selection of
components. In particular, we may replace
the kHz bandwidth amplifier typically used
by microwave amplifiers with hundreds of
MHz of bandwidth, allowing for a much fast-
er readout. In general, our amplifier has a
frequency-dependent gain g(0) and a noise
temperature tn(0), and we can fit the total
noise power P to the equation

P(V,T )! %d0g(0)# tn(0) .

eV
2kB

coth! eV
2kBT"$ !

G#Tn .
eV
2kB

coth! eV
2KBT"$ (4)

with average gain-bandwidth product G, av-
erage noise temperature Tn, and temperature
T as fit parameters. Equation 4 shows (Fig. 1)
that the SNT relates temperature to voltage in
a way that is independent of G and Tn. The
method is also independent of effects such as
frequency-dependent gain or impedance of
the sensor, the transmission of the tunnel
barrier, the sensor resistance, or any other
effect that does not vary with DC bias voltage
(27 ). Thus, our method retains the advantag-
es of noise thermometry, being primary and
electronic, but is much faster and simpler.

For a sensor, we used an Al-AlOx-Al tunnel
junction, fabricated with the use of electron

beam lithography and the Dolan bridge double-
angle evaporation technique (28, 29). We
designed the junctions to be about 50 ohms to
match to the impedance of the microwave elec-
tronics. These junctions show similar conduc-
tance characteristics to devices from published
literature (30), which have a barrier height of
about 2 V and a barrier thickness of about 1 nm.
During all measurements below 1.5 K, we ap-
plied a 0.5-T magnetic field to keep the alumi-
num in a nonsuperconducting state, although
the need for this field could be eliminated by
using a normal metal or by adding a local
permanent magnet.

In order to verify the form of the junction
noise, we simultaneously measured the dc
voltage and the radio frequency (rf ) noise
power (Fig. 2). We varied the bias across the
device to measure the noise as a function of
voltage across the junction. By fitting these
data to the predicted junction noise with a
least squares fit, we can determine a temper-
ature TSNT. We measured the junction noise
as a function of temperature from 0.260 to
300 K in a variable-temperature 3He refrig-
erator and from 0.01 through 4.2 K with the
use of a dilution refrigerator.

Before the SNT can be trusted as a
thermometer, we must verify the validity of
our “ideal gas law,” that is, whether the
junction noise follows the prediction of Eq.
3. To do this, we display the noise data in a
dimensionless form, normalizing the noise
power relative to the zero bias noise and the
voltage relative to the temperature (Fig. 3).
The data at all temperatures agree well with
a simple universal form over four decades
in temperature.

The largest deviations of the noise from
the expected form occur at the highest and
lowest temperatures. At temperatures above
about 30 K, we see deviations in the func-
tional form by as much as a few percent.
Because the devices are fabricated on a half-
micrometer-thick layer of silicon dioxide

Fig. 1. Theoretical plot of current spectral den-
sity of a tunnel junction (Eq. 3) as a function of
dc bias voltage. The diagonal dashed lines indi-
cate the shot noise limit, and the horizontal
dashed line indicates the Johnson noise limit.
The voltage span of the intersection of these
limits is 4kBT/e and is indicated by vertical
dashed lines. The bottom inset depicts the oc-
cupancies of the states in the electrodes in the
equilibrium case, and the top inset depicts the
out-of-equilibrium case where eV // kBT.
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In a tunnel junction, theory 
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Early implementations
31

Spectral analysis at the single frequency f0, in the bandwidth B  
Need a filter pair for each Fourier frequency

X–Y X+Y

P
 =

 X
2
–

2
X

Y
+

Y
2

P
 =

 X
2
+

2
X

Y
+

Y
2

∆P = 4XY

thermocouple

V ~ 4XY

Analog multiplierAnalog correlator

1940-1950 technology

f0, B

f0, B

X'(f0)cos(2πf0t) – X"(f0)sin(2πf0t)

Y'(f0)cos(2πf0t) – Y"(f0)sin(2πf0t)

(Y'X' + Y"X")/2

<Y'X' + Y"X"> / 2
x(t)

y(t)

Rice representation of noise



Measurement of the 
frequency noise of a H-maser

32

R. F. C. Vessot, Proc. Nasa Symp. on Short Term Frequency Stability p.111-118, Greenbelt, MD, 23-24 Nov 1964
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Phase noise measurement
33

