

Photonic microwave oscillators

E. Rubiola, K. Volyanskiy, H. Tavernier, Y. Kouomou Chembo, R. Bendoula, P. Salzenstein, J. Cussey, X. Jouvenceau, L. Larger

> FEMTO-ST Institute, Besançon, France CNRS and Université de Franche Comté

Outline

- * Phase noise and frequency stability
- * Delay-line instrument
- * Correlation instrument
- * Delay line oscillator
- * Nonlinear AM oscillations
- * Optical resonators

home page http://rubiola.org

Phase and amplitude noise noise

 $v(t) = V_0 \left[1 + \alpha(t) \right] \cos \left[\omega_0 t + \varphi(t) \right]$ polar coordinates **Cartesian coordinates** \mathcal{U}

$$V(t) = V_0 \cos \omega_0 t + n_c(t) \cos \omega_0 t - n_s(t) \sin \omega_0 t$$

under low noise approximation

$$|n_c(t)| \ll V_0$$
 and $|n_s(t)| \ll V_0$

It holds that

$$\alpha(t) = \frac{n_c(t)}{V_0}$$
 and $\varphi(t) = \frac{n_s(t)}{V_0}$

Phase noise & friends

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008

Amplifier white noise

Cascaded amplifiers (Friis formula)

The (phase) noise is chiefly that of the 1st stage

The Friis formula applied to phase noise $b_0 = \frac{F_1 k T_0}{P_0} + \frac{(F_2 - 1) k T_0}{P_0 g_1^2} + \dots$ 4

Amplifier flicker noise

carrier near-dc noise

$$v_i(t) = V_i e^{j\omega_0 t} + n'(t) + jn''(t)$$
the parametric nature of I/f
noise is hidden in n' and n"

Substitute (careful, this hides the down-conversion)

 $v_o(t) = a_1 v_i(t) + a_2 v_i^2(t) + \dots$ non-linear (parametric)amplifier

expand and select the ω_0 terms

$$v_o(t) = V_i \Big\{ a_1 + 2a_2 \big[n'(t) + j n''(t) \big] \Big\} e^{j\omega_0 t}$$

The noise sidebands are proportional to the input carrier

get AM and PM noise

$$\alpha(t) = 2 \frac{a_2}{a_1} n'(t) \qquad \varphi(t) = 2 \frac{a_2}{a_1} n''(t)$$

The AM and the PM noise are independent of V_i, thus of power

Delay line theory

Rubiola-Salik-Huang-Yu-Maleki, JOSA-B 22(5) p.987–997 (2005)

 long delay (microseconds) is necessary for high sensitivity

 the delay line must be an optical fiber fiber: attenuation 0.2 dB/km, thermal coeff. 6.8 10⁻⁶/K cable: attenuation 0.8 dB/m, thermal coeff. ~ 10⁻³/K Laplace transforms

$$\Phi(s) = H_{\varphi}(s)\Phi_i(s)$$
$$|H_{\varphi}(f)|^2 = 4\sin^2(\pi f\tau)$$

$$S_y(f) = |H_y(f)|^2 S_{\varphi i}(s)$$

$$|H_y(f)|^2 = \frac{4\nu_0^2}{f^2} \sin^2(\pi f\tau)$$

White noise

intensity modulation

$$P(t) = \overline{P}(1 + m\cos\omega_{\mu}t)$$

photocurrent

$$i(t) = \frac{q\eta}{h\nu} \overline{P}(1 + m\cos\omega_{\mu}t)$$

microwave power

$$\overline{P}_{\mu} = \frac{1}{2} m^2 R_0 \left(\frac{q\eta}{h\nu}\right)^2 P^2$$

shot noise

$$N_s = 2\frac{q^2\eta}{h\nu}\,\overline{P}R_0$$

thermal noise

$$N_t = FkT_0$$

total white noise (one detector)

$$S_{\varphi 0} = \frac{2}{m^2} \left[2 \frac{h\nu_{\lambda}}{\eta} \frac{1}{\overline{P}} + \frac{FkT_0}{R_0} \left(\frac{h\nu_{\lambda}}{q\eta} \right)^2 \left(\frac{1}{\overline{P}} \right)^2 \right]$$

total white noise (P/2 each detector)

$$S_{\varphi 0} = \frac{16}{m^2} \left[\frac{h\nu_{\lambda}}{\eta} \frac{1}{\overline{P}} + \frac{FkT_0}{R_0} \left(\frac{h\nu_{\lambda}}{q\eta} \right)^2 \left(\frac{1}{\overline{P}} \right)^2 \right]$$

Flicker (1/f) noise

- * experimentally determined (takes skill, time and patience)
- ***** amplifier GaAs: $b_{-1} \approx -100$ to -110 dBrad²/Hz, SiGe: $b_{-1} \approx -120$ dBrad²/Hz
- *** photodetector b**₋₁ ≈ -120 dBrad²/Hz
 Rubiola & al. IEEE Trans. MTT (& JLT) 54 (2) p.816-820 (2006)
- * mixer $b_{-1} \approx -120 \text{ dBrad}^2/\text{Hz}$
- contamination from AM noise (delay => de-correlation => no sweet point (Rubiola-Boudot, IEEE Transact UFFC 54(5) p.926–932 (2007)
- * optical fiber
- The phase flicker coefficient b₋₁ is about independent of power
- in a cascade, (b₋₁)_{tot} adds up, regardless of the device order

The Friis formula applies to white phase noise

$$b_0 = \frac{F_1 k T_0}{P_0} + \frac{(F_2 - 1)k T_0}{P_0 g_1^2} + \dots$$

In a cascade, the 1/f noise just adds up

$$(b_{-1})_{\text{tot}} = \sum_{i=1}^{m} (b_{-1})_i$$

Single-channel instrument

• The laser RIN can limit the instrument sensitivity

• In some cases, the AM noise of the oscillator under test turns into a serious problem (got in trouble with an Anritsu synthesizer)

Measurement of a sapphire oscillator

- The instrument noise scales as 1/τ, yet the blue and black plots overlap magenta, red, green => instrument noise blue, black => noise of the sapphire oscillator under test
- We can measure the 1/f³ phase noise (frequency flicker) of a 10 GHz sapphire oscillator (the lowest-noise microwave oscillator)
- Low AM noise of the oscillator under test is necessary

Basics of correlation spectrum measurements

phase noise measurements		
DUT noise,	a, b	instrument noise
normal use	c	DUT noise
background,	a, b	instrument noise
ideal case	c = 0	no DUT
background,	a, b	instrument noise
with AM noise	c ≠ 0	AM-to-DC noise

11

 $S_{yx} = \mathbb{E}\left\{YX^*\right\}$ W. K. theorem $S_{yx} = \langle YX^* \rangle_m$

measured, m samples

a, b and c are incorrelated expand X = C - A and Y = C - B

 $S_{yx} = S_{cc}$ $S_{yx} = S_{cc} + O(\sqrt{1/m})$ a, b, c independent

measured, m