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1 – Digital hardware
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2 – Basic counters
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Practical measurement

nominal time Tnom  =  N'c Tc

measurement time Tm  =  Nx Tx  !  Tnom

input

clock

the measurement time starts after the internal trigger

the measurement time ends after the nominal time is elapsed

Nc counted cycles (edges) 

Nx counted cycles (edges) 

measurement equation:  Nx Tx   =   Nc Tc  

or   Nx Tx   =   (Nc ± 1) Tc ,  including quantization uncertainty 



3 – Microwave counters
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Prescaler
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• a prescaler is a n-bit binary divider ÷ 2n

• GaAs dividers work up to ≈ 20 GHz

• reciprocal counter => there is no resolution 
reduction

• Most microwave counters use the prescaler

÷ 2n reciprocal 
counter

input



Transfer-oscillator counter
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• The transfer oscillator is a PLL

• Harmonics generation takes place inside the 
mixer

• Harmonics locking condition:  N fvco = fx

• Frequency modulation Δf is used to identify N
(a rather complex scheme, ×N  =>  Δf -> NΔf )

low
passinput

fx / N

fx

classical 
counter

VCO

N fvco

fvco



Heterodyne counter
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• Down-conversion: fb = | fx – N fc |

• fb is in the range of a classical counter (100-200 
MHz max)

• no resolution reduction in the case of a classical 
frequency counter (no need of reciprocal counter)

• Old scheme, nowadays used only in some special 
cases (frequency metrology)

low
passinput

fbfx

oscillator

classical 
counter

multiplier 
× N

N fr



4 – Interpolation

18



191 – Time-interval amplifier



201 – Time-interval amplifier



211 – Time-interval amplifier



221 – Time-interval amplifier



232 – Frequency vernier



242 – Frequency vernier



252 – Frequency vernier



262 – Frequency vernier



273 – Time-to-voltage converter



283 – Time-to-voltage converter
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Interpolation by sampling delayed copies 
of the clock or of the stop signal

4 – Multi-tap delay line

The resolution is determined by the delay τ, 
instead of by the toggling speed of the flip-flops

input event

clock 0

clock 1

clock 2

clock 3

clock 4

clock 5

clock 6

clock 7

sample word  00000111

indicates delay = 5!  

!

sample word 00011111

indicates delay = 3!  

0

0

0

0

0

1

1

1

reference reference

0

0

0

1

1

1

1
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J. Kalisz, Metrologia 41 (2004) 17–32

Sampling circuits
4 – Multi-tap delay line



Ring Oscillator
used in PLL circuits for clock-frequency multiplication
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J. Kalisz, Metrologia 41 (2004) 17–32

4 – Multi-tap delay line



5 – Basic statistics
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Old Hewlett Packard application notes
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Quantization uncertainty

Tc

1/Tc

p(x)
σ2 =

T 2
c

12

1/
√

12 = 0.29

Example: 100 MHz clock
Tx = 10 ns
σ = 2.9 ns
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classical reciprocal counter (1)

• it provides higher resolution in a given measurement time tau
(the clock frequency can be close to the maximum switching speed)

• interpolation (M is rational instead of integer) can be used to reduce 
the quantization (interpolators only work at a fixed frequency, thus 
at the clock freq.)

M pulses

÷N

νc

τ=N/ ν

counter
binary

Μ=τν c

νc
N
M

=νreadout

ν

reference

trigger

measurement. time

period measurement (count the clock pulses) is preferred to frequency 
measurement (count the input pulses) because:
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classical reciprocal counter (2)
x0 x2x3x1 xN

τ = NTmeasurement time

wΠ

period T00

t
t0 t1 t2 t3 t4 t5 t6 tN

time

01/τ

v(t)

w
ei

gh
t

phase time x
(i.e., time jitter)

σ
2

y =
2σ

2
x

τ
2

classical variance

E{ν} =

∫ +∞

−∞

ν(t)wΠ(t) dt Π estimator

wΠ(t) =

{

1/τ 0 < t < τ

0 elsewhere
weight

∫ +∞

−∞

wΠ(t) dt = 1 normalization

measure:
scalar product

variance
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enhanced-resolution counter

= DT

x0 x2x3x1 xN

tN+D

τ = NT = nDTmeasurement time

1
nτ

1
nτ

2
nτ

2
nτ

nτ
n−1 1

τ nτ
n−1

w0
w1
w2

wi

wn−1

t
t0 t1 t2 t3 t4 t5 t6 tN−D tN

time

0
meas. no.