F.L. Walls & al, Proc. 30th FCS pp.269-274, 1976 
More popular after W. Walls, Proc. 46th FCS pp.257-261, 1992

(relatively) large correlation bandwidth 
provides low noise floor in a reasonable time
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Phase noise measurement
34

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, aug 2000 
E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, jun 2002
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Phase noise
35
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Effect of amplitude noise
36

E. Rubiola, R. Boudot, IEEE Transact. UFFC 54(5) pp.926-932, may 2007
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Dual-delay-line method
37

A.L. Lance, W.D. Seal, F. Labaar ISA Transact.21 (4) p.37-84, Apr 1982

Original idea: 
D. Halford’s NBS notebook 
F10 p.19-38, apr 1975 
 
First published: A. L. Lance 
& al, CPEM Digest, 1978

The delay line converts the 
frequency noise into phase noise

The high loss of the coaxial cable 
limits the maximum delay 
!
Updated version: 
The optical fiber provides long 
delay with low attenuation  
(0.2 dB/km or 0.04 dB/μs)
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Optical version of the 
dual-delay-line method

38

FCS’04 Montreal, Aug. 27thQuantum Sciences and Technology Group

Dual-photonic Delay Cross Correlation Method
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The only common part of the setup is the power splitter.

Two completely separate systems measure the same oscillator under test

E. Salik, N. Yu, L. Maleki, E. Rubiola, Proc. Ultrasonics-FCS Joint Conf., Montreal, Aug  2004 p.303-306
Volyanskiy & al., JOSAB 25(12) 2140-2150, Dec.2008.  Also arXiv:0807.3494v1 [physics.optics] July 2008
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Frequency stability of a resonator
39

• Bridge in equilibrium 
• The amplifier cannot flicker around ω0, which it does not know  
• The fluctuation of the resonator natural frequency is estimated from phase noise 
• Q matching prevents the master-oscillator noise from being taken in 
• Correlation removes the noise of the instruments and the reference resonators

Enrico’s weird brain 
– however, with the cryogenic sapphire oscillators we can do way better –

–
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detector

FF
T 

an
al

yz
er

double Wheatstone bridge
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cos(ω0t)

DUT
Now obsolete, 3E–16 stability 

from cryogenic oscillator



Amplitude noise & laser RIN
40

E. Rubiola, The measurement of AM noise, dec 
2005 	arXiv:physics/0512082v1 [physics.ins-det]
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• In PM noise measurements, one can validate the instrument by 
feeding the same signal into the phase detector 

• In AM noise this is not possible without a lower-noise reference  
• Provided the crosstalk was measured otherwise, correlation 

enables to validate the instrument

AM noise of RF/microwave sources
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• Remove the noise of the source by balancing C–A and C–B!
• Use a lock-in amplifier to get a sharp null measurement!

• Channels A and B are independent –> noise is averaged out!
• Two separate JFET amplifiers are needed in the C channel!
•  JFETs have virtually no bias-current noise!

• Only the noise of the detector C remains

Basic ideas

B
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In all previous 
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Measurement of the detector noise
Grop & Rubiola



Noise in chemical batteries
42

C. K. Boggs, A. D. Doak, F. L. Walls, Proc. IFCS p.367-373  1995

noise 
sideband 
amplification

• Do not waste DAC bits for a constant 
DC, V = VB2–VB1 has (almost) zero mean 
• Two separate amplifiers measure the 

same quantity V 
• Correlation rejects the amplifier nose, 

and the FFT noise as well



Noise in semiconductors
43

M. Sampietro & al, Rev. Sci. Instrum 70(5) p.2520-2525, may 1999

signal with mean value S̄DUT proportional to the DUT input

signal �in our case the DUT noise power density⇤ at the se-
lected frequency. The frequency components of the noises of

the two input amplifiers, instead, are uncorrelated to each

other �out of phase⇤ and, after having followed the same path
as the DUT signal, give a signal at the output of the multi-

plier with zero mean value and standard deviation equal to

the input amplifier noise power density at the selected fre-

quency. The final averaging will reduce these fluctuations to

any low value by properly extending the measuring time and

allow us to evaluate S̄DUT �that is the desired DUT informa-
tion⇤ with increasingly high precision. Note that the noise
power spectral density of the input amplifiers, which in a

traditional single channel instrument is summed to the DUT

signal power and therefore directly sets the minimum detect-

able DUT signal, in a two channel correlation instrument

defines only the amplitude of the fluctuations around the

DUT level.

