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       Counter – main purposes
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The AND gate

Digital hardware
3
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Basic flip-flops
Set-Reset (SR) flip-flop

D-type flip-flop (digital sampler)
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Binary counter

Disambiguation: the word “counter” – is used for both
• the binary / BCD counter – the digital circuit
• the time / frequency counter – the instrument



1 – Basic counters
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Time Interval (TI) counter
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The (old) frequency counter
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Classical reciprocal counter
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Prescaler
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• The prescaler is a n-bit binary divider ÷ 2n

• GaAs dividers work up to at least 20 GHz
• Reciprocal counter => there is no resolution reduction
• Most microwave counters use the prescaler
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Transfer-oscillator counter
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• The transfer oscillator is a PLL
• Harmonics generation takes place inside the mixer
• Harmonics locking condition:  N νvco = νx
• Frequency modulation Δf is used to identify N

(a rather complex scheme, ×N  =>  Δν –> NΔν )
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Heterodyne counter
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• Down-conversion: fb = | νx – N νc |
• νb is in the range of a classical counter (100–200 MHz max)
• no resolution reduction in the case of a classical frequency 

counter (no need of reciprocal counter)
• Old scheme, nowadays used only in some special cases 

(frequency metrology)
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Coarse counting
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2 – Trigger
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Trigger hysteresis
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Threshold fluctuation
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Trigger noise – oversimplified
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• The effect of noise is often explained with a plot like this
• Yet, the formula holds in the absence of spikes!!!
• To the general practitioner, this explanation looks simple

41

Drifting of the trigger voltage point of either channel with tem
perature change, line voltage change, or component aging.

Energy effect on fast rise signals.

1. Noise on Input Signal

Triggering is set to occur at +1 volt on the input signal as shown at
Figure 25a.

Low frequency noise on the input signal can cause triggering to
occur too early (Figure 25b) or too late (Figure 25c). High frequency
noise can cause early triggering only.

Noise can occur on either the Start or Stop pulse or both, conse-
quently the measurement may be either too long or too short by
twice the error shown in the example.

2. Distortion on Input Signal

Figure 26 shows how harmonically related noise as well as
nonharmonically related noise moves the trigger point in time.
Also shown is the effect of noise on a signal.

3. Increased Signal Amplitude Reduces Time Error

Increasing signal amplitude reduces the time error !t if the high
amplitude signal does not have any more noise than the lower
amplitude signal. In practical applications this is often the case as
noise is frequently due to ground loops or to other spurious signals

Figure 25. Time
Error introduced
by noise on the
input signal.
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Effect of (too) wide-band noise
19

When the rms slope of 
noise is higher than the 
signal slope:
• the trigger leads
• systematic error 

E. Rubiola & al., Proc. 46 FCS pp. 265-269, May 1992



Trigger behavior vs. bandwidth
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3 – Interpolation schemes
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Too short Ta and Tb are difficult to measure, so we add one Tc to each

Clock interpolation – Main idea
22
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         The frequency Vernier
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The key elements
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Example: Hewlett Packard 5370A25



The Nutt dual-slope interpolator
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Example: Nanofast 536 B
Smithsonian Astrophysical Laboratory
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The ramp interpolator
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Example: Stanford SR 620



Thermometer-code interpolator
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Also called Multi-tapped delay-line interpolator
Review article: J. Kalisz, Metrologia 41 (2004) 17–32



Vernier thermometer-code interpolator
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Ring Oscillator
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Also used in PLL circuits for clock-frequency multiplication

Fi
gu

re
 fr

om
 J

. K
al

is
z,

 M
et

ro
lo

gi
a 

41
 (2

00
4)

 1
7–

32



SAW delay-line interpolator
33

A – Block diagram

B – Pulse waveforms

 P. Panek, I. Prochazka, Rev. Sci. Instrum. 78(9):094701, 2007 

•Dispersion stretches the input pulse
•Sub-sampling and identification of the alias
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Sigma Time STX301 counter

•Gossips report that this is 
none of the above methods

•No information at all, I’m 
unable to reverse-engineer



4 – Basic statistics

35

– after all, not  that basic! –
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Old Hewlett Packard application notes
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Quantization uncertainty
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Classical (Π) reciprocal counter
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From Π to Λ – key concept



