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Clock signal affected by noise
6

v(t) = V0 [1 + α(t)] cos [ω0t + ϕ(t)]

v(t) = V0 cos ω0t + nc(t) cos ω0t− ns(t) sinω0t

α(t) =
nc(t)
V0

and ϕ(t) =
ns(t)
V0

Chapter 1. Basics 2
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Figure 1.1: .

where V0 is the nominal amplitude, and α the normalized amplitude fluctuation,
which is adimensional. The instantaneous frequency is

ν(t) =
ω0

2π
+

1

2π

dϕ(t)

dt
(1.3)

This book deals with the measurement of stable signals of the form (1.2), with
main focus on phase, thus frequency and time. This involves several topics,
namely:

1. how to describe instability,

2. basic noise mechanisms,

3. high-sensitivity phase-to-voltage and frequency-to-voltage conversion
hardware, for measurements,

4. enhanched-sensitivity counter interfaces, for time-domain measurements,

5. accuracy and calibration,

6. the measurement of tiny and elusive instability phenomena,

7. laboratory practice for comfortable low-noise life.

We are mainly concerned with short-term measurements in the frequency do-
main. Little place is let to long-term and time domain. Nevertheless, problems
are quite similar, and the background provided should make long-term and time
domain measurement easy to understand.

Stability can only be described in terms of the statistical properties of ϕ(t)
and α(t) (or of related quantities), which are random signals. A problem arises

polar coordinates

Cartesian coordinates

|nc(t)|� V0 and |ns(t)|� V0

under low noise approximation It holds that
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Physical quantities

phase noise

phase-time
(fluctuation)

x(t)

ϕ(t) (∆ν)(t)

y(t)

x =
ϕ

2πν0

(∆ν)(t) =
1
2π

dϕ(t)
dt

y(t) =
1
ν0

(∆ν)(t)

y(t) =
dx(t)

dt fractional-
frequency
fluctuation

v(t) = V0 [1 + α(t)] cos [2πν0t + ϕ(t)]

frequency
fluctuation

Allow φ(t) to exceed ±π and count the number of turns, 
so that φ(t) describes the clock fluctuation in full

7

radian

second

Hertz

adimensional



The power spectral density
8

The power spectral density extends the concept of 
root-mean-square value to the frequency domain



Phase noise & friends 9

Sϕ(f) = PSD of ϕ(t)
power spectral density

L(f) =
1
2
Sϕ(f) dBc

y(t) =
ϕ̇(t)
2πν0

⇒ Sy =
f2

ν2
0

Sϕ(f)

σ2
y(τ) = E

�
1
2

�
yk+1 − yk

�2
�

.

Allan variance
(two-sample wavelet-like variance)

approaches a half-octave bandpass filter (for white noise), 
hence it converges even with processes steeper than 1/f

random fractional-frequency fluctuation

random phase fluctuation

signal sources only 

f

h2f2

b0

2ν0f2/x

2ln(2)h −1
)2

h−2
(2π

6
τh0 /2τ

f−4b−4

b−2 f−2

b−1 f−1

h−2 f−2

h−1 f−1

b−3 f−3

Sϕ(f)

Sy(f)

y
2σ (τ)

white freq.

white phase

flicker phase.

f

white freq.
flicker phase

white phase

f

white phase
flicker phase drift

τ

flicker freq.

random walk freq.

random

flicker freq. random walk freq.
white freq.

flicker freq.

walk freq.

h

freq.

0

h1

it is measured as
Sϕ(f) = E {Φ(f)Φ∗(f)} (expectation)

Sϕ(f) ≈ �Φ(f)Φ∗(f)�m (average)

both signal sources
and two-port devices

v(t) = Vp [1 + α(t)] cos [2πν0t + ϕ(t)]
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℀℁ℂ℃℄℅℆ℇ℈℉ℊℋℌℍℎℏℐℑℒℓ℔ℕ№℗℘ℙℚℛℜℝ℞℟℠℡™℣ℤ℥Ω℧ℨ℩KÅℬℭ℮ℯℰℱℲℳℴℵℶℷℸℹ℺℻ℼℽℾℿ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅌⅍ⅎ⅏(f) (re)defined

The problem with this definition is that it does not divide AM noise 
from PM noise, which yields to ambiguous results

10

The IEEE Std 1139-1999 redefines ℀℁ℂ℃℄℅℆ℇ℈℉ℊℋℌℍℎℏℐℑℒℓ℔ℕ№℗℘ℙℚℛℜℝ℞℟℠℡™℣ℤ℥Ω℧ℨ℩KÅℬℭ℮ℯℰℱℲℳℴℵℶℷℸℹ℺℻ℼℽℾℿ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅌⅍ⅎ⅏(f) as

℀℁ℂ℃℄℅℆ℇ℈℉ℊℋℌℍℎℏℐℑℒℓ℔ℕ№℗℘ℙℚℛℜℝ℞℟℠℡™℣ℤ℥Ω℧ℨ℩KÅℬℭ℮ℯℰℱℲℳℴℵℶℷℸℹ℺℻ℼℽℾℿ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅌⅍ⅎ⅏(f)  =   (1/2) × Sφ(f)

℀℁ℂ℃℄℅℆ℇ℈℉ℊℋℌℍℎℏℐℑℒℓ℔ℕ№℗℘ℙℚℛℜℝ℞℟℠℡™℣ℤ℥Ω℧ℨ℩KÅℬℭ℮ℯℰℱℲℳℴℵℶℷℸℹ℺℻ℼℽℾℿ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅌⅍ⅎ⅏(f)  =  ( SSB power in 1Hz bandwidth )   /   ( carrier 
power )

The first definition of ℀℁ℂ℃℄℅℆ℇ℈℉ℊℋℌℍℎℏℐℑℒℓ℔ℕ№℗℘ℙℚℛℜℝ℞℟℠℡™℣ℤ℥Ω℧ℨ℩KÅℬℭ℮ℯℰℱℲℳℴℵℶℷℸℹ℺℻ℼℽℾℿ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅌⅍ⅎ⅏(f) was 

Engineers (manufacturers even more) like ℀℁ℂ℃℄℅℆ℇ℈℉ℊℋℌℍℎℏℐℑℒℓ℔ℕ№℗℘ℙℚℛℜℝ℞℟℠℡™℣ℤ℥Ω℧ℨ℩KÅℬℭ℮ℯℰℱℲℳℴℵℶℷℸℹ℺℻ℼℽℾℿ⅀⅁⅂⅃⅄ⅅⅆⅇⅈⅉ⅊⅋⅌⅍ⅎ⅏(f)

v0+fv0 v

N

B
P0



Mechanical stability
11

Any phase fluctuation can be 
converted into length fluctuation

Sϕ(f)
10

–18
 rad

2
/Hz @ 1 Hz

h−1/f

SL(f)

L =
1
2π

c

ν0

h−1/f

1.5x10
–23

 m
2
/Hz @ 1 Hz

f

f

τ

σ2 = 2 ln(2) h−1

4.5x10
–12

 m

σL(τ)

Any flicker spectrum h–1/f can be 
converted into a flat Allan variance

σ2
L = 2 ln(2) h−1

A residual flicker of –180 dBrad2/Hz at f = 1 Hz 
off the 10 GHz carrier is equivalent to  

b–1 = –180 dBrad2/Hz and ν0 = 10 GHz is equivalent to 
SL = 1.46x10–23 m2/Hz at f = 1 Hz 

σ2 = 2x10–23 m2   thus    σ = 4.5x10–12 m
for reference, the Bohr radius of the electron is  R = 0.529 Å

• Don’t think “this is just engineering” !!!
• Learn from non-optical microscopy (bulk matter, 5x10–14 m)
• Careful DC section (capacitance and piezoelectricity)
• The best advice is to be at least paranoiac
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Averaged spectra must be smooth
12
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 plot 431

an(t) and bn(t) contain the 
noise in the ω0/2 band 

centered at nω0

stationary & ergodic process (means repeatable and reproducible):  the statistics of all an(t) and bn(t) is the same

v(t) =
∞�

n=0

an(t) cos(nω0t)− bn(t) sin(nω0t)

average on m spectra: confidence of a point improves by 1/m1/2 

interchange ensemble with frequency: smoothness 1/m1/2

Rice 
representation

Sv(nω0) =
�
a2

n + b2
n

�
/ω0



PM noise in systems
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H. T. Friis, Proc. IRE 32 p.419-422, jul 1944

b0 =
FkT0

P0

white 
phase noiseSϕ =

0�

i=−4

bif
i

power law

f

Sφ(f)

low P0

high P0

P0

∑
V0 cos ω0t

nrf(t)

Noise figure F, Input power P0

g

Cascaded amplifiers (Friis formula)
The (phase) noise is chiefly that of the 1st stage

BB

S(ν )

P0

Ne=FkT0

ν0−f ν0 ν0+f

LSB USB

ν

P=FkT0B

R
F 

sp
ec

tr
um

N = F1kT0 +
(F2 − 1)kT0

g2
1

+ . . .

g3g1 g2
F2F1 F3

The Friis formula applied to phase noise

b0 =
F1kT0

P0
+

(F2 − 1)kT0

P0g2
1

+ . . .

White noise



Flicker noise
15

stopband output bandwidthstopband output bandwidth

E. Rubiola – FCS 2004 4

Flicker noise in RF and microwave amplifiers

near-dc flicker

no carrier
S(f)

f

S(f)

f

noise 
up-conversion

vi!t "#V i cos!$0 t "
AM PM

n,!t " n, ,!t "

a1

noise-free

vo!t " # V i %cos!$0 t "&m, n,!t "cos!$0 t "'m, , n, ,!t "sin !$0 t "( a1

vo!t "

vo # a1 x&a2 x2 x # V i cos!$0 t " & n !t "

vo!t " # a1V i cos!$0 t "&a2 %V i
2 cos2!$0 t "&2V i n !t "cos!$0 t "&n2!t "(

m #
2 a2

a1

 random modulation from near-dc noise

modulated signal:

the simplest
nonlinearity

with

yields:

modulation index:)!t " #
2 a2 n !t "

a1
AM noise:

AM noise PM noisecarrier

carrier near-dc
*n !t "*+1

PM noise originates in the same way, but for a 90° phase shift in the product

E. Rubiola – FCS 2004 4

Flicker noise in RF and microwave amplifiers

near-dc flicker

no carrier
S(f)

f

S(f)

f

noise 
up-conversion

vi!t "#V i cos!$0 t "
AM PM

n,!t " n, ,!t "

a1

noise-free

vo!t " # V i %cos!$0 t "&m, n,!t "cos!$0 t "'m, , n, ,!t "sin !$0 t "( a1

vo!t "

vo # a1 x&a2 x2 x # V i cos!$0 t " & n !t "

vo!t " # a1V i cos!$0 t "&a2 %V i
2 cos2!$0 t "&2V i n !t "cos!$0 t "&n2!t "(

m #
2 a2

a1

 random modulation from near-dc noise

modulated signal:

the simplest
nonlinearity

with

yields:

modulation index:)!t " #
2 a2 n !t "

a1
AM noise:

AM noise PM noisecarrier

carrier near-dc
*n !t "*+1

PM noise originates in the same way, but for a 90° phase shift in the product

near-dc 
noise

expand and select the ω0 
terms

carrier
vi(t) = Vi ejω0t + n�(t) + jn��(t)

non-linear (parametric) amplifier

vo(t) = Vi

�
a1 + 2a2

�
n�(t) + jn��(t)

��
ejω0t

get AM and PM noise

α(t) = 2
a2

a1
n�(t) ϕ(t) = 2

a2

a1
n��(t) The AM and the PM noise are 

independent of Vi , thus of power

vo(t) = a1vi(t) + a2v
2
i (t) + . . .

substitute
(careful, this hides the down-conversion)

the parametric nature of 1/f 
noise is hidden in n’ and n”

ω0 = ?

no flicker

ω0

The noise sidebands are 
proportional to the input carrier

near-dc noise

There is also a linear parametric model, which yields the same results
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• The 1/f phase noise b–1 is about independent of 
power

• The white noise b0 scales up/down  as 1/P0, i.e., the 
inverse of the carrier power

• Describing the 1/f noise in terms of fc is misleading 
because fc depends on the input power

2
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FIG. 10 – Phase noise of 1 amplifier JS2 vs Pin at 10 GHz.
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8

Phase noise vs. power

Phase noise of cascaded amplifiers

Phase noise of paralleled amplifiers
• Connecting two amplifiers in parallel, the phase-

noise flicker is expected to decrease by 3 dB

Regenerative amplifiers
• Phase noise increase as the squared gain because 

the noise source at each roundtrip is correlated

Measured at the 
LAAS, Toulouse

• The expected flicker of a cascade increases by:
3 dB, with 2 amplifiers 
5 dB, with 3 amplifiers

The theory is fully confirmed on more 
amplifiers (E.Rubiola & R.Boudot)
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Environmental noise
17

temperature

vibrations

input carrier

phase

amplitude

g

etc.