The ideal instrument, performing an ideally long mea-

surement, will measure the correlated signal and reject com-

pletely the uncorrelated noise introduced by the two ampli-

fiers. The improvement in sensitivity is not infinite indeed

but limited in a real instrument by the finite measuring time

and by the residual correlation of the noises between the two

channels, as will be discussed in detail in Secs. V and IV.

The accuracy of the measurement, instead, is only limited by

the precision of the calculation of the system gain and of its

frequency response.

III. DESCRIPTION OF THE DIGITAL CORRELATOR

The frequency selection in each channel and the follow-

ing multiplication and averaging stage have been imple-

mented in our instrument by a digital processing section

whose two inputs contain the stream of digitized samples

from the output v1(t) and v2(t) of the analog amplifiers �see
Fig. 2⇤. The Appendix shows that an estimate S̃DUT( f ) of the
frequency spectrum of the DUT signal can be obtained by

multiplying the discrete Fourier transform �DFT⇤ V1( f ) of
the output of one channel with the complex conjugate of the

DFT V2*( f ) of the output of the other channel and by taking

its real part:8

S̃DUT� f ⇤�
1

N
•R⇧V1� f ⇤•V2*� f ⇤⇥,

where N is the number of samples. The estimate S̃DUT( f ) is

improved increasing the total measurement time Tm by re-

peating M times the procedure with new streams of digitized

data and by averaging them. The features of the measure-

ment in terms of resolution bandwidth �RBW⇤ and frequency
span are set by the parameters of the digitalization. By re-

calling that a stream of N samples taken at the sampling

frequency f s would give a DFT defined in N frequencies

equally spaced by ⌅ f� f s /N , we chose the values of f s and

of N in order to set the desired frequency span from fmin
� f s /N to fmax� f s/2, therefore defining our resolution band-

width to RBW� f s /N .

In our case we use analog to digital �A/D⇤ converters
with a variable sampling frequency �from f s�5 Hz to f s
�100 MHz⇤ and a buffer length N�32k samples. This has
allowed to reach values of fmin lower than 10 mHz and of

fmax of about 10 MHz, limited by the bandwidth of our am-

plifiers. Because of the limited value of N, within the men-

tioned frequency span we are able to produce a direct spec-

tral measurement covering 3 frequencies decades. A full

spectrum on 8–9 decades can be obtained by simply placing

the single results side by side.

IV. INSTRUMENT FRONT ENDS

The characteristics of the preamplifiers forming the input

stage of each channel are important to set the type of mea-

surement �current noise spectra or voltage noise spectra⇤ and
to determine the ultimate performance of the instrument in

term of sensitivity and covered bandwidth. In addition, the

input electrical configuration allows the instrument to adapt

to a wide variety of DUT bias schemes, thus covering all the

requirements that can arise when testing the most advanced

semiconductor devices. The following sections will describe

in detail the test fixtures to perform current or voltage mea-

surements.

A. Current measurement front end

The configuration for current measurements is shown in

Fig. 3. The DUT is connected between the inputs of two

transimpedance amplifiers that convert the DUT current into

a voltage output, v1(t) and v2(t). The amplifiers allow us to

FIG. 1. Schematics of the building blocks of the correlation spectrum ana-

lyzer.

FIG. 2. Schematics of the building blocks of our correlation spectrum ana-

lyzer performing the suppression of the uncorrelated input noises by a digi-

tal processing of sampled data.

2521Rev. Sci. Instrum., Vol. 70, No. 5, May 1999 Sampietro, Fasoli, and Ferrari
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ample, by using RF�100 M� , the curves would shift down
by a factor of 10, therefore allowing us to easily measure

sub-fA/�Hz DUT signals within a day.
The time needed to obtain a given sensitivity can be

traded with the RBW as indicated by Eq. ⇥2⇤: a frequency
resolution relaxed by a factor of 10 ⇥that is RBW�1 kHz⇤
would need ten times faster measurement for the same noise

sensitivity. This, of course, implies that the low frequency

section of a DUT spectrum would require a proportionally

long measurement time.