1/τ i = 0
i = 1
i = 2

i = n−1

wΛ

w
ei

gh
t

w
ei

gh
t

v(t)

delay τ0

phase time x
(i.e., time jitter)

the variance is 
divided by n

white noise: the autocorrelation 
function is a narrow pulse, about 
the inverse of the bandwidth

σ
2

y =
1

n

2σ
2
x

τ
2

classical

variance

E{ν} =
1

n

n−1
∑

i=0

νi νi = N/τi

Λ estimator

E{ν} =

∫ +∞

−∞

ν(t)wΛ(t) dt

weight

wΛ(t) =











t/τ 0 < t < τ

2 − t/τ τ < t < 2τ

0 elsewhere

normalization
∫ +∞

−∞

wΛ(t) dt = 1

tτ 2τ

wΛ(t)
1/τ

0

limit τ0 -> 0 of the weight function
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actual formulae look like this

(Π) σy =
1

τ

√

2(δt)2trigger + 2(δt)2interpolator

(Λ) σy =
1

τ
√

n

√

2(δt)2trigger + 2(δt)2interpolator

n =

{

ν0τ ν00 ≤ νI

νIτ ν00 > νI
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understanding technical information
σ

2

y =
2σ

2
x

τ
2

classical

variance

σ
2

y =
1

n

2σ
2
x

τ
2

classical

variance

τ0 = T =⇒ n = ν00τ

σ
2

y =
1

ν00

2σ2
x

τ3

classical

variance

τ0 = DT with D>1 =⇒ n = ν00τ

σ
2

y =
1

νI

2σ2
x

τ3

classical

variance

classical reciprocal
counter

enhanced-resolution 
counter

low frequency:
full speed

high frequency:
housekeeping takes time

the slope of the classical variance tells the whole story
1/τ2 =⇒ Π estimator (classical reciprocal)

1/τ3 =⇒ Λ estimator (enhanced-resolution)

look for formulae and plots in the instruction manual
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examples
[

RMS
resolution
(in Hz)

]

=
frequency

gate time

√

√

√

√

(25 ps)2 +
[(

short term
stability

)

×

(

gate
time

)]2

+ 2×
[

trigger
jitter

]2

N

RMS resolution σν = ν00σy

frequency ν00

gate time τ

[

RMS
resolution

]

=
(

frequency
or period

)

×

[

4×
√

(tres)2 + 2 × (trigger error)2

(gate time) ×
√

no. of samples
+

tjitter
gate time

]

tres = 225 ps
tjitter = 3 ps

number of samples =

{

(gate time) × (frequency) for f < 200 kHz

(gate time) × 2×105 for f ≥ 200 kHz

RMS resolution σν = ν00σy or σT = T00σy

frequency ν00

period T00

gate time τ

no. of samples n =

{

ν00τ ν00 < 200 kHz

τ × 2×105 ν00 ≥ 200 kHz

Stanford SRS-620

Agilent 53132A
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5 – Advanced statistics
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Allan variance

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}

σ2
y(τ) = E

{

1

2

[

1

τ

∫ (k+2)τ

(k+1)τ
y(t) dt −

1

τ

∫ (k+1)τ

kτ

y(t) dt

]2
}

E{wA} =

∫ +∞

−∞

w
2
A(t) dt =

1

τ

σ2
y(τ) = E

{

[

∫ +∞

−∞

y(t) wA(t) dt
]2

}

wA =











−

1√
2τ

0 < t < τ
1√
2τ

τ < t < 2τ

0 elsewhere

definition

wavelet-like
variance

the Allan variance differs from a wavelet variance in 
the normalization on power, instead of on energy

energy

t

A

τ2
−1

τ2
1

0

0 τ 2τ

time
w
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modified Allan variance

modσ2
y(τ) = E

{

1

2

[

1

n

n−1
∑

i=0

(

1

τ

∫ (i+2n)τ0

(i+n)τ0

y(t) dt −
1

τ

∫ (i+n)τ0

iτ0

y(t) dt

)]2
}

with τ = nτ0 .

modσ2
y(τ) = E

{

[

∫ +∞

−∞

y(t) wM (t) dt
]2

}

wM =























−

1√
2τ2

t 0 < t < τ
1√
2τ2

(2t − 3) τ < t < 2τ

−

1√
2τ2

(t − 3
)