φ = φA + φB and α = αA + αB 
regardless of the amplifier order

A B

B A

Sz(f) = ZZ∗

= (X + Y ) (X + Y )∗

= XX∗ + Y Y ∗ + XY ∗ + Y X∗

= Sx + Sy + Sxy����
>0

+ Syx����
>0

let z(t) = x(t) + y(t)
Cascaded amplifiers

Phase noise

Cascading m equal amplifiers, Sα(f) 
and Sφ(f) increase by a factor m2.

If the amplifier were independent, Sα
(f) and Sφ(f) would increase only by a 
factor m.

A time constant can be present

It is experimentally observed that the 
temperature fluctuations cause a spectrum 
Sα(f) or Sφ(f) of the 1/f5 type

Yet, at lower frequencies the spectrum folds 
back to 1/f



Frequency synthesis
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Chapter 3. Properties of Phase Noise 56

×(1/d2)Sϕ(f)

1/d2

input1/d2

stage

input/d 2

output

1/d2

input/d2

output signal

output stage

output signal

noiselessreal

buffer divider

real

buffer

OUTIN

ffc

Figure 3.5: The phase noise of a divider chain is often due to the output stage
of the final divider.

The phase noise parameter of the divider is Sϕ(f) taken at the output2

The divider scales down the input phase noise. Unfortunately, this feature
can only be exploited partially in practice because the output phase noise can
not be lower than the phase noise of the output front-end. Figure 3.5 shows
a typical example, in which a divider is driven with a high stability oscillator.
Even using a low noise divider, at high frequencies the output noise is inevitably
that of the divider output. Conversely, at low frequencies the oscillator noise is
of the frequency-flicker type (slope 1/f3), while the divider noise remains phase
flickering (slope 1/f), for the noise reduction by d2 can always be achieved.3

The general formulae for m cascaded dividers (Fig. 3.6)4 are

ϕo =
m�

j=0

ϕj

m�

k=j+1

1
dk

(3.17)

and

Sϕ o(f) =
m�

j=0

Sϕ j(f)
m�

k=j+1

1
d2

k

(3.18)

For a quick evaluation, it is often useful to sketch the spectrum of the output
stage and of the input signal, the latter divided by

�m
k=1 d2

k, as exemplified in
Fig. 3.5, and to identify the cutoff frquency fc that divides the region of divider
noise from the region of scaled input noise.

2It is common practice is to describe the divider with the output noise. Using the equivalent
input noise leads to simpler formulae, but the numerical values can be amazingly low. Should
I change the text?

3I should explain why the divider noise can not have a slope higher than 1.
4Remove this figure?
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Figure 3.1: Simplified frequency synthesis and its mechanical anlogue.
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phase jitter
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n

d
ω0δt

ϕi = ω0δt

vo(t)

vi(t)

x = δt

time jitter

Figure 3.2: Phase noise propagation in elementary frequency synthesis.

ϕo =
n

d
ϕi (3.4)

merely reflects the invariance of the time jitter δt. With random phase fluctu-
ations, the mean square output phase is ϕ2

o = n2ϕ2
i , which follows immediately

from (3.4). Thus, the output spectum of phase noise is

Sϕ o(f) =
�n

d

�2
Sϕ i(f) (3.5)

In a logarithmic scale, this is 20 log10

�
n
d

�
dB.
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Figure 3.2: Phase noise propagation in elementary frequency synthesis.

ϕo =
n

d
ϕi (3.4)

merely reflects the invariance of the time jitter δt. With random phase fluctu-
ations, the mean square output phase is ϕ2

o = n2ϕ2
i , which follows immediately

from (3.4). Thus, the output spectum of phase noise is

Sϕ o(f) =
�n

d

�2
Sϕ i(f) (3.5)

In a logarithmic scale, this is 20 log10

�
n
d

�
dB.

The ideal noise-free frequency synthesizer repeats the input time jitter

After division, the noise of the output buffer may 
be larger than the input-noise scaled down

After multiplication, the scaled-up phase noise sinks energy 
from the carrier.  At m ≈ 2.4, the carrier vanishes



Beat note
19

LO

RF

IF
LNA

beat note

ν1, ϕ1

ν2, ϕ2

νb = ν2 − ν1

ϕ = ϕ2 − ϕ1

Sϕ = Sϕ 2 + Sϕ 1

Chose ν1 ≈ ν2 with a small difference νb 

The beat stretches the time associated to 1 rad by a factor ν1νb ≅ ν2νb

Accordingly, it is easier to measure Sφ at the low frequency νb, 
or to find a reference with negligible Sφ



The saturated mixer
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Double-balanced mixer
21

saturated multiplier  =>  phase-to-voltage detector   vo(t) = kφ φ(t)

August 18, 2006 E. Rubiola Tutorial on mixers 5

1 Basics

It is first to be understood that the mixer is mainly intended, and mainly doc-
umented, as the frequency converter of the superheterodyne receiver (Fig. 1).

The port names, LO (local oscillator, or pump), RF (radio-frequency), and

IF (intermediate frequency) are clearly inspired to this application.
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Figure 1: Superheterodyne receiver.

The basic scheme of a mixer is shown in Fig. 2. At microwave frequencies

a star configuration is often used, instead the diode ring. Under the basic
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vi(t)

IF

out

Figure 2: Double balanced mixer and its switch-network equivalent.

assumptions that vp(t) is large as compared to the diode threshold, and that

vi(t) is small, the ring acts a switch. During the positive half-period of vp(t)
two diodes are reverse biased and the other two diodes are forward biased

to saturation. During the negative half-period the roles are interchanged.

For the small RF signal, the diodes are open circuit when reverse biased,

and small resistances when forward biased. As a result, the IF signal vo(t)
switches between +vi(t) and −vi(t) depending on the sign of vp(t). This is

equivalent to multiplying vi(t) by a square wave of amplitude ±1 that takes

the sign from vp(t). In most practical cases, it is sufficient to describe the

kill 2ν0

E. Rubiola, Tutorial on the double-balanced mixer, arXiv/physics/0608211

kφ ≈ 100…500 mV/rad
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needs a capacitive-input filter to recirculate the 2ω0 output signal

August 18, 2006 E. Rubiola Tutorial on mixers 35
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Figure 22: Example of phase detector characteristics: output voltage as a
function of ϕ (data are from a handbook Macom) and phase-to-voltage gain
as a function of power (measured).

AM sensitivities
dvo

dPl
,

dvo

dPi
,

dvo

d(Pl + Pi)
, (82)

and that nulling one of them is not beneficial to the other two. In some
cases the nulls occurr within some 5◦ from the quadrarure, in other cases
farther, where the side effects of the offset are detrimental.
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Figure 22: Example of phase detector characteristics: output voltage as a
function of ϕ (data are from a handbook Macom) and phase-to-voltage gain
as a function of power (measured).

AM sensitivities
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dPl
,
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dPi
,

dvo

d(Pl + Pi)
, (82)

and that nulling one of them is not beneficial to the other two. In some
cases the nulls occurr within some 5◦ from the quadrarure, in other cases
farther, where the side effects of the offset are detrimental.
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1 Basics

It is first to be understood that the mixer is mainly intended, and mainly doc-
umented, as the frequency converter of the superheterodyne receiver (Fig. 1).

The port names, LO (local oscillator, or pump), RF (radio-frequency), and

IF (intermediate frequency) are clearly inspired to this application.
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Figure 1: Superheterodyne receiver.

The basic scheme of a mixer is shown in Fig. 2. At microwave frequencies

a star configuration is often used, instead the diode ring. Under the basic
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assumptions that vp(t) is large as compared to the diode threshold, and that

vi(t) is small, the ring acts a switch. During the positive half-period of vp(t)
two diodes are reverse biased and the other two diodes are forward biased

to saturation. During the negative half-period the roles are interchanged.

For the small RF signal, the diodes are open circuit when reverse biased,

and small resistances when forward biased. As a result, the IF signal vo(t)
switches between +vi(t) and −vi(t) depending on the sign of vp(t). This is

equivalent to multiplying vi(t) by a square wave of amplitude ±1 that takes

the sign from vp(t). In most practical cases, it is sufficient to describe the

August 18, 2006 E. Rubiola Tutorial on mixers 17

m
i
x
-
i
f
-
f
i
l
t
e
r

0
.
7
0
7

IF

LO

RF

IF

LO

RF

IF

LO

RF

50 Ω

filter
ωi

ωl

50 Ω

Zi

load

ω

|ωi − ωl| |ωi + ωl|

|Zi|

50 Ω

(short)
low Z

A: correct

filter
ωi

ωl

50 Ω

Zi

load

50 Ω
ω

|ωi − ωl| |ωi + ωl|

high Z
(open)

|Zi|

B: incorrect

filter
ωi

ωl

50 Ω

Zi

load

ω

|ωi − ωl| |ωi + ωl|

|Zi|

C: patched

Figure 8: The mixer is followed by a filter that selects the |ωi−ωl| frequency.

mixers, where the transformers are replaced with microstrip baluns, opti-

mization may privilege isolation from the LO pump, and low loss in the RF

circuit. This is implied in the general rule that the mixer is designed and

documented for the superheterodyne receiver. Nonetheless, interchanging

RF and LO can be useful in some cases, for example to take benefit from

the difference in the input bandwidth.

3.2 Linear Synchronous Detector (SD) Mode

The general conditions for the linear modes are that the LO port is saturated

by a suitable sinusoidal signal, and that a small (narrowband) signal is

present at the RF input. The additional conditions for the mixer to operate

in the SD mode are: (1) the LO frequency ωl is tuned at the center of

the spectrum of the (narrowband) RF signal, and (2) the IF output is low-

passed.