As an example of the capabilities of the instrument in

measuring extremely low noise levels, we present the results

of two different experiments. Figure 7 shows the frequency

spectrum of the current noise produced by a resistor of RD

�10 G� . Figure 7 proves that a 2 day experiment is long
enough to measure with good precision the expected theoret-

ical value of 1.3 fA/�Hz. To optimize the measurement the
data have been processed in order to produce a resolution

bandwidth increasing proportionally with the frequency from

a value of RBW�0.07 Hz at a frequency of 1 Hz until a

value of RBW�70 Hz at the final frequency of 1 kHz. As a
second example, we present in Fig. 8 the measurement of the

voltage noise spectral density produced by resistors of dif-

ferent values. The upper square-shaped points are the values

measured when only one channel is operated, that is when

the instrument behaves like a traditional spectrum analyzer.

In this case the sensitivity saturates to the limit given by the

noise of the input stage, equivalent to about 1.4 nV/�Hz
corresponding to the noise of an input resistor of about 100

� . The lower diamond-shaped points correspond to the mea-
surement performed with both channels active. The decrease

in the DUT noise, obtained by decreasing the DUT resis-

tance, is correctly tracked by the instrument at least down to

the value of 70 pV/�Hz. Values of resistors lower than 0.25
� were not tested because of the stray resistances of the

mounting.

VI. LIMITS DUE TO RESIDUAL CORRELATIONS
BETWEEN THE TWO CHANNELS

As already mentioned, the ultimate performance of the

instrument in term of sensitivity is set by those sources of

noise in the input preamplifiers that produce a signal exactly

in parallel to the one produced directly by the DUT. This

correlated component is read by the two channels of the in-

strument the same way as the DUT component and can

therefore not be removed.

For what concerns current noise measurements with the

setup of Fig. 3, the correlated component is produced by the

noise voltage sources en
2 and sets the minimum DUT signal

that can be measured by the instrument as:

icorr
2 �2en

2⇥ 1
RD

⌅ 1
RF

⇥
1

RD
�⇥⌅2CD⇥CD⇥Ci⇥Cstray⇤⇤ ,

⇥3⇤

where RD and CD are the equivalent resistance and capaci-

tance of the DUT. The limits predicted by Eq. ⇥3⇤ in the case
of our instrument and with a CD�0.5 pF are shown in Fig. 9
as a function of the frequency for two values of impedance

RD of the DUT. Note that at low frequencies the 1/f noise

FIG. 8. Measurement of the noise spectral density of DUT resistors per-

formed: ⇥a⇤ by using only one channel and ⇥b⇤ by using both channels and
exploiting the peculiarity of the correlation technique. The dashed line in-

dicates the theoretical noise values ⇥4 kTRD) expected from the DUT resis-

tors.

FIG. 9. Experimental frequency spectrum of the current noise from DUT

resistances of 100 k� and 500 M� ⇥continuous line⇤ compared with the
limits ⇥dashed line⇤ given by the instrument and set by residual correlated
noise components.

FIG. 7. Frequency spectrum of the current noise produced by a resistor of

10 G� . Peaks are probably due to an imperfect shielding from interferences
that produce correlated signals.
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also define the bias voltage across the DUT to any desired dc

value by setting Vbias . The noise characteristics of the am-

plifiers are summarized in their equivalent input noise gen-

erators, in
2 and en

2 , and in their input capacitance Ci . Cstray
accounts for the stray capacitance of the text fixture to

ground. In the case of our instrument in
2�(5 fA/�Hz)2, en2

�(3.3 nV/�Hz)2, Ci�5 pF, and Cstray�25 pF. CF is intro-

duced to stabilize the amplifier and its value is chosen in

order that RFCF be about the same order of magnitude as

RD(Ci⇥Cstray), with RD the DUT resistance. The amplifier

outputs are ac coupled ⇥down to the mHz range⌅ to the A/D
converters ⇥see Fig. 2⌅.