Enhanced-resolution (Λ) counter
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Actual formulae look like this

(Π) σy =
1
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ν0τ ν00 ≤ νI

νIτ ν00 > νI

41



Understanding technical data
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the slope of the classical variance tells the whole story
1/τ2 =⇒ Π estimator (classical reciprocal)

1/τ3 =⇒ Λ estimator (enhanced-resolution)

look for formulae and plots in the instruction manual
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Examples
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Linear-regression counter
44
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Linear regression vs. Λ estimator
45

n = 10,  τ = 100 µsn = 100,  τ = 1 msn = 1000,  τ = 10 ms
Parameters
trigger noise �

x

= 1 ns

time stamping ⌧0 = 10 µs

n = 10,  τ = 100 µs
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std dev of Λ
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�y

The linear regression estimator is 
asymptotically equivalent to the Λ estimator

Frequency, Hz



5 – Advanced statistics

46



Decimation of Λ estimates
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the average converges 

to a Π estimate

How to combine contiguous Λ measures in a way that makes sense



Allan variance
σ
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
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0 < t < τ
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0 elsewhere
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the Allan variance differs from a wavelet variance 
in the normalization on power, instead of on 
energy

energy

t

A

τ2
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τ2
1

0

0 τ 2τ

time
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Phase noise & friends 49

S�(f) = PSD of �(t)
power spectral density

L(f) =
1
2
S�(f) dBc

y(t) =
⇤̇(t)
2⇥�0

� Sy =
f2

�2
0

S�(f)

�2
y(⇥) = E

�
1
2

⇤
yk+1 � yk

⌅2
⇥

.

Allan variance
(two-sample wavelet-like variance)

approaches a half-octave bandpass filter (for white noise), 
hence it converges even with processes steeper than 1/f

random fractional-frequency fluctuation

random phase fluctuation

signal sources only 

f

h2f2

b0

2ν0f2/x

2ln(2)h −1
)2

h−2
(2π

6
τh0 /2τ

f−4b−4

b−2 f−2
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y
2σ (τ)

white freq.

white phase

flicker phase.

f

white freq.
flicker phase

white phase

f

white phase
flicker phase drift

τ

flicker freq.

random walk freq.

random

flicker freq. random walk freq.
white freq.

flicker freq.

walk freq.

h

freq.

0

h1

both signal sources
and two-port devices

v(t) = Vp [1 + �(t)] cos [2⇤⇥0t + ⌅(t)]

it is measured as

S�(f) = 1
T E {�(f)��(f)} (expectation)

S�(f) � 1
T ⇥�(f)��(f)⇤m (average)
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Modified Allan variance
mod σ2

y(τ) = E

{

1

2

[

1

n

n−1
∑

i=0

(

1

τ

∫ (i+2n)τ0

(i+n)τ0

y(t) dt −
1

τ

∫ (i+n)τ0

iτ0

y(t) dt

)]2
}

with τ = nτ0 .

mod σ2
y(τ) = E

{
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∫ +∞

−∞

y(t) wM (t) dt
]2

}

wM =


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
















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w
2
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1
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definition

wavelet-like
variance

energy

E{wM} =
1

2
E{wA}

compare the energy

this explains why the mod Allan variance is always lower than the Allan variance
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0
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Spectra and variances
51

REVISED SUBMISSION TO IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, DECEMBER 2006 4

TABLE I

COMPARISONS OF ALLAN VARIANCE (TRADITIONAL COUNTER), TRIANGLE VARIANCE (HIGH-RESOLUTION COUNTER) AND MODIFIED ALLAN

VARIANCE RESULTING FROM CHARACTERISTIC NOISE. HERE, PM STANDS FOR PHASE MODULATED AND FM STANDS FOR FREQUENCY MODULATED.

(NOTE: A CUTOFF FREQUENCY, fH , IS INTRODUCED FOR THE ALLAN VARIANCE OF WHITE PHASE NOISE AND FLICKER PHASE NOISE TO AVOID AN

INFINITE RESULT. WE ALSO IGNORE THE SMALL SINUSOIDAL TERM.)

Noise Type Sy(f) Allan (⇤2
A) Modified Allan Triangle

White PM h2f2 3 fH
4 �2 h2⌅ -2 3

8 �2 h2⌅ -3 2
�2 h2⌅ -3

= ⇤2
A(⌅) = 1

2 fH⇥ ⇤2
A(⌅) = 8

3 fH⇥ ⇤2
A(⌅)

Flicker PM h1f 1.038+3 ln(2 �fH⇥)
4 �2 h1⌅ -2

3 ln( 256
27 )

8 �2 h1⌅ -2
6 ln( 27

16 )

�2 h1⌅ -2

= ⇤2
A(⌅) = 3.37

3.12+3 ln �fH⇥ ⇤2
A(⌅) = 12.56

3.12+3 ln �fH⇥ ⇤2
A(⌅)

White FM h0
1
2h0⌅ -1 1

4h0⌅ -1 2
3h0⌅ -1

= ⇤2
A(⌅) = 0.50 ⇤2

A(⌅) = 1.33 ⇤2
A(⌅)

Flicker FM h-1f -1 2 ln(2) h-1 2 ln( 3 311/16

4 ) h-1 (24 ln(2)� 27
2 ln(3)) h-1

= ⇤2
A(⌅) = 0.67 ⇤2

A(⌅) = 1.30 ⇤2
A(⌅)

Random Walk FM h-2f -2 2
3 ⇥2 h-2 ⌅ 11

20 ⇥2 h-2 ⌅ 23
30 ⇥2 h-2 ⌅

= ⇤2
A(⌅) = 0.82 ⇤2

A(⌅) = 1.15 ⇤2
A(⌅)

Frequency Drift (ẏ = Dy) - 1
2D2

y⌅2 1
2D2

y⌅2 1
2D2

y⌅2

TABLE II

FIRST ORDER ERROR, �, IN THE ALLAN, TRIANGLE AND MODIFIED

ALLAN VARIANCES CAUSED BY THE INCLUSION OF DEAD-TIME. THE

VARIANCE WITH DEAD-TIME, ⇤2
⇥d
, IS THE ORIGINAL VARIANCE, ⇤2 ,

AUGMENTED BY �: ⇤2
⇥d
⇥ (1 + �) ⇤2 . (*FOR THE MOST DIVERGENT

NOISE, THE ALLAN VARIANCE HAS A COMPLICATED DEPENDENCE ON THE

CUTOFF FREQUENCY, fH ; HOWEVER, FOR SIMPLICITY WE GIVE THE

MAXIMUM VALUE.)

Noise Type Allan Modified Allan Triangle

White PM 2 ⇥d
⇥ * �0.33 ⇥d

⇥ 0

Flicker PM 2 ⇥d
⇥ * 0.67 ⇥d

⇥ 0.43 ⇥d
⇥

White FM 0 0 0

Flicker FM
⇥d
⇥ 1.33 ⇥d

⇥ 0.62 ⇥d
⇥

Random Walk FM 1.50 ⇥d
⇥ 1.67 ⇥d

⇥ 1.30 ⇥d
⇥

Frequency Drift 2 ⇥d
⇥ 2 ⇥d

⇥ 2 ⇥d
⇥

being measured. Table I compares the Allan variance, triangle

variance and modified Allan variance resulting from several

common characteristic noise types. For an arbitrary signal,

however, Greenhall [8] has shown that it is not possible to

derive the power spectral density from the Allan variance; this

is equally true for the triangle variance calculation. Therefore,

it is not possible to manipulate data taken from a �-type
counter to yield the Allan variance that would have been

measured by a ⇥-type frequency counter, except for the

special case where the shape of Sy(f) is already known. The
corrections for listed Sy(f) are also presented in Table I.
Where the measurement involves a significant dead-time, a

further correction may be necessary, and we include Table II

for convenience. We note that the Allan variance values are

consistent with the bias functions tabulated by Barnes and

Allan [9].