The basic mixer operation is the same of the frequency conversion mode,

with the diode ring used as a switch that inverts or not the input polarity

dependig on the sign of the LO. The model of Fig. 5 is also suitable to

dc
and
2ω0

actual phase-to-voltage conversion

E. Rubiola, Tutorial on the double-balanced mixer, arXiv/physics/0608211

Practical issues



Mixer limitations
23

1 – Power
! narrow power range:
" ±5 dB around Pnom = 7–13 dBm
" r(t) and s(t) should have ~ same P
2 – Flicker noise
! due to the mixer internal diodes      
" typical Sφ = –140 dBrad2/Hz at 1 Hz
" in average-good conditions
3 – Low gain
! kφ ~ 0.2–0.3 V/rad typ.
"         –10 to –14 dBV/rad
4 – White noise
! due to the operational amplifier
5 – Takes in AM noise
! due to the residual power-to-offset 
conversion
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–160

1 10 102 103 104 105 106

microwave

HF-UHF

mixer 1/f noise

op-amp

white noise

frequency, Hz

S
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 d
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2
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mixer background noise

E. Rubiola, Tutorial on the double-balanced mixer, arXiv/physics/0608211

kill 2ν0



Useful schemes
24

DUT

FFT

quadrature adjust

a pair of two-port devices 
3 dB improved sensitivity

DUT

FFT

quadr. adj.
DUT

reference
resonator

FFT

quadr. adj.

under test

two-port device under test

FFT

phase lock

reference

under test

measure two oscillators
best use a tight loop

measure an oscillator vs. a resonator

FFT

quadrature adjust

the measurement of an amplifier
needs an attenuator

atten
DUT

DUT

FFT

quadrature adjust

the measurement of a low-power DUT 
needs an amplifier, which flickers

atten



Calibration – general procedure
1 – adjust for proper operation: driving power and quadrature

2 – measure the mixer gain kφ (volts/rad)
" – offset 159 Hz (1 krad/s),
"    measure the slope with an oscilloscope
" – reference phase modulator
" – other methods
3 – measure the residual noise of the instrument

25

4 – measure the rejection of the oscillator noise

Make sure that the power and the quadrature are the same during all the process



The measurement of 
the oscillator PM noise

26



Phase Locked Loop (PLL)

Phase: the PLL
is a low-pass filter

Output voltage: the PLL
is a high-pass filter

compare an oscillator under test to a reference low-noise oscillator
– or –

compare two equal oscillators and divide the spectrum by 2 (take away 3 dB) 
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Enrico Rubiola  –  Phase Noise   –   26

Filtering  <=>  Phase Locked Loop (PLL)
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Loose Phase Locked Loop (PLL)
Enrico Rubiola  –  Phase Noise   –   38 Laboratory practice – oscillator measurement 
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A tight PLL shows many advantages
Enrico Rubiola  –  Phase Noise   –   39 Laboratory practice – oscillator measurement 

but you have to correct the spectrum for the PLL transfer function



Practical measurement of Sφ(f) with a PLL

1. Set the circuit for proper electrical operation

a. power level

b. lock condition (there is no beat note at the mixer out)

c. zero dc error at the mixer output (a small V can be tolerated)

2. Choose the appropriate time constant

3. Measure the oscillator noise

4. At end, measure the background noise

30
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Enrico Rubiola  –  Phase Noise   –   41 Laboratory practice – oscillator measurement Warning: a PLL may not be what it seems



PLL – beat method

Due to the lower carrier frequency, the noise of a VHF 
synthesizer is lower than the noise of a microwave synthesizer. 

With low-noise microwave oscillators (like whispering gallery) the noise 
of a  microwave synthesizer at the oscillator output can not be tolerated.

This scheme is useful
• with narrow tuning-range oscillator, which cannot work at the same freq.
• to prevent injection locking due to microwave leakage

32



A weird example
33

red line: measured data
green line: instrument background File: 951-elisa1-slope-5dB-dec

"eli−pn14.dat" u 1:($2−6)
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"banc06.dat" u 1:($2−6)
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−140

slope 1/f5, likely, 
a thermal effect

2.5 Hz resolution: the 
spectral lines N × 50 Hz 
are separated

25 Hz resolution: the 
spectral lines N × 50 Hz 
are clustered -> bump

slope 1/√f, what 
(the hell) is this??

slope 1/f 2



A frequency discriminator can be used to 
measure the phase noise of an oscillator

34supplementary material



The delay-line as a discriminator
35

• Coax cable: 50 dB attenuation limits to
• 950 ns @   1 GHz (Q=3000)   - RG213
• 300 ns @ 10 GHz (Q=11500) - RG402

• Optical fiber:
• max delay is not limited by the 

attenuation
• 1-100 µs delay is possible

(Q=105–107 @ 31 GHz)

• Works at any frequency ν = n/τ, 
integer τ (the resonator does not)

• Sφ measurement of an oscillator
• Dual-channel Sφ measurement of an 

oscillator
• Stabilization of an oscillator
• Opto-electronic oscillator

a
rg

 H
(f

)

f!0

slope 2"!0#

a
rg

 H
(f

)

!0

delay line resonator
slope 2Q

f

Qeq = πν0τcomparing the slope:

Virtues Problems & solution

The delay line turns a frequency into a phase

supplementary material



Opto-electronic discriminator
36

10 GHz, 10 μs• delay –> frequency-to-phase conversion

• works at any frequency

• long delay (microseconds) is necessary for high sensitivity

• the delay line must be an optical fiber
fiber:   attenuation 0.2 dB/km,  thermal coeff. 6.8 10-6/K
cable: attenuation 0.8 dB/m,  thermal coeff. ~ 10-3/K

Rubiola & al., JOSAB 22(5) p.987–997 (2005)   ---   Volyanskiy & al., JOSAB 25(12) p.2140–2150 (2008)

Φ(s) = Hϕ(s)Φi(s)

Laplace transforms

|Hϕ(f)|2 = 4 sin2(πfτ)

|Hy(f)|2 =
4ν

2
0

f2
sin2(πfτ)

ment and its equivalent in the Laplace transform domain.
by inspection of Fig. 3,

!o!s" = H"!s"!i!s", !4"

where H"!s"=1−exp!−s#". Turning the Laplace trans-
forms into power spectra Eq. (4) becomes

S"o!f" = #H"!jf"#2S"i!f", !5"

where

#H"!jf"#2 = 4 sin2!$f#". !6"

The spectrum of frequency fluctuation Sy!f" is related to
S"!f" through

Sy!f" =
f2

%0
2S"i!f". !7"

Combining Eqs. (5) and (7), we get

Sy!f" = #Hy!jf"#2S"i!f", !8"

where

#Hy!jf"#2 =
4%0

2

f2 sin2!$f#". !9"

Equation (5) is used to derive the phase noise S"i!f" of the
oscillator under test. Alternatively, Eq. (7) is used to de-
rive the frequency noise Sy!f". We prefer S"!f", indepen-
dent of how the final results will be expressed, because
the background noise of the instrument appears as S"!f".

Figure 4 shows the transfer functions #H"!jf"#2 and
#Hy!jf"#2 for %0=10 GHz and #d=10 &s (2-km delay line),
which is typical of our experiments. For f→0, it holds
#H"!jf"#2$ f2. Fortunately, high slope processes such as
flicker of frequency dominate in this region (see Fig. 1),
which compensates #H"!jf"#2. The phase-noise measure-
ment is therefore possible, providing that the delay #d can
be appropriately chosen. #H"!jf"#2, as well as #Hy!jf"#2, has
a series of zeros at f=n /#d, with integer n'1. The experi-
mental results are not useful in the vicinity of these zeros.
At the beginning of our experiments we hoped to recon-
struct the spectrum beyond the first zero at f=1/#d by ex-
ploiting the maxima at f= !2i+1" / !2#d" (integer i'1). This

turned out to be difficult. One problem is the resolution of
the FFT analyzer, as the density of zeros increases on a
logarithmic scale. Another problem is the presence of
stray signals in the measured spectrum, which make un-
reliable the few data around the maxima. The practical
limit is about f=0.95/#d, where #H"!jf"#2=−16 dB, and at
most some points around f=3/ !2#d" between the first and
second zeros.

4. SOURCES OF NOISE

The basic block for photonic phase-noise measurements is
shown in Fig. 3(a). In normal operation the random phase
"!t" results from the fluctuations of the input frequency.
In this section we analyze the sources of noise of the
block, since "o!t" is acquired form the noise of electrical
and optical components.

The power P(!t" of the optical signal is sinusoidally
modulated at the microwave angular frequency )& with a
modulation index m

P(!t" = P̄(!1 + m cos )&t". !10"

Here, we use the subscripts ( and & for “light” and “mi-
crowave,” and the overbar to denote the average. Equa-
tion (10) is similar to the traditional amplitude modula-
tion of radio broadcasting, but optical power is modulated
instead of rf voltage. In the presence of a distorted (non-
linear) modulation, we take the fundamental of the modu-
lating signal, at )&.

The detector photocurrent is

i!t" =
q*

h%(

P̄(!1 + m cos )&t", !11"

where q=1.602+10−19 C is the electron charge, * is the
quantum efficiency of the photodetector, and h=6.626
+10−34 J/Hz the Planck constant. Only the ac term
m cos )&t of Eq. (11) contributes to the microwave signal.
The microwave power fed into the load resistance R0 is
P̄&=R0iac

2 , hence

P̄& =
1

2
m2R0% q*

h%(
&2

P̄(
2. !12"

A. White Noise

The discrete nature of photons leads to the shot noise of
power spectral density Ns=2qiR0 [W/Hz] at the detector
output. By virtue of Eq. (11),

Ns = 2
q2*

h%(

P̄(R0. !13"

In addition, there is the equivalent input noise of the am-
plifier loaded by R0, whose power spectrum is

Nt = FkBT0, !14"

where F is the noise figure of the amplifier, kB=1.38
+10−23 J/K is the Boltzmann constant, and T0 is the tem-
perature. The white noise Ns+Nt turns into a noise floor
S"0= !Ns+Nt" /P& of S"!f". By use of Eqs. (12)–(14), the
floor is

Fig. 4. Transfer functions #H"!jf"#2 and #Hy!jf"#2 plotted for %0
=10 GHz and #d=10 &s.

990 J. Opt. Soc. Am. B/Vol. 22, No. 5 /May 2005 Rubiola et al.
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Advanced topics
(including AM noise)

37supplementary material
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Bridge PM and AM noise measurement

0º –90º

F
F

T

x(t)

y(t)

pump

(microwave)

error amplifier

V0 cos(!0t) 

AM noise

PM noise

null
x(t) cos(!0t) – y(t) sin(!0t)

File: bridge

coherent

detector

bridge hybrid

junction

–90º

–90º

0º

0º

–90º

–90º

0º

0º

DUT

phase & ampl.
adjustment

"(t)

#(t)dark

hybrid

junction

• Bridge => high rejection of the master-oscillator noise

• Amplification and synchronous detection of the noise sidebands

• No carrier => the amplifier can’t flicker (no up-conversion of near-dc 1/f)

• High microwave gain before detection => low background

• Low 50-60 Hz residuals because microwave circuits are insensitive to 
magnetic fields

supplementary material



Fractional noise (5, 15, 25, 35 dB/dec) 
39
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OEO phase noise

File: 949-SMF-ZD1

Source: 949-OEO-spectra

Plot: SMF_ZD1_bis

E.Rubiola (K.V.) Sep 2009 

RIN of the EM4 laser
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E.Rubiola (K.V.) Sep 2009 

RIN of the EM4 laser

File: 949-EM4RIN

Source: 949-OEO-spectra

Plot: EM4RIN_bis 

E.Rubiola (K.V.) Sep 2009 

[ 5!10 –4 
f –2.5 ]

However heretic it seems, we 
have observed these slopes in 
optical systems.

Other researchers report on 
similar issues, yet without 
pointing out the problem
(exception, D. Eliyahu)

supplementary material



AM noise – The diode power detector
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supplementary material
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monitor
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under test

du
al

 c
ha

nn
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FF
T 
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vb
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Pb

Pa

power
meter

The cross spectrum Sba(f ) rejects 
the single-channel noise because 
the two channels are independent.

• Averaging on m spectra, the single-
channel noise is rejected by √1/2m

• A cross-spectrum higher than the 
averaging limit validates the measure

• The knowledge of the single-channel 
noise is not necessary

va(t) = 2kaPaα(t) + noise
vb(t) = 2kaPbα(t) + noise

Sba(f) =
1

4kakbPaPb
Sα(f)

meas. limit

α (f)

1
m

f

log/log scale

cross spectrum

single channel

S

AM noise – Cross-spectrum method

details in the 3rd lecture

The problem with single-channel measurement is that the 
background noise cannot be measured without a reference source

supplementary material
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 General oscillator model
44

The model also describes the negative-R oscillator

V 

sense
!

negative-R amplifierresonator

compression

AM-PM noise

Barkhausen condition   Aβ = 1  at ω0

(phase matching)

[1+!(t)] cos["0t+#(t)]

AMPM

$(t)%(t)

A
gain

compression

!

noise

real amplifier

resonator



45

ω = 2πν
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Heuristic derivation of the Leeson formula
47

∆ν =
ν0

2Q
ψ

S∆ν(f) =
� ν0

2Q

�2
Sψ(f)

Sϕ(f) =
1
f2

� ν0

2Q

�2
Sψ(f)

ϕ(t) = ψ(t)

Sϕ(f) = Sψ(f)

fast fluctuation: no feedback slow fluctuations:  ψ ⇒ Δν conversion

static

integral

Sϕ(f) =
�
1 +

1
f2

� ν0

2Q

�2
�

Sψ(f)

φ

S
ϕ
(f

)/
S

ψ
(f

)
ffL

1/f2

f0

fL =
ν0

2Q

Though obtained with simplifications, this result turns out to be is exact



Including the sustaining-amplifier noise
48

phase
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The sustaining-amplifier noise is Sφ(f) = b0 + b–1/f  (white and flicker)
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total noise

the output buffer
noise is not visible

total noise

total noise total noise

f<fLintersection

buffer
output

fL

Sϕ(f)

fc

1/f3
lower

f0

f0

1/f
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f<fLintersection

buffer
output

low−flicker sustaining
amplifier (noise corrected)
and normal output buffer
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f f

sustain. ampli.
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sustain. ampli.

f

sustain. ampli.

f

1/f noise appears

sustain. ampli.