The DUT current is read by both amplifiers and reaches

the two outputs completely correlated. On the contrary, the

current noise in
2 of each amplifier and the noise of the feed-

back resistor RF (iRF
2 �4kT/RF) are read only by the channel

that generate them thanks to the very low input impedance of

a transimpedance amplifier. These noises are uncorrelated

over the two channels and can therefore be reduced by a

properly long measurement. On the contrary, the voltage

noise en
2 of each amplifier produces a current through the

DUT, which is thus completely correlated over the two chan-

nels and therefore sets the lowest sensitivity limit of the in-

strument, as will be investigated in detail in Sec. VI

The choice of the value of the feedback resistor RF is a

compromise between the following two competing needs: ⇥1⌅
high RF to maximize the amplification of the DUT signal

and to minimize its own current noise: both these effects

allow shorter measurements; ⇥2⌅ small RF to prevent the dc

bias current in the DUT from saturating the output v1(t) and
v2(t) of the amplifiers. A small RF also maximizes the band-

width fmax�1/(2⇤RFCF) of the measurement. In practice,

RF is chosen to satisfy the practical conditions defined in ⇥2⌅,
that is dc bias current and bandwidth. This choice does not

affect the sensitivity of the instrument, the only consequence

being a variation of the measuring time necessary to reach

the desired level of sensitivity. On the contrary, in a tradi-

tional one channel voltage spectrum analyzer that uses the

same transimpedance amplifier in front of its input port to

perform noise current measurements, the value of RF also

directly sets the sensitivity of the instrument to the value in
2

�4kT/RF . This has strong consequences when high sensi-

tivity measurements are performed because the necessary

choice of a high value RF would drop the bandwidth and the

capability of handling dc currents to very low values.

The current front end is well suited for direct current

noise measurements on semiconductor devices. Figure 4

shows, as an example, the connection to the instrument input

ports of a generic four-electrodes DUT, in which two elec-

trodes ⇧indicated with ⇥B⌅ and ⇥C⌅ in the figure� are directly
biased by the instrument itself and the others can be biased

by independent voltage sources. In addition to the ease and

flexibility in the biasing of the device under test, Fig. 4 high-

lights a specific feature of the correlation spectrum analyzer,

not available in a traditional instrument with only one chan-

nel: the possibility of extracting the current component (IBC)

that flows between the two terminals, ⇥B⌅ and ⇥C⌅, connected
to the instrument irrespective of the presence in the same

terminals of other current components (IAB , ICD , IAC , IBD)

from the other terminals of the DUT. This peculiarity of the

correlation spectrum analyzer has many practical applica-

tions in the characterization of semiconductor devices. For

example it makes possible a selective and precise measure-

ment of the current in the channel of a MOSFET when the

current from the bulk is not negligible.

B. Voltage measurement front end

The measurement of a voltage noise spectrum can be

performed by the front-end scheme of Fig. 5. The signal

from the DUT is read by two independent voltage amplifiers

operated in parallel whose characteristics are summarized in

their equivalent noise generators, in
2 and en

2 , and in their

FIG. 3. Schematics of the active test fixture for current noise measurements.

FIG. 4. Example of connection of a four-electrode DUT to perform the

selective measurement of one current component excluding the others.
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Electro-migration in thin films
44

A. Seeger, H. Stoll, 1/f noise and defects in thin metal films, proc. ICNF p.162-167, Hong Kong 23-26 aug 1999 
RF/microwave version: E. Rubiola, V. Giordano, H. Stoll, IEEE Transact. IM 52(1) pp.182-188, feb 2003
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Hanbury Brown - Twiss effect
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R. Hanbury Brown, R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177 (1956) 27-29
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Figure 1: Schematics of the HBT experiment (a), of the GHz beam splitter (b), of the amplification

and detection chains (c). A detailed description is given in the text.
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in single-photon regime, anti-correlation shows up

Also observed  at microwave frequencies 
C. Glattli & al. (2004), PRL 93(5) 056801, Jul 2004
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Figure 1: Schematics of the HBT experiment (a), of the GHz beam splitter (b), of the amplification

and detection chains (c). A detailed description is given in the text.
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kT = 2.7×10–25 J at 20 mK,   hν = 1.12×10–24 J at 1.7 GHz,   kT/hν = –6.1 dB



Conclusions
• Rejection of the instrument noise 

• AM noise, RIN, etc. –> validation of the instrument 
without a reference low-noise source 

• Display quantities 
<Re{Syx}>m is faster and more accurate 
<Im{Syx}>m gives the background noise 
max{<Syx>m,0+} provide easier readout 

• Applications in many fields of metrology

46

The cross spectrum method is magic 
Correlated noise sometimes makes magic difficult

home page http://rubiola.org

http://arxiv.org/abs/physics/0602110