The easiest way to be sure of obtaining the true Allan

variance is to ensure that a ⇥-type counter is used. Unlike
in [1], where the averaging of a series of �-type counter

2
√

2τ

1
√

2τ

−

1
√

2τ

−

2
√

2τ

t

wA

Amplitude

Fig. 6. Averaging �-counts before calculating the Allan variance produces
a triangularly modulated ⇥-count. Here we show four averages (N = 4).
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p
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tu

d
e
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(a)

(b)

0

Normalized Frequency (fτ)
5 10 15 20

Fig. 7. The variance calculated by averaging consecutive �-counts (b)
approximates the Allan variance (a) at low frequencies but increases sensitivity

around N
⇥ (here N = 10).

measurements is assumed to approximate the ⇥-estimator,
we find that a series of �-estimators produces a ⇥-estimator
modulated by a triangle wave (see Fig. 6). For a number of

samples, N , the variance produced by this method approaches
the Allan variance at frequencies comparable to the reciprocal

of the gate time, but introduces sensitivity near N times the

reciprocal of the gate time (see Fig. 7).

A second alternative is to use a spectrum analyzer to

generate the frequency noise, Sy(f), and then calculate the

�00 is replaced with �0 for consistency with the general literature

fH is the high cuto� frequency, needed for the noise power to be finite

S.T. Dawkins, J.J. McFerran,  A.N. Luiten, IEEE Trans. UFFC 54(5) p.918–925, May 2007



Π estimator —>  Allan variance
given a series of contiguous non-overlapped measures

the Allan variance is easily evaluated

measure series

A 2 τ)+1/(

wΠ(t− )τ

2 τ)−1/(

wΠ
t

1/τ
(t) time

ν0 ν1 ν2 ν3

1/τ

0 τ 2τ

t

t
(t)

t...... ......

w

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}
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Overlapped Λ estimator  —>  MVAR

mod σ2
y(τ) = E

{

1

2

[

1

n

n−1
∑

i=0
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1

τ

∫ (i+2n)τ0

(i+n)τ0

y(t) dt −
1

τ

∫ (i+n)τ0

iτ0

y(t) dt

)]2
}

with τ = nτ0 .

.....

M 2 τ)+1/(

wΛ(t− )τ

2 τ)−1/(

wΛ
t1/τ

1/τ time

ν0 ν1 ν2 ν3

0 τ 2τ 3τ

t

t

(t)

(t)

t.....

w

by feeding a series of Λ-estimates of frequency in the formula of the Allan variance

one gets exactly the modified Allan variance!

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}

as they were Π-estimates
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Joining contiguous values to increase τ

mod Allan

w

(1)w

w(3)

w(4)

t

t

m=2
t

t

t

m=4

m=8

t

τ=τB

τ=2τB

τ=4τB

τ=8τB

t
converges to Allan

(2)

m = 1! mod Allan
m = 2! this is not what we expected
m = 4! ...
m ≥ 8! the variance converges to the 
! ! (non modified) Allan variance

graphical proof
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There is a mistake in one of my articles: I believed that in the case of the 
Agilent counters the contiguous measures were overlapped.  They are not.



Non-overlapped Λ estimator  —>  TrVAR
by feeding a series of Λ-estimates of frequency in the formula of the Allan variance

one gets the triangular variance!

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}

as they were Π-estimates
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wΛ(t)

wΛ(t–2τ)

time t

time t

time t

1/τ

1/τ

τ 2τ 3τ 4τ

+1/(√2 τ)

–1/(√2 τ)

wTr(t)

S.T. Dawkins, J.J. McFerran,  A.N. Luiten, IEEE Trans. UFFC 54(5) p.918–925, May 2007
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Conclusions
• Review of general techniques
• The trigger may not what it seems – however, in unusual conditions 
• Sophisticated interpolation techniques
• The thermometer-code interpolator is simple with modern FPGAs
• The Λ (triangular) estimator provides higher resolution than the Π 

(rectangular) estimator, but can be used with periodic phenomena only
• Mistakes are around the corner if the counter inside is not understood
• Some of the reported ideas are suitable to education laboratories and 

classroom works (I used a bicycle odometer and milestones to 
demonstrate the Λ estimator)
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home page http://rubiola.org

To know more:
1 - http://rubiola.org, slides and articles
2 - http://arxiv.org, document arXiv:physics/0503022v1
3 - Rev. of Sci. Instrum. vol. 76 no. 5, art.no. 054703, May 2005. 
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