2τ < t < 3τ

0 elsewhere

E{wM} =

∫ +∞

−∞

w
2
M (t) dt =

1

2τ

definition

wavelet-like
variance

energy

E{wM} =
1

2
E{wA}

compare the energy

this explains why the mod Allan variance is always lower than the Allan variance

time
M

τ2
1

τ2
−1

0

0
2ττ 3τ t

w
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spectra and variances 46

REVISED SUBMISSION TO IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, DECEMBER 2006 4

TABLE I

COMPARISONS OF ALLAN VARIANCE (TRADITIONAL COUNTER), TRIANGLE VARIANCE (HIGH-RESOLUTION COUNTER) AND MODIFIED ALLAN

VARIANCE RESULTING FROM CHARACTERISTIC NOISE. HERE, PM STANDS FOR PHASE MODULATED AND FM STANDS FOR FREQUENCY MODULATED.

(NOTE: A CUTOFF FREQUENCY, fH , IS INTRODUCED FOR THE ALLAN VARIANCE OF WHITE PHASE NOISE AND FLICKER PHASE NOISE TO AVOID AN

INFINITE RESULT. WE ALSO IGNORE THE SMALL SINUSOIDAL TERM.)

Noise Type Sy(f) Allan (σ2
A) Modified Allan Triangle

White PM h2f2 3 fH
4 π2 h2τ -2 3

8 π2 h2τ -3 2
π2 h2τ -3

= σ2
A(τ) = 1

2 fHτ σ2
A(τ) = 8

3 fHτ σ2
A(τ)

Flicker PM h1f 1.038+3 ln(2 πfHτ)
4 π2 h1τ -2

3 ln( 256
27 )

8 π2 h1τ -2
6 ln( 27

16 )

π2 h1τ -2

= σ2
A(τ) = 3.37

3.12+3 ln πfHτ σ2
A(τ) = 12.56

3.12+3 ln πfHτ σ2
A(τ)

White FM h0
1
2h0τ -1 1

4h0τ -1 2
3h0τ -1

= σ2
A(τ) = 0.50 σ2

A(τ) = 1.33 σ2
A(τ)

Flicker FM h-1f -1 2 ln(2) h-1 2 ln( 3 311/16

4 ) h-1 (24 ln(2)− 27
2 ln(3)) h-1

= σ2
A(τ) = 0.67 σ2

A(τ) = 1.30 σ2
A(τ)

Random Walk FM h-2f -2 2
3 π2 h-2 τ 11

20 π2 h-2 τ 23
30 π2 h-2 τ

= σ2
A(τ) = 0.82 σ2

A(τ) = 1.15 σ2
A(τ)

Frequency Drift (ẏ = Dy) - 1
2D2

yτ2 1
2D2

yτ2 1
2D2

yτ2

TABLE II

FIRST ORDER ERROR, δ, IN THE ALLAN, TRIANGLE AND MODIFIED

ALLAN VARIANCES CAUSED BY THE INCLUSION OF DEAD-TIME. THE

VARIANCE WITH DEAD-TIME, σ2
τd
, IS THE ORIGINAL VARIANCE, σ2 ,

AUGMENTED BY δ: σ2
τd
" (1 + δ) σ2 . (*FOR THE MOST DIVERGENT

NOISE, THE ALLAN VARIANCE HAS A COMPLICATED DEPENDENCE ON THE

CUTOFF FREQUENCY, fH ; HOWEVER, FOR SIMPLICITY WE GIVE THE

MAXIMUM VALUE.)

Noise Type Allan Modified Allan Triangle

White PM 2 τd
τ * −0.33 τd

τ 0

Flicker PM 2 τd
τ * 0.67 τd

τ 0.43 τd
τ

White FM 0 0 0

Flicker FM
τd
τ 1.33 τd

τ 0.62 τd
τ

Random Walk FM 1.50 τd
τ 1.67 τd

τ 1.30 τd
τ

Frequency Drift 2 τd
τ 2 τd

τ 2 τd
τ

being measured. Table I compares the Allan variance, triangle

variance and modified Allan variance resulting from several

common characteristic noise types. For an arbitrary signal,

however, Greenhall [8] has shown that it is not possible to

derive the power spectral density from the Allan variance; this

is equally true for the triangle variance calculation. Therefore,

it is not possible to manipulate data taken from a Λ-type
counter to yield the Allan variance that would have been

measured by a Π-type frequency counter, except for the

special case where the shape of Sy(f) is already known. The
corrections for listed Sy(f) are also presented in Table I.
Where the measurement involves a significant dead-time, a

further correction may be necessary, and we include Table II

for convenience. We note that the Allan variance values are

consistent with the bias functions tabulated by Barnes and

Allan [9].

