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 General oscillator model
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The model also describes the negative-R oscillator
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Low-pass representation of AM-PM noise
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PM AM

Leeson Effect extension of the LE to AM noise

The amplifier
– “copies” the input phase to the out
– adds phase noise

The amplifier
– compresses the amplitude
– adds amplitude noise
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Resonator impulse response
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— boring mathematics omitted —

The low-pass equivalent of a resonator is a 1st order low-pass filter 
The time constant is equal to the resonator relaxation time τ
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shorthand  ω = 2πν



Leeson effect
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phase-noise transfer function
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Low-pass model of amplitude (1)
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differential equation

simple feedback theory

Gain compression is necessary for the 
oscillation amplitude to be stable

The Laplace / Heaviside formalism  cannot be used because the amplifier is non-linear

First we need to relate the system restoring time τr to the relaxation time τ
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Common types of gain saturation
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Gain compression is necessary for the oscillation amplitude to be stable
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Three asymptotic cases

homogeneous
differential
equation

Low-pass model of amplitude (2)
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Startup:   u→0,    A → A0 > 1 

Regime:   u→1,   A = 1 – γ (u – 1) 

Linear gain:   A = 1 – γ (u – 1)

At low RF amplitude, 
let the gain be an 
arbitrary value 
denoted with A0

For small fluctuation 
of the stationary RF 
amplitude, the gain 
varies linearly with V

Simplification: the 
gain varies linearly 
with V in all the input 
range

rising exponential

restoring time constant τr = τ/γ
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Startup – analysis vs. simulation
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van der Pol oscillator
simulated by RB

analytical solution,
A = 1–γ(u–1)

10 MHz oscillator
L = 1 mH
R = 125 Ω
Q ~ 503
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Rising exponential.
We find the same 

time constant –τ/γ



Gain fluctuations  –  definition
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Gain compression is necessary for the oscillation amplitude to be stable
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Gain fluctuations  –  output is u
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Linearize for low noise and 
use the Laplace transforms
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Gain fluctuations  –  output is v
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η

boring algebra relates αv to αu result
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Additive noise  –  output is u
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Additive noise  –  output is v
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Simulation (RB)
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van der Pol oscillator

Analytic model and numeric simulation
yield same time constants and slopes



Conclusions
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•Well-established framework, fully tested with PM noise

•Extension of the Leeson effect to the oscillator AM noise

•Simple analytical model and theory

•The analytical model (ER) is in agreement with the 
simulations (RB), developed independently

• More emphasis is given to the analytical model only because
• final formulae are easier to implement
• the talk is given by ER

•AM-FM coupling via Miller effect
(notice that other types of coupling exist)

•Experiments starting soon.  The sapphire oscillator gives 
easy access to (almost) all parameters
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