L fc

Sϕ(f)

1/f3

f0

1/f

f0

Figures are from E. Rubiola, Phase noise and frequency 
stability in oscillators,  © Cambridge University Press

The effect of the output buffer
49

Cascading two amplifiers,
flicker noise adds as

Sφ(f) = [Sφ(f)]1 + [Sφ(f)]2



The resonator natural frequency fluctuates
50

Figures are from E. Rubiola, Phase noise and frequency 
stability in oscillators,  © Cambridge University Press
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• The oscillator tracks the 
resonator natural 
frequency, hence its 
fluctuations

• The fluctuations of the 
resonator natural 
frequency contain 
1/f and 1/f2

(frequency flicker and 
random walk), thus 
1/f3 and 1/f4

of the oscillator phase

• The resonator bandwidth 
does not apply to the 
natural-frequency 
fluctuation.
(Tip: an oscillator can be 
frequency modulated ar 
a rate >> fL)



Oscillator hacking
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Analysis of some 
commercial oscillators

The purpose of this section is to help to understand the oscillator inside from the phase 
noise spectra, plus some technical information.  I have chosen some commercial 
oscillators as an example.

The conclusions about each oscillator represent only my understanding 
based on experience and on the data sheets published on the manufacturer web site.

You should be aware that this process of interpretation is not free from errors.  My 
conclusions were not submitted to manufacturers before writing, for their comments 
could not be included.
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• kT0 = 4×10–21 W/Hz (–174 dBm/Hz)
• floor –146 dBrad2/Hz, guess F = 1.25 (1 dB) => P0 = 2 µW (–27 dBm)
• fL = 4.3 MHz,  fL = ν0/2Q  =>  Q = 1160
• fc = 70 kHz,  b–1/f = b0  =>  b–1 = 1.8×10–10 (–98 dBrad2/Hz) [sust.ampli]
• h0 = 7.9×10–22  and  h–1 = 5×10–17  =>  σy = 2×10–11/√τ + 8.3×10–9

tables
σ2y = h0/2τ+2ln(2)h–1                
h0 = b–2/ν20  
h–1 = b–3/ν20    



fL = v0/2Q = 2.6 kHz   =>   Q = 1.8×106

This incompatible with the resonator technology.
Typical Q of a sapphire whispering gallery resonator: 

2×105 @ 295K (room temp),  3×107 @ 77K (liquid N),  4×109 @ 4K (liquid He).
In addition, d ~ 6 dB does not fit the power-law.

The interpretation shown is wrong, and the Leeson frequency is somewhere else
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55Poseidon Scientific Instruments − Shoebox
10 GHz sapphire whispering-gallery (2)
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The 1/f noise of the output buffer is higher than that of the sustaining amplifier 
(a compex amplifier with interferometric noise reduction)
In this case both 1/f and 1/f2 are present

white noise −169 dBrad2/Hz, guess F = 5 dB (interferometer)  => P0 = 0 dBm
buffer flicker −120 dBrad2/Hz @ 1 Hz => good microwave amplifier

fL = v0/2Q = 25 kHz   =>   Q = 2×105  (quite reasonable)
fc = 850 Hz => flicker of the interferometric amplifier −139 dBrad2/Hz @ 1 Hz



• floor –165 dBrad2/Hz, guess F = 1.25 (1 dB) => P0 = 160 µW (–8 dBm)
• fL = 3.2 MHz,  fL = ν0/2Q  =>  Q = 625
• fc = 9.3 kHz,  b–1/f = b0  =>  b–1 = 2.9×10–13 (–125 dBrad2/Hz) [sust.ampli, too low]

Slopes are not in agreement with the theory
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57Enrico Rubiola  –  The Leeson Effect   –   22 basics – commercial oscillators

ANALYSIS
1 – floor S!0 = –155 dBrad2/Hz, guess F = 1 dB             P! 0 = –18 dBm
2 – ampli flicker S! = –132 dBrad2/Hz @ 1 Hz               good RF amplifier!

3 – merit factor Q = "0/2fL  =  5·106/5  =  106   (seems too low)
4 – take away some flicker for the output buffer:

  * flicker in the oscillator core is lower than –132 dBrad2/Hz @ 1 Hz
  * fL is higher than 2.5 Hz
  * the resonator Q is lower than 106 

This is inconsistent with the resonator technology (expect Q > 106).
The true Leeson frequency is lower than the frequency labeled as fL
The 1/f3 noise is attributed to the fluctuation of the quartz resonant frequency  

Courtesy of Oscilloquartz (handwritten notes are mine).
The specifications, which include this spectrum, are available
at the URL  http://www.oscilloquartz.com/file/pdf/8600.pdf 

Oscilloquartz OCXO 8600
outstanding stability oscillator based on a
5 MHz AT-cut BVA (electrodless) resonator
stability #y($) = 3×10-13  for $ = 0.2÷30 s
aging 3×10-12/day



58Enrico Rubiola  –  The Leeson Effect   –   23 basics – commercial oscillators

Wenzel 501-04623 G - Lowest phase noise 100 MHz SC-cut oscillator

manufacturer specs,

phase noise

-130 dBc/Hz @ 100 Hz

-158 dBc/Hz @ 1 kHz

-176 dBc/Hz @ 10 kHz

-176 dBc/Hz @ 20 kHz

1 – floor S!0 = –173 dBrad2/Hz, guess F = 1 dB             P! 0 = 0 dBm

2 – merit factor Q = "0/2fL  =  108/7×103  =  1.4×104   (seems too low)  

 

   

 From the literature, one expects Q ~ 105.

The true Leeson frequency is lower than the frequency labeled as fL

The 1/f3 noise is attributed to the fluctuation of the quartz resonant frequency  

supplementary material



Courtesy of OEwaves (handwritten notes are mine). Cut from the oscillator specifications available at the 
URL http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf

59
Enrico Rubiola  –  The Leeson Effect   –   24 basics – commercial oscillators

Courtesy of OEwaves (handwritten notes are mine).

Cut from the oscillator specifications available at the URL http://www.oewaves.com/products/pdf/TIDALwave_Datasheet_012104.pdf

supplementary material

http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf
http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf


The Leeson effect
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Low-pass representation of AM-PM noise
61

PM AM

Leeson Effect extension of the LE to AM noise

The amplifier
– “copies” the input phase to the out
– adds phase noise

The amplifier
– compresses the amplitude
– adds amplitude noise
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Linear time-invariant (LTI) systems
62
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Laplace-transform patterns 63
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Fundamental theorem:  F(s) is completely determined by its roots (poles and zeros)
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Resonator in the phase space
66
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b(t) =
1
τ

e−t/τ

B(s) =
1/τ

s + 1/τ

(1+ ')cos(!
0
t)

[1+$(t)]cos(!
0
t)

2nd order differential equation

relaxation
time
τ =

2Q

ωn

file: ele-resonator-delta-response
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Resonator impulse response (proof)
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Resonator impulse response (proof)
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Resonator impulse response (proof)
supplementary material



Resonator step and impulse response
70
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Leeson effect
71

phase-noise transfer function

H(s) =
Φ(s)

Ψ(s) definition

H(s) =
1

1 + AB(s)

general
feedback
theory

Leeson
effect

H(s) =
1 + sτ

sτ

complex plane transfer function

B(s) =
1/τ

s + 1/τ

A = 1
noisy amplifier

resonator

!(t) ↔ "(s)

b(t) ↔ B(s)
low-pass

!

#(t) ↔ $(s)

1

|H(jf)|2

ffL

1/f2

f0

fL =
ν0

2Q

!

j"H(s)

−1/τ

low-pass

! 1

v
1

v
2

relaxation time

" = 2Q/#
0file: ele-PM-scheme

!(t) ↔ "(s) #(t) ↔ $(s)



Extension to AM noise
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Common types of gain saturation
73

Gain compression is necessary for the oscillation amplitude to be stable

A

u

v

A
u

van der Pol
(quadratic)

linear  A=1–!(u-1)

hard clipping

soft clipping

1

1

oscillator operation

A
0

A
0

A
0

file: ele-clipping-types



Low-pass model of amplitude (1)
74

differential equation

simple feedback theory

Gain compression is necessary for the 
oscillation amplitude to be stable

The Laplace / Heaviside formalism  cannot be used because the amplifier is non-linear

First we need to relate the system restoring time τr to the relaxation time τ

v2 =
1
τ

�
(v1 − v2) dt

!(t)

low-pass

!
v = 1+"

v

v
1

v
2

A

u = 1+"
u

relaxation time

" = 2Q/#
0file: ele-AM-scheme

u = � + v2

v2 = u− �

u̇− 1
τ

(A− 1) u =
1
τ

� + �̇

v1 = v = Au

u = � +
1
τ

�
(A− 1)u + � dt



Three asymptotic cases

homogeneous
differential
equation

Low-pass model of amplitude (2)
75

Startup:   u→0,    A → A0 > 1 

Regime:   u→1,   A = 1 – γ (u – 1) 

Linear gain:   A = 1 – γ (u – 1)

At low RF amplitude, 
let the gain be an 
arbitrary value 
denoted with A0

For small fluctuation 
of the stationary RF 
amplitude, the gain 
varies linearly with V

Simplification: the 
gain varies linearly 
with V in all the input 
range

rising exponential

restoring time constant τr = τ/γ

A = 1–!(u–1)

1 u

1

A0

Gain compression

1

A
0

1 uCase A

1
A = 1–!(u–1)

1 uCase B

1
A = 1–!(u–1)

1 uCase C

u̇− 1
τ

(A− 1) u = 0

u̇− 1
τ

(A0 − 1) u = 0 ⇒ u = C1e
(A0−1) t/τ

u̇ +
γ

τ
(u− 1) u = 0 ⇒ u = C2e

−γ t/τ

u =
1�

1
u(0) − 1

�
e−γt/τ + 1



Startup – analysis vs. simulation
76

van der Pol oscillator
(simulation by R. Brendel)

analytical solution,
A = 1–γ(u–1)

10 MHz oscillator
L = 1 mH
R = 125 Ω
Q ~ 503

ex
p

o
ne

nt
ia

l

sa
tu

ra
tio

n

Rising exponential.
We find the same 

time constant –τ/γ

supplementary material



Gain fluctuations  –  definition
77

A

u

ideal
A=1–!(u-1)

1

1

oscillator operationfluctuating  
A=1–!(u-1)+"

fluctuation "

v

A
u

file: ele-gain-fluctuation



Gain fluctuations  –  output is u
78

1 1

η

Linearize for low noise and 
use the Laplace transforms

linearization
for low noise

non-linear
equation

linearized
equation

definition

result

Laplace
transform

!(t)

low-pass

!
v = 1+"

v

v
1

v
2

A

u = 1+"
u

relaxation time

" = 2Q/#
0file: ele-AM-scheme

αu(t)↔ Au(s) and η(t)↔ N (s)

Hu(s) =
Au(s)

N (s)

Hu(s) =
1/τ

s + γ/τ

u̇ =
1
τ

(A− 1)u
A = 1− γ(u− 1) + η

u̇ +
γ

τ
(u− 1)u =

η

τ
u

α̇u αu

α̇u +
γ

τ
αu =

1
τ

η

�
s +

γ

τ

�
Au(s) =

1
τ
N (s)

!

j" |Hu(jf)|2

1/f2

ffL/γ

1/γ2

Hu(s)

−γ/τ

file: ele-Hu-AM



Gain fluctuations  –  output is v
79

η

boring algebra relates αv to αu result

starting
equation

linearization
for low noise

definition

H(s) =
s + 1/τ

s + γ/τ

!(t)

low-pass

!
v = 1+"

v

v
1

v
2

A

u = 1+"
u

relaxation time

" = 2Q/#
0file: ele-AM-scheme

v = Au
A = −γ(u− 1) + 1 + η

v = [−γ(u− 1) + 1 + η]u
v = [−γαu + 1 + η] [1 + αu]
1 + αv = 1 + η − γαu + αu − αuη − γα2

u

αv = (1− γ)αu + η

αu =
αv − η

1− γ

�
s +

γ

τ

�
Au(s) =

1
τ
N (s)

Au(s) =
Av(s)−N (s)

1− γ

�
s +

γ

τ

�
Av(s) =

�
s +

1
τ

�
N (s)

H(s) =
Av(s)

N (s)

!

j"

fL fL/γfL/γ

!<1

!>1

|H
(
jf

)
|2 Leeson

!

j"

–1/#

–1/#–$/#

–$/#

!<1

[!>1]

file: ele-H-AM



Additive noise  –  output is u
80

1

Linearize for low noise and 
use the Laplace transforms

lineariz.
for 

low noise

non-linear
equation

linearized
equation

definition

result

Laplace
transform

αu(t)↔ Au(s) and �(t)↔ E(s)

Hu(s) =
Au(s)

E(s)

Hu(s) =
s + 1/τ

s + γ/τ

u̇ =
1
τ

(A− 1)u + �̇ +
1
τ

�

A = 1− γ(u− 1)

u̇ +
γ

τ
(u− 1)u = �̇ +

1
τ

�

α̇u αu

!(t)

low-pass

!
v = 1+"

v

v
1

v
2

A

u = 1+"
u

relaxation time

" = 2Q/#
0file: ele-AM-scheme α̇u +
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τ
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τ
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Additive noise  –  output is v
81

Laplace
transform

boring algebra relates α’ to α

linearization
for low noise

linearized
equation

result

definition

!(t)

low-pass

!
v = 1+"

v

v
1

v
2

A

u = 1+"
u

relaxation time

" = 2Q/#
0file: ele-AM-scheme

v = Au
A = 1− γ(u− 1)

v = [1− γ(u− 1)]u
1 + αv = [1− γαu] [1 + αu]
1 + αv = 1 + αu − γαu − γα2

u

αv = (1− γ)αu

αu =
αv

1− γ

α̇u +
γ

τ
αu = �̇ +

1
τ

�

αu = αv/(1− γ)

1
1− γ

�
α̇v +

γ

τ
αv

�
= �̇ +

1
τ
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1
1− γ

�
s +

γ

τ
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Av(s) =
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s +

1
τ

�
E(s)

H(s) =
Av(s)
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s + 1/τ
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Simulation
82

van der Pol oscillator

Analytic model and numeric simulation
yield same time constants and slopes

supplementary material
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Delay-line oscillators
(and lasers)

83supplementary material
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Delay-line oscillator
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Delay-line oscillator – complex plane
supplementary material
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A bandpass filter is necessary
supplementary material
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Delay-line oscillator – phase space
supplementary material
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|

Phase space – complex-plane
supplementary material
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Statistics

90

Central limit theorem:  many random variables => normal distribution

Noise can (in most cases) be whitened, then unwhitened after processing

Two reasons to use normal-distributed white noise



1. x(t)  <=>  X(ıf)  are gaussian
2. X(ıf1)  and X(ıf2) , f1 ≠ f2 

1. are statistically independent,
2. var{X(ıf1)} = var{X(ıf2)}

3. real and imaginary part:
1. X’ and X” are statistically

independent
2. var{X’} = var{X”} = var{X}/2

4. Y = X1 + X2 
1. Y is Gaussian
2. var{Y} = var{X1} + var{X2}

5. Y = X1 × X2 
1. is Gaussian
2. var{Y} = var{X1} var{X2}

Properties of white zero-mean 
Gaussian noise

91

x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

X'
f1 f2

X"

statistically independent

f0 fn–1

statistically independent

statistically 

independent



Properties of flicker noise

1. Pair   x(t) <=> X(ıf)
1. there is no a-priori relation between the 

distribution of x(t) and X(ıf) (theorem)
2. Central limit theorem: x(t) and X(ıf) end 

up to be Gaussian
2. X(ıf1)  and X(ıf2)

1.  are statistically independent
2. var{X(ıf2)} < var{X(ıf1)}  for f2 > f1

3. Real and imaginary part
1. X’ and X” can be correlated
2. var{X’} ≠ var{X”} ≠ var{X}/2

4. Y = X1 + X2, zero-mean Gaussian r.v.
var{Y} = var{X1} + var{X2}

5. If X1 and X2 are zero-mean Gaussian r.v.
1. Y = X1 × X2 is zero-mean Gaussian
2.  var{Y} = var{X1} var{X2}

92

x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

X'
f1 f2

X"

statistically independent

part. correl.f0 fn–1



Normal (Gaussian) distribution
93

x is normal distributed with 
zero mean μ and variance σ2

f(x) =
1√
2π σ

exp
�
− (x− µ)2

2σ2

�

E{f(x)} = µ

E{f2(x)} = µ2 + σ2

E{|f(x)− E{f(x)}|2} = σ2

File: xsp-Gaussian

f(x) =
1√
2π σ

exp
�
− (x− µ)2

2σ2

�

µ

σ

0

PP = P{x > 0} = 1− 1
2
erfc

�
µ√
2 σ

�
PN = P{x < 0} =

1
2
erfc

�
µ√
2 σ

�
σ

µ + σµ− σ

µN = µ− 1
1
2erfc

�
µ√
2 σ

� σ�
2π exp(µ2/σ2)

µP = µ +
1

1− 1
2erfc

�
µ√
2 σ

� σ�
2π exp(µ2/σ2)

x < 0

x

x > 0

supplementary material



One-sided Gaussian distribution
94

x is normal distributed with 
zero mean and variance σ2

y = |x|
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one-sided Gaussian distribution with σ2 = 1/2
quantity value

with σ2 = 1/2 [10 log( ), dB]

average =
�

1
π

0.564
[−2.49]

deviation =
�

1
2
− 1

π
0.426

[−3.70]

dev
avg

=
�

π

2
− 1 0.756

[−1.22]

avg + dev
avg

= 1 +
�

1
2
− 1

π
1.756

[+2.44]

avg − dev
avg

= 1−
�

1
2
− 1

π
0.244

[−6.12]

avg + dev
avg − dev

= 1 +
�

1/2− 1/π

1−
�

1/2− 1/π

7.18
[8.56]

f(x) = 2
1√
2π σ

exp
�
− x2

2σ2

�

E{f(x)} =
�

2
π

σ

E{f2(x)} = σ2

E{|f(x)− E{f(x)}|2} =
�

1− 2
π

�
σ2
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Chi-square distribution
95

is χ2 distributed with r
degrees of freedom 

χ2 =
r�

i=1

x2
i

z! = Γ(z + 1), z ∈ N

xi are normal distributed with 
zero mean and equal variance σ2

! " # $ % &! &" &# &$ &% "!
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Notice that the sum of 
χ2 is a χ2 distribution

χ2 =
m�

j=1

χ2
j , r =

m�

j=1

rj

f(x) =
x

r
2−1 e−

x2
2

Γ
�

1
2r

�
2 r

2
x ≥ 0

E{f(x)} = σ2r

E{[f(x)]2} = σ4r(r + 2)

E{|f(x)− E{f(x)}|2} = 2σ4r

supplementary material



Averaging chi-square distributions
96

averaging m variables |X|2, complex X=X’+ıX”, yields a  χ2 distribution with r = 2m 

dev
avg

=
1√
m

relevant case: σ2 = 1/2

avg = 1

dev =
1√
m
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(X �
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2 + (X ��
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E
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1
m

f(x)
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=
σ2r

m
= 2σ2

E
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1
m

f(x)− E
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1
m

f(x)
�����

2�
=

2σ4r

m2
=

4σ4

m
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Rayleigh distribution
97

x1 and x2 are normal distributed with 
zero mean and equal variance σ2

x is Rayleigh-distributed
x1

x2

y =
 (x 1 

+ x 2
)
1/2

Re

Im
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sigma = 0.71

sigma = 1

sigma = 1.41

Rayleigh distribution
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f(x) =
x

σ2
exp

�
− x2

2σ2

�
x ≥ 0

E{f(x)} =
�

π

2
σ

E{f2(x)} = 2σ2

E{|f(x)− E{f(x)}|2} =
4− π

2
σ2

Rayleigh distribution with σ2 = 1/2
quantity value

with σ2 = 1/2 [10 log( ), dB]

average =
�

π

4
0.886

[−0.525]

deviation =
�

1− π

4
0.463

[−3.34]

dev
avg

=
�

4
π
− 1 0.523

[−2.82]

avg + dev
avg

= 1 +
�

4
π
− 1 1.523

[+1.83]

avg − dev
avg

= 1−
�

4
π
− 1 0.477

[−3.21]

avg + dev
avg − dev

= 1 +
�

4/π − 1
1−

�
4/π − 1

3.19
[5.04]

x =
�

x2
1 + x2

2
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The FFT analyzer 
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Normalization
99

quantity physical dimension purpose

XT (ıf) V/Hz Two-sided FT
Theoretical issues

SI(f) =
2
T |XT (ıf)|2, f>0

V2/Hz or W/Hz
One-sided PSD

Measurement of noise level
(power spectral density)

1
T SI(f) =

2
T 2 |XT (ıf)|2, f>0

V2 or W
One-sided PS

Power measurement of
carriers (sinusoidal signals)

XT (ıf) =
� T/2

−T/2
x(t) e−ı2πft dtTruncated signal

Commonly used quantities



Sampling and aliasing
100

Input signal

(Time-domain) 
sampling

Sampled signal
(and aliasing)

Frequency domain

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

convolutionmultiplication

Time domain

supplementary material



Truncation and energy leakage
101

Sampled signal
& aliasing

Truncation

Truncated signal
& energy leakage

Frequency domain

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

convolution

Time domain

multiplication

(need windowing)

supplementary material



Fitting the Fourier transform into a 
computer memory

102

Truncated signal

Frequency-domain
sampling

Final DFT
(Time-domain aliasing)

Time domain

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

convolution

Frequency domain

multiplication

supplementary material



FFT – How long does it take?
103

• The FFT of a N-sample time series has N complex points 
(Re and Im) 

• The FFT is symmetric with respect to N/2
      Re{X} has even symmetry
      Im{X} has odd symmetry

• If the samples (time series) are real, all the information is 
contained in the first N/2 complex points

• The upper part of the spectrum is polluted by aliasing 
and distorted by the anti-aliasing filter, thus it is not used.

• Keeping the upper ξN/2 points (ξ≈0.8), the displayed 
points are  N’ = ξN/2  (N’ ≈ 0.4 N)

• The acquisition of N samples at the  sampling frequency 
fs takes a time Ta = N/fs  

• The frequency span is  fspan = ξfs/2  (fspan ≈ 0.4fs) 
The acquisition time is  Ta = N’ / fspan  

• The FFT algorithm takes  N log2(N)  complex additions 
and  (N/2) log2(N)  complex multiplications

• The computation time is proportional to N log(N)

total time  =  acquisition time  + computation time
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abs( )

frequency
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Re{ }

frequency
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12345)0*67,/68,"!!%
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frequency
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Spectrum of the quantization noise
104

Ergodicity suggests that the quantization 
noise can be calculated statistically

The Parseval theorem states that energy and power 
can be evaluated by integrating the spectrum

NB =
V 2

q

12

σ2 =
V 2

q

12

Changing B in geometric progression 
(decades) yields naturally 1/B (flicker) noise

Vq

sampling

x
error

v(t)

t

Vq

1/Vq

p(x)
σ2 =

V 2
q

12

S
v
(f

)

f

N

B
σ2 = NB

N =
V 2

q

12B

The analog-to-digital converter introduces 
a quantization error x,   –Vq/2 ≤ x ≤ +Vq/2

S
v
(f

)

fB1 B2 B4

N1
N2

N3 N4

B3log-log



Noise of the real FFT analyzer
105

The quantization noise 
scales with the frequency 
span, the front-end noise 
is constant

The energy is equally 
spread in the full FFT 
bandwidth, including the 
upper region not 
displayed because of 
aliasing

ADC

Sv(f)

log-log

FFT
algorithm

input Nquant

B3B2B1 B4 f

N1

N2

N3

N4

B5

N5

Nampli

Nampli

NtotNquant

720 values/decade

0 79 80 80
0

80
1

10
23

previous
decade

filter roll-off
(aliasing)

1024 points FFT (out of the full 2048 points)

Sxx

anti
aliasing



Example of FFT analyzer noise
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HP-3562A 
(E.Rubiola notebook v.5 p.177)

Theoretical evaluation
DAC 12 bit resolution, including sign

range 10 mVpeak

Vfsr = 20 mV   (±10 mV)
resolution
Vq = Vfsr / 212 

= 4.88 μV

total noise
σ2 = (4.88 μV)2 / 12 

= 2×10–12   V2  (–117 dB)

quantization noise PSD
Sv = σ2 / B

= –117 dBV2/Hz  with B = 1 Hz   (etc.)

Front-end noise, evaluated from the plot
Sv = 2×10–15   V2  (–150 dB), at 10–100 kHz 

or 45 nV/Hz1/2

use Sv = 4kTR
R = 125 kΩ    
or R = 100 kΩ and F = 1 dB (noise figure)

Experimental observation

supplementary material



Oscillator noise measurement
107

1 10 100 1000 10000 1e+05
180

160

140

120

100

80

60

40

20
Sphi(f), dBrad^2/Hz

frequency, Hz

480 MHz SAW oscillator

file oscillator noise with jump
E. Rubiola, may 2008

A tight loop is preferred because:

– reduces the required dynamic range
– overrides (parasitic) injection locking 

under test

reference F
F

T

a
n

a
ly

z
e
r

control
VCO in

lo
g
-l
o
g

o
scillato

r n
o
ise

PLL out

P
LL 

re
sp

onse

frequency

Steps are sometimes observed, due to 
the FFT quantization noise

supplementary material



FFT noise in oscillator  measurements
108
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observ. PLL out

true oscill. noise

FFT noise

observ. oscill. noise

step

error

calculated simulated

The steps are due to the FFT quantization noise

The problem shows up when the dynamic range is 
insufficient, often in the presence of large stray signals 

Systematic errors are also possible at high Fourier 
frequencies

Explanation: the steps occurring at the transition 
between decades are due the quantization noise, 
when the resolution is insufficient

supplementary material



Linear vs. logarithmic resolution
109

Linear resolution

G. Montress & al, TUFFC 41(5) 1994

Logarithmic resolution (80 pt/dec)

E. Rubiola, plot 610

Combining M independent 
values, the confidence 
interval is reduced by sqrt(M), 
(5 dB left-right in one decade)

A weighted average is also 
possible

720 values/decade

M0 Mi
MN

0 7
9

8
0 8
0
0

8
0
1

1
0
2
3

previous

decade

filter roll-off

(aliasing polluted)

1024 points FFT

80 points/decade

average

Sxx

Sxx

supplementary material



Theory

110

Σ
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c(t)

d
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n
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T
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instr. noise

Σ
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input
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DUT

instr. noise



Correlation measurements
111

single-channel

correlation

frequency

S
!
(f
)

1/"m

a(t), b(t) –> instrument noise
c(t) –> DUT noise

Two separate instruments
measure the same DUT.
Only the DUT noise is common

noise measurements

DUT noise,
normal use

a, b
c

instrument noise
DUT noise

background,
ideal case

a, b
c = 0

instrument noise
no DUT

background,
real case

a, b
c ≠ 0

c is the correlated 
instrument noise
Zero DUT noise
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The concept of ergodicity
112

Ergodicity allows to interchange time statistics and ensemble statistics, 
thus the running index i of the sequence and the frequency f.

The average and the deviation calculated on the frequency axis are the 
same as the average and the deviation of the time series.
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File: xsp-ergodicity-3d
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Example:
Measurement of |Syx|

113
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5 log(m) – 0.52 dB

! – "[(1-#/4)/m]
! – 3.21 dB
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|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|
|Syx|

m=2  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|
|Syx|

m=4  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=8  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=16  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=32  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=64  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=128  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=256  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=512  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=1024  g=0.32

|Scc|

frequency # #! #!! #!!!
!%!#

!%#

#
average

deviation

|Syx|

m&'()*+,)-./0!+)1!##!#!$2!!3#4!05+678
9%:;5'<(0=*0,/*$!!>

Measurement (C≠0), |Syx|
114

Running the measurement, m increases
Sxx shrinks => better confidence level

Syx decreases => higher single-channel noise rejection



Measurement (C≠0), |Re{Syx}|
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Running the measurement, m increases
Sxx shrinks => better confidence level

Syx decreases => higher single-channel noise rejection

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|

|Re{Syx}|

m=1  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|

|Re{Syx}|

m=2  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|

|Re{Syx}|

m=4  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|

|Re{Syx}|

m=8  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|

|Re{Syx}|

m=16  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|

|Re{Syx}|

m=32  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|
|Re{Syx}|

m=64  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|
|Re{Syx}|

m=128  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|
|Re{Syx}|

m=256  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|
|Re{Syx}|

m=512  g=0.32

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Scc|
|Re{Syx}|

m=1024  g=0.32

frequency # #! #!! #!!!
!%!#

!%#

#
average

deviation

|Re{Syx}|

m&'()*+,)-./0!+)1!##!#!$2!!3#4!05+6)789
:%6;5'<(0=*0,/*$!!>



Boring exercises before playing a Steinway
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Single-channel spectrum Sxx 
117

Normalization: in 1 Hz bandwidth 
var{X} = 1,   and  var{X’} = var{X”} = 1/2

Spectrum

white, gaussian, 
avg = 0, var = 1/2

Gaussian X with independent Re and Im

white, χ2, with 2m degrees of freedom
avg = 1, var = 1/m

the Sxx track on the 
FFT-SA shrinks as 1/m1/2

dev
avg

=
�

1
m

�Sxx�m = 1
T �XX∗�m

= 1
T �(X � + ıX ��)× (X � − ıX ��)�m

= 1
T

�
(X �)2 + (X ��)2

�
m



Syx with correlated term  (1)
118

Cross-spectrum

Expand using

A, B = instrument background
C = DUT noise
channel 1     X = A + C
channel 2     Y = B + C
A, B, C are independent Gaussian noises
Re{ } and Im{ } are independent Gaussian noises

X = (A� + ıA��) + (C � + ıC ��) and Y = (B� + ıB��) + (C � + ıC ��)

Split Syx into three sets

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

�Syx�m = �Syx�m

��
instr

+ �Syx�m

��
mixed

+ �Syx�m

��
DUT

background
only

background
and DUT noise

DUT noise
only

... and work it out !!!

�Syx�m = 1
T �Y X∗�m = 1

T �(Y � + ıY ��)× (X � − ıX ��)�m



Real

Imaginary

Syx with correlated term κ≠0  (2)
119

Gaussian, 
avg = 0, var = 1/2m

Gaussian, 
avg = 0, var = κ2/2m

white, χ2

2m deg. of freedom
avg = κ2, var = κ4/m

A, B, C are independent Gaussian noises
Re{ } and Im{ } are independent Gaussian noises

Gaussian, 
avg=0, var=κ2/4

Gaussian, 
avg = 0, var = κ2/2m

white, χ2, 2 DF 
avg = κ2, var = κ4

Gaussian, 
avg = 0, var = 1/2m

Gaussian, 
avg = 0, var = κ2/2m

white, Gaussian, 
avg = 0, var = 1/4

white, Gaussian, 
avg = 0, var = κ2/4

Gaussian, 
avg = 0, var = κ2/2m

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

All the DUT signal goes in Re{Syx}, Im{Syx} contains only noise

Gaussian,  avg = 0,  var = (1+2κ2)/2m

Gaussian,  avg = 0,  var = (1+2κ2)/2m

var=1/2 var= κ2/2var=1/2 var= κ2/2

Gaussian, 
avg=0,  var=1/4

N
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< 

2m
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6

�
�
�Syx�m

�
= 1

T

�
�B�A� + B��A���m + �B�C � + B��C ���m + �C �A� + C ��A���m +

�
(C �)2 + (C ��)2

�
m

�

�
�
�Syx�m

�
= 1

T {�B��A� + B�A���m + �B��C � −B�C ���m + �C ��A� − C �A���m}

Set A
Set C

Set B



Expand Syx

120

Syx = 1
T E {A + ıB + C }

A = B�A� + B��A�� + B�C � + B��C �� + C �A� + C ��A��

B = B��A� + B�A�� + B��C � − B�C �� + C ��A� − C �A��

C = C � 2 + C �� 2

term E V PDF comment

�A �m 0
1 + 2κ2

2m
Gauss average (sum) of zero-mean

�B�m 0
1 + 2κ2

2m
Gauss Gaussian processes

�C �m κ2 κ4/m χ2 average (sum) of
ν = 2m chi-square processes�

C̃
�

m
κ2 κ4/m Gauss approximates �C �m for large m

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

Gaussian, 
avg=0, var=κ2/4

white, χ2, 2 DF 
avg = κ2, var = κ4

Gaussian, 
avg=0,  var=1/4



Estimator   Ŝ = |<Syx>m|
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| �Syx�m | =
1
T

�
[� {�Y X∗�m}]2 + [� {�Y X∗�m}]2

=
1
T

�
[�A �m + �C̃ �m]2 + [�B�m]2 .

κ → 0   Rayleigh distribution

�Z �m =
�

[�A �m]2 + [�B�m]2 .

E{�Z �m} =
�

π

4m
=

0.886√
m

V{�Z �m} =
1
m

�
1− π

4

�
=

0.215
m

dev{| �Syx�m |}
E{| �Syx�m |} =

�
4
π
− 1 = 0.523
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Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2



Estimator  Ŝ = Re{<Syx>m}
122

0 dB SNR requires that m=1/2κ4.
Example κ=0.1 (DUT noise 20 dB lower than single-channel background)

averaging on 5x103 spectra is necessary to get SNR = 0 dB.

�Z �m = �A �m + �C̃ �m

E {�Z �m} = κ2

V {�Z �m} =
1 + 2κ2 + 2κ4

2m

dev {�Z �m} =

�
1 + 2κ2 + 2κ4

2m
≈ 1 + κ2

√
2m

dev {�Z �m}
E {�Z �m} =

√
1 + 2κ2 + 2κ4

κ2
√

2m
≈ 1 + κ2

κ2
√

2m

negative values

f(x)

x

!
2

P
N
P
P

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

PN = P{x < 0} =
1
2
erfc

�
κ2

√
2 σ

�



Estimator   Ŝ = |Re{<Syx>m}|
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Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

���
�
�Syx�m

��� =
1
T

|�A �m + �C̃ �m|

PN = P{x < 0} =
1
2
erfc

�
κ2

√
2 σ

�

f(x)

x

fold the neg
values up

κ2
PN

Pn

File: xsp-estimator-abs-Re



Estimator   Ŝ = Re{<Syx>m’}
averaging on the m’ positive values

124

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

f(x)

x

remove the 
neg values scale 

f(x) up

κ2
PN

PN

File: xsp-estimator-Re-discard-neg

PN = P{x < 0} =
1
2
erfc

�
κ2

√
2 σ

�



Estimator   Ŝ = <max(Re{ Syx}, 0+)>m

125

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

f(x)

x

turn the neg
vals to zero

κ2
PN

PNδ(z)

File: xsp-estimator-Re-make-pos



Estimator   Ŝ = <max(Re{ Syx}, 0+)>m

126

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

Ŝyx = �
�
�max(Syx, 0+)�m

�preferred estimator

µ1 > µ2 > µ3 .

contrib to f(x)

x

PN
µ1

µ2
µ3=0

|Re{<Syx>m}|

Re{<Syx>m}
if > 0, else discard

Re{<Syx>m}
if > 0, else set to 0

PN

PN

µN<0
PN

File: xsp-estimator-comparison



Applications
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Radio-astronomy
128

R. Hanbury Brown & al., Nature 170(4338) p.1061-1063, 20 Dec 1952
R. Hanbury Brown, R. Q. Twiss, Phyl. Mag. ser.7 no.366 p.663-682 

Measurement of the 
apparent angular size of 

stellar radio sources  

 

Jodrell Bank, Manchester 

• The radio link breaks the hypothesis 
of symmetry of the two channels, 
introducing a phase θ

• The cross spectrum is complex

• The the antenna directivity results 
from the phase relationships

• The phase of the cross spectrum 
indicates the direction of the radio 
source

500 m2

500 m2

f = 125 MHz
B = 200 kHz

wave planes

Cassiopeia A
(or Cygnus A)
radio source

DUT

a few km

X(ıf) X(ıf)Y(ıf) eıθ

Cassiopeia A (Harvard)

Cygnus A  (Harvard)



Radiometry  --  Johnson thermometry
129

C. M. Allred, A precision noise spectral density comparator, J. Res. NBS 66C no.4 p.323-330, Oct-Dec 1962

0º

0º

0
º

1
8
0
º

T2

A

B

X = A + B

X = A – B
T1

Syx = k (T2 – T1) / 2

correlation and anti-correlation

noise comparator



Thermal noise compensation
130

DUT

g

g

k  T
0B

k  T
0B

resistive

terminations

CP2
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L. Spietz & al., Primary electronic thermometry 
using the shot noise of a tunnel junction, 
Science 300(20) p. 1929-1932, jun 2003

shot noise

thermal noise S = kT

S = 2qIavgR high accuracy of Iavg 
with a dc instrument

Compare shot and thermal noise with a noise bridge

This idea could turn into a re-
definition of the temperature

plifier gains (18, 19). A promising noise ther-
mometer based on the ac Josephson standard is
being investigated by a collaboration of several
standards labs (20). This thermometer shares
with the SNT the prospect of relating tempera-
ture to the Josephson voltage standard.

Although not of direct interest for most
noise thermometry experiments, another impor-
tant type of electrical noise is shot noise, first
described by Schottky in 1918 (21). Shot noise
appears in any system in which current consists
of random discrete tunneling events, such as a
tunnel junction or a vacuum tube. Shot noise is
both frequency- and temperature-independent
and has the current spectral density SI ! 2eI,
where I is current. The junction noise used for
the SNT displays both shot noise and Johnson
noise, with a voltage-dependent transition
between the two regimes. This temperature-
dependent transition voltage allows us to deter-
mine temperature with only the use of a mea-
surement of the dc voltage and a relative noise
power measurement.

A tunnel junction can be modelled as a
pair of ideal Fermi reservoirs separated by a
tall, thin energy barrier. The tunneling rate
from a given energy level in one metal into
the other metal can be evaluated by Fermi’s
golden rule. It is well known that the tunnel-
ing rates are given by

"r31(13r) !
2#

$
%!&1'M(E)'r*!

2
D2(E)

fr(1) (E)[1 + f1(r)(E)]dE (1)

where &l!M(E)!r* is the tunneling matrix el-
ement from the left to the right side of the
junction, D(E) is the density of states, and
fl(E) and fr(E) ! fl(E + eV ) are Fermi func-
tions used to count the empty and filled states
on the left and right reservoirs, respectively
(22). For a sufficiently tall, thin barrier, the
tunneling amplitude and the density of states
near the Fermi energy can be considered to be
independent of energy. The occupation prob-
ability of any given state in one of the metals
is given by a Fermi function. Thus, under the
conditions that [eVbias, kBT] ,, Ebarrier, all
the terms can be moved outside of the inte-
gral except the Fermi functions. The current
through the junction can be found by taking
the difference of these two rates to get

I ! Ir + Il !
2#e
$
!&1!M(EF)!r*!

2

D(EF)2% [ fr(E)+f1(E)- dE ! V / R (2)

In other words, under these conditions, the
junction is just an ohmic resistor with no
temperature dependence. To find the current
spectral density of the noise, we just evaluate
the sum of the rates across the barrier instead
of the difference. Evaluation of the integral
gives the well-known result (23–25)

SI(V)!
2

R
%{ fr(E)[1+f l(E)]. f1(E)[1+fr(E)]}

dE!
2eV
R

coth! eV
2kBT"!2eIcoth! eV

2kBT"
(3)

Unlike the current, this expression has a
temperature-dependent scale that follows di-
rectly from the Fermi-Dirac distribution.
Evaluation of Eq. 3 at zero bias voltage yields
the Johnson result SI ! 4kBT/R, as required
by the fluctuation-dissipation theorem (26 ),
whereas in the limit eV // kBT Eq. 3 reduces
to SI ! 2eI, or shot noise (Fig. 1). As a
function of voltage, the junction noise chang-
es smoothly from Johnson noise to shot noise
in a way that depends only on kB, e, and a
simple analytic function. Thus, the voltage
dependence of the noise in Eq. 3 is analogous
to the equation of state of the ideal gas.

By measuring the noise as a function of
voltage, the temperature can be determined
from the voltage scaling of this transition
independent of the gain or noise of the am-
plifier chain and detector. This frees us from
the major limitations of traditional noise ther-
mometry: the need to calibrate gain, noise
temperature, and bandwidth to high accuracy.
The elimination of the need for absolute ac-
curacy in the amplifier chain calibrations al-
lows much more freedom in the selection of
components. In particular, we may replace
the kHz bandwidth amplifier typically used
by microwave amplifiers with hundreds of
MHz of bandwidth, allowing for a much fast-
er readout. In general, our amplifier has a
frequency-dependent gain g(0) and a noise
temperature tn(0), and we can fit the total
noise power P to the equation

P(V,T )! %d0g(0)# tn(0) .

eV
2kB

coth! eV
2kBT"$ !

G#Tn .
eV
2kB

coth! eV
2KBT"$ (4)

with average gain-bandwidth product G, av-
erage noise temperature Tn, and temperature
T as fit parameters. Equation 4 shows (Fig. 1)
that the SNT relates temperature to voltage in
a way that is independent of G and Tn. The
method is also independent of effects such as
frequency-dependent gain or impedance of
the sensor, the transmission of the tunnel
barrier, the sensor resistance, or any other
effect that does not vary with DC bias voltage
(27 ). Thus, our method retains the advantag-
es of noise thermometry, being primary and
electronic, but is much faster and simpler.

For a sensor, we used an Al-AlOx-Al tunnel
junction, fabricated with the use of electron

beam lithography and the Dolan bridge double-
angle evaporation technique (28, 29). We
designed the junctions to be about 50 ohms to
match to the impedance of the microwave elec-
tronics. These junctions show similar conduc-
tance characteristics to devices from published
literature (30), which have a barrier height of
about 2 V and a barrier thickness of about 1 nm.
During all measurements below 1.5 K, we ap-
plied a 0.5-T magnetic field to keep the alumi-
num in a nonsuperconducting state, although
the need for this field could be eliminated by
using a normal metal or by adding a local
permanent magnet.

In order to verify the form of the junction
noise, we simultaneously measured the dc
voltage and the radio frequency (rf ) noise
power (Fig. 2). We varied the bias across the
device to measure the noise as a function of
voltage across the junction. By fitting these
data to the predicted junction noise with a
least squares fit, we can determine a temper-
ature TSNT. We measured the junction noise
as a function of temperature from 0.260 to
300 K in a variable-temperature 3He refrig-
erator and from 0.01 through 4.2 K with the
use of a dilution refrigerator.

Before the SNT can be trusted as a
thermometer, we must verify the validity of
our “ideal gas law,” that is, whether the
junction noise follows the prediction of Eq.
3. To do this, we display the noise data in a
dimensionless form, normalizing the noise
power relative to the zero bias noise and the
voltage relative to the temperature (Fig. 3).
The data at all temperatures agree well with
a simple universal form over four decades
in temperature.

The largest deviations of the noise from
the expected form occur at the highest and
lowest temperatures. At temperatures above
about 30 K, we see deviations in the func-
tional form by as much as a few percent.
Because the devices are fabricated on a half-
micrometer-thick layer of silicon dioxide

Fig. 1. Theoretical plot of current spectral den-
sity of a tunnel junction (Eq. 3) as a function of
dc bias voltage. The diagonal dashed lines indi-
cate the shot noise limit, and the horizontal
dashed line indicates the Johnson noise limit.
The voltage span of the intersection of these
limits is 4kBT/e and is indicated by vertical
dashed lines. The bottom inset depicts the oc-
cupancies of the states in the electrodes in the
equilibrium case, and the top inset depicts the
out-of-equilibrium case where eV // kBT.
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R. Hanbury Brown, R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177 (1956) 27-29
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in single-photon regime, anti-correlation shows up

Also observed  at microwave frequencies
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kT = 2.7×10–25 J,   hν = 1.12×10–24 J,   kT/hν = –6.1 dB



Electromigration in thin films
133

A. Seeger, H. Stoll, 1/f noise and defects in thin metal films, proc. ICNF p.162-167, Hong Kong 23-26 aug 1999
RF/microwave version: E. Rubiola, V. Giordano, H. Stoll, IEEE Transact. IM 52(1) pp.182-188, feb 2003
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M. Sampietro & al, Rev. Sci. Instrum 70(5) p.2520-2525, may 1999

signal with mean value S̄DUT proportional to the DUT input

signal �in our case the DUT noise power density� at the se-
lected frequency. The frequency components of the noises of

the two input amplifiers, instead, are uncorrelated to each

other �out of phase� and, after having followed the same path
as the DUT signal, give a signal at the output of the multi-

plier with zero mean value and standard deviation equal to

the input amplifier noise power density at the selected fre-

quency. The final averaging will reduce these fluctuations to

any low value by properly extending the measuring time and

allow us to evaluate S̄DUT �that is the desired DUT informa-
tion� with increasingly high precision. Note that the noise
power spectral density of the input amplifiers, which in a

traditional single channel instrument is summed to the DUT

signal power and therefore directly sets the minimum detect-

able DUT signal, in a two channel correlation instrument

defines only the amplitude of the fluctuations around the

DUT level.

The ideal instrument, performing an ideally long mea-

surement, will measure the correlated signal and reject com-

pletely the uncorrelated noise introduced by the two ampli-

fiers. The improvement in sensitivity is not infinite indeed

but limited in a real instrument by the finite measuring time

and by the residual correlation of the noises between the two

channels, as will be discussed in detail in Secs. V and IV.

The accuracy of the measurement, instead, is only limited by

the precision of the calculation of the system gain and of its

frequency response.

III. DESCRIPTION OF THE DIGITAL CORRELATOR

The frequency selection in each channel and the follow-

ing multiplication and averaging stage have been imple-

mented in our instrument by a digital processing section

whose two inputs contain the stream of digitized samples

from the output v1(t) and v2(t) of the analog amplifiers �see
Fig. 2�. The Appendix shows that an estimate S̃DUT( f ) of the
frequency spectrum of the DUT signal can be obtained by

multiplying the discrete Fourier transform �DFT� V1( f ) of
the output of one channel with the complex conjugate of the

DFT V2*( f ) of the output of the other channel and by taking

its real part:8

S̃DUT� f ��
1

N
•R�V1� f �•V2*� f ��,

where N is the number of samples. The estimate S̃DUT( f ) is

improved increasing the total measurement time Tm by re-

peating M times the procedure with new streams of digitized

data and by averaging them. The features of the measure-

ment in terms of resolution bandwidth �RBW� and frequency
span are set by the parameters of the digitalization. By re-

calling that a stream of N samples taken at the sampling

frequency f s would give a DFT defined in N frequencies

equally spaced by � f� f s /N , we chose the values of f s and

of N in order to set the desired frequency span from fmin
� f s /N to fmax� f s/2, therefore defining our resolution band-

width to RBW� f s /N .

In our case we use analog to digital �A/D� converters
with a variable sampling frequency �from f s�5 Hz to f s
�100 MHz� and a buffer length N�32k samples. This has
allowed to reach values of fmin lower than 10 mHz and of

fmax of about 10 MHz, limited by the bandwidth of our am-

plifiers. Because of the limited value of N, within the men-

tioned frequency span we are able to produce a direct spec-

tral measurement covering 3 frequencies decades. A full

spectrum on 8–9 decades can be obtained by simply placing

the single results side by side.

IV. INSTRUMENT FRONT ENDS

The characteristics of the preamplifiers forming the input

stage of each channel are important to set the type of mea-

surement �current noise spectra or voltage noise spectra� and
to determine the ultimate performance of the instrument in

term of sensitivity and covered bandwidth. In addition, the

input electrical configuration allows the instrument to adapt

to a wide variety of DUT bias schemes, thus covering all the

requirements that can arise when testing the most advanced

semiconductor devices. The following sections will describe

in detail the test fixtures to perform current or voltage mea-

surements.

A. Current measurement front end

The configuration for current measurements is shown in

Fig. 3. The DUT is connected between the inputs of two

transimpedance amplifiers that convert the DUT current into

a voltage output, v1(t) and v2(t). The amplifiers allow us to

FIG. 1. Schematics of the building blocks of the correlation spectrum ana-

lyzer.

FIG. 2. Schematics of the building blocks of our correlation spectrum ana-

lyzer performing the suppression of the uncorrelated input noises by a digi-

tal processing of sampled data.
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ample, by using RF�100 M� , the curves would shift down
by a factor of 10, therefore allowing us to easily measure

sub-fA/�Hz DUT signals within a day.
The time needed to obtain a given sensitivity can be

traded with the RBW as indicated by Eq. �2�: a frequency
resolution relaxed by a factor of 10 �that is RBW�1 kHz�
would need ten times faster measurement for the same noise

sensitivity. This, of course, implies that the low frequency

section of a DUT spectrum would require a proportionally

long measurement time.

As an example of the capabilities of the instrument in

measuring extremely low noise levels, we present the results

of two different experiments. Figure 7 shows the frequency

spectrum of the current noise produced by a resistor of RD

�10 G� . Figure 7 proves that a 2 day experiment is long
enough to measure with good precision the expected theoret-

ical value of 1.3 fA/�Hz. To optimize the measurement the
data have been processed in order to produce a resolution

bandwidth increasing proportionally with the frequency from

a value of RBW�0.07 Hz at a frequency of 1 Hz until a

value of RBW�70 Hz at the final frequency of 1 kHz. As a
second example, we present in Fig. 8 the measurement of the

voltage noise spectral density produced by resistors of dif-

ferent values. The upper square-shaped points are the values

measured when only one channel is operated, that is when

the instrument behaves like a traditional spectrum analyzer.

In this case the sensitivity saturates to the limit given by the

noise of the input stage, equivalent to about 1.4 nV/�Hz
corresponding to the noise of an input resistor of about 100

� . The lower diamond-shaped points correspond to the mea-
surement performed with both channels active. The decrease

in the DUT noise, obtained by decreasing the DUT resis-

tance, is correctly tracked by the instrument at least down to

the value of 70 pV/�Hz. Values of resistors lower than 0.25
� were not tested because of the stray resistances of the

mounting.

VI. LIMITS DUE TO RESIDUAL CORRELATIONS
BETWEEN THE TWO CHANNELS

As already mentioned, the ultimate performance of the

instrument in term of sensitivity is set by those sources of

noise in the input preamplifiers that produce a signal exactly

in parallel to the one produced directly by the DUT. This

correlated component is read by the two channels of the in-

strument the same way as the DUT component and can

therefore not be removed.

For what concerns current noise measurements with the

setup of Fig. 3, the correlated component is produced by the

noise voltage sources en
2 and sets the minimum DUT signal

that can be measured by the instrument as:

icorr
2 �2en

2� 1
RD

� 1
RF

�
1

RD
���2CD�CD�Ci�Cstray�� ,

�3�

where RD and CD are the equivalent resistance and capaci-

tance of the DUT. The limits predicted by Eq. �3� in the case
of our instrument and with a CD�0.5 pF are shown in Fig. 9
as a function of the frequency for two values of impedance

RD of the DUT. Note that at low frequencies the 1/f noise

FIG. 8. Measurement of the noise spectral density of DUT resistors per-

formed: �a� by using only one channel and �b� by using both channels and
exploiting the peculiarity of the correlation technique. The dashed line in-

dicates the theoretical noise values �4 kTRD) expected from the DUT resis-

tors.

FIG. 9. Experimental frequency spectrum of the current noise from DUT

resistances of 100 k� and 500 M� �continuous line� compared with the
limits �dashed line� given by the instrument and set by residual correlated
noise components.

FIG. 7. Frequency spectrum of the current noise produced by a resistor of

10 G� . Peaks are probably due to an imperfect shielding from interferences
that produce correlated signals.
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also define the bias voltage across the DUT to any desired dc

value by setting Vbias . The noise characteristics of the am-

plifiers are summarized in their equivalent input noise gen-

erators, in
2 and en

2 , and in their input capacitance Ci . Cstray
accounts for the stray capacitance of the text fixture to

ground. In the case of our instrument in
2�(5 fA/�Hz)2, en2

�(3.3 nV/�Hz)2, Ci�5 pF, and Cstray�25 pF. CF is intro-

duced to stabilize the amplifier and its value is chosen in

order that RFCF be about the same order of magnitude as

RD(Ci�Cstray), with RD the DUT resistance. The amplifier

outputs are ac coupled �down to the mHz range� to the A/D
converters �see Fig. 2�.

The DUT current is read by both amplifiers and reaches

the two outputs completely correlated. On the contrary, the

current noise in
2 of each amplifier and the noise of the feed-

back resistor RF (iRF
2 �4kT/RF) are read only by the channel

that generate them thanks to the very low input impedance of

a transimpedance amplifier. These noises are uncorrelated

over the two channels and can therefore be reduced by a

properly long measurement. On the contrary, the voltage

noise en
2 of each amplifier produces a current through the

DUT, which is thus completely correlated over the two chan-

nels and therefore sets the lowest sensitivity limit of the in-

strument, as will be investigated in detail in Sec. VI

The choice of the value of the feedback resistor RF is a

compromise between the following two competing needs: �1�
high RF to maximize the amplification of the DUT signal

and to minimize its own current noise: both these effects

allow shorter measurements; �2� small RF to prevent the dc

bias current in the DUT from saturating the output v1(t) and
v2(t) of the amplifiers. A small RF also maximizes the band-

width fmax�1/(2�RFCF) of the measurement. In practice,

RF is chosen to satisfy the practical conditions defined in �2�,
that is dc bias current and bandwidth. This choice does not

affect the sensitivity of the instrument, the only consequence

being a variation of the measuring time necessary to reach

the desired level of sensitivity. On the contrary, in a tradi-

tional one channel voltage spectrum analyzer that uses the

same transimpedance amplifier in front of its input port to

perform noise current measurements, the value of RF also

directly sets the sensitivity of the instrument to the value in
2

�4kT/RF . This has strong consequences when high sensi-

tivity measurements are performed because the necessary

choice of a high value RF would drop the bandwidth and the

capability of handling dc currents to very low values.

The current front end is well suited for direct current

noise measurements on semiconductor devices. Figure 4

shows, as an example, the connection to the instrument input

ports of a generic four-electrodes DUT, in which two elec-

trodes �indicated with �B� and �C� in the figure� are directly
biased by the instrument itself and the others can be biased

by independent voltage sources. In addition to the ease and

flexibility in the biasing of the device under test, Fig. 4 high-

lights a specific feature of the correlation spectrum analyzer,

not available in a traditional instrument with only one chan-

nel: the possibility of extracting the current component (IBC)

that flows between the two terminals, �B� and �C�, connected
to the instrument irrespective of the presence in the same

terminals of other current components (IAB , ICD , IAC , IBD)

from the other terminals of the DUT. This peculiarity of the

correlation spectrum analyzer has many practical applica-

tions in the characterization of semiconductor devices. For

example it makes possible a selective and precise measure-

ment of the current in the channel of a MOSFET when the

current from the bulk is not negligible.

B. Voltage measurement front end

The measurement of a voltage noise spectrum can be

performed by the front-end scheme of Fig. 5. The signal

from the DUT is read by two independent voltage amplifiers

operated in parallel whose characteristics are summarized in

their equivalent noise generators, in
2 and en

2 , and in their

FIG. 3. Schematics of the active test fixture for current noise measurements.

FIG. 4. Example of connection of a four-electrode DUT to perform the

selective measurement of one current component excluding the others.
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E. Rubiola, the measurement of AM noise, dec 2005  
arXiv:physics/0512082v1 [physics.ins-det]
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feeding the same signal into the phase detector

• In AM noise this is not possible without a lower-noise reference 

• Provided the crosstalk was measured otherwise, correlation 
enables to validate the instrument

AM noise of RF/microwave sources

Laser RIN

AM noise of photonic RF/microwave sources
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Early implementations
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Spectral analysis at the single frequency f0, in the bandwidth B 
Need a filter pair for each Fourier frequency
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1940-1950 technology
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Rice representation of noise

supplementary material



Phase noise measurement
137

F.L. Walls & al, Proc. 30th FCS pp.269-274, 1976
popular after W. Walls, Proc. 46th FCS pp.257-261, 1992

(relatively) large correlation bandwidth
provides low noise floor in a reasonable time

supplementary material



Phase noise
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Effect of amplitude noise
139

E. Rubiola, R. Boudot, IEEE Transact. UFFC 54(5) pp.926-932, may 2007
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supplementary material



dual
integr matrix

D

R 0
=5

0Ω matrix
B

matrix
Gv2

w1

w2

matrix
B

matrix
G

w1

w2

FFT
analyz.

atten

atten

x t(  )

Q

I
I−Q

modul

’ γ’
atten

Q

I
I−Q

detect
RF

LO

Q

I
I−Q

detect
RF

LOg ~  40dB

g ~  40dB

v1

v2

v1

u1

u2 z2

z1

atten

DUT

γ
Δ’

0R

0R

10−20dB
coupl.

po
w

er
 sp

lit
te

r

pump

channel a

channel b (optional)

rf virtual gnd
null Re & Im

RF

suppression control
manual carr. suppr.

pump LO

diagonaliz.

readout

readout

arbitrary phase

var. att. & phase

automatic carrier

arbitrary phase pump

I−Q detector/modulator

G: Gram Schmidt ortho
normalization
B: frame rotation

inner interferometer
CP1 CP2

CP3

CP4

−90° 0°

I

Q
RF

LO

Phase noise measurement
140

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, aug 2000
E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, jun 2002
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background noise noise of a by-step attenuator

supplementary material



Measurement of H-maser frequency noise
141

R. F. C. Vessot, Proc. Nasa Symp. on Short Term Frequency Stability p.111-118, Greenbelt, MD, 23-24 Nov 1964

H maser

correlator

H maser

common
synthesizer

supplementary material



Oscillator phase noise measurement
142

A.L. Lance, W.D. Seal, F. Labaar ISA Transact.21 (4) p.37-84, Apr 1982

Original idea:
D. Halford’s NBS notebook 
F10 p.19-38, apr 1975

First published: A. L. Lance 
& al, CPEM Digest, 1978

The delay line converts the 
frequency noise into phase noise

The high loss of the coaxial cable 
limits the maximum delay

Updated version:
The optical fiber provides long 
delay with low attenuation 
(0.2 dB/km or 0.04 dB/μs)



Dual-mixer time-domain instrument
143

S. Stein & al., IEEE Transact. IM 32(1) p.227-230, mar 1983

Original idea:
D. W. Allan, The measurement of frequency 
and frequency stability of precision oscillators, 
NBS Tech. Note 669, 1975

The average process rejects the mixer noise

This scheme is equivalent to the correlation method

supplementary material