The easiest way to be sure of obtaining the true Allan

variance is to ensure that a Π-type counter is used. Unlike
in [1], where the averaging of a series of Λ-type counter

2
√

2τ

1
√

2τ

−

1
√

2τ

−

2
√

2τ

t

wA

Amplitude

Fig. 6. Averaging Λ-counts before calculating the Allan variance produces
a triangularly modulated Π-count. Here we show four averages (N = 4).

0

A
m

p
li
tu

d
e

1

(a)

(b)

0

Normalized Frequency (fτ)
5 10 15 20

Fig. 7. The variance calculated by averaging consecutive Λ-counts (b)
approximates the Allan variance (a) at low frequencies but increases sensitivity

around N
τ (here N = 10).

measurements is assumed to approximate the Π-estimator,
we find that a series of Λ-estimators produces a Π-estimator
modulated by a triangle wave (see Fig. 6). For a number of

samples, N , the variance produced by this method approaches
the Allan variance at frequencies comparable to the reciprocal

of the gate time, but introduces sensitivity near N times the

reciprocal of the gate time (see Fig. 7).

A second alternative is to use a spectrum analyzer to

generate the frequency noise, Sy(f), and then calculate the

ν00 is replaced with ν0 for consistency with the general literature

fH is the high cutoff frequency, needed for the noise power to be finite

S.T. Dawkins, J.J. McFerran,  A.N. Luiten, IEEE Trans. UFFC 54(5) p.918–925, May 2007



Π estimator —>  Allan variance

given a series of contiguous non-overlapped measures

the Allan variance is easily evaluated

measure series

A 2 τ)+1/(

wΠ(t− )τ

2 τ)−1/(

wΠ
t

1/τ
(t) time

ν0 ν1 ν2 ν3

1/τ

0 τ 2τ

t

t
(t)

t...... ......

w

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}
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overlapped Λ estimator  —>  MVAR

modσ2
y(τ) = E

{

1

2

[

1

n

n−1
∑

i=0

(

1

τ

∫ (i+2n)τ0

(i+n)τ0

y(t) dt −
1

τ

∫ (i+n)τ0

iτ0

y(t) dt

)]2
}

with τ = nτ0 .

.....

M 2 τ)+1/(

wΛ(t− )τ

2 τ)−1/(

wΛ
t1/τ

1/τ time

ν0 ν1 ν2 ν3

0 τ 2τ 3τ

t

t

(t)

(t)

t.....

w

by feeding a series of Λ-estimates of frequency in the formula of the Allan variance

one gets exactly the modified Allan variance!

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}

as they were Π-estimates
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joining contiguous values to increase τ

mod Allan

w

(1)w

w(3)

w(4)

t

t

m=2
t

t

t

m=4

m=8

t

τ=τB

τ=2τB

τ=4τB

τ=8τB

t
converges to Allan

(2)

m = 1
 mod Allan
m = 2
 this is not what we expected
m = 4
 ...
m ≥ 8
 the variance converges to the 

 
 (non modified) Allan variance

graphical proof
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There is a mistake in one of my articles: I believed that in the case of the 
Agilent counters the contiguous measures were overlapped.  They are not.



non-overlapped Λ estimator  —>  TrVAR
by feeding a series of Λ-estimates of frequency in the formula of the Allan variance

one gets the triangular variance!

σ
2
y(τ) = E

{

1

2

[

yk+1 − yk

]2
}

as they were Π-estimates
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w!(t)

w!(t–2")

time t

time t

time t

1/"

1/"

" 2" 3" 4"

+1/(#2 ")

–1/(#2 ")

wTr(t)

S.T. Dawkins, J.J. McFerran,  A.N. Luiten, IEEE Trans. UFFC 54(5) p.918–925, May 2007



Conclusions
• The multi-tap delay-line interpolator is simple with 

modern FPGAs
• In frequency measurements, the Λ (triangular) estimator 

provides higher resolution
• The Λ estimator can not be used in single-event time-

interval measurements
• Mistakes are around the corner if the counter inside is 

not well understood
• Some of the reported ideas are suitable to education 

laboratories and classroom works (I used a bicycle and 
milestones to demonstrate the Λ estimator)
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home page http://rubiola.org

To know more:
1 - rubiola.org, slides and articles
2 - www.arxiv.org, document arXiv:physics/0503022v1
3 - Rev. of Sci. Instrum. vol. 76 no. 5, art.no. 054703, May 2005. 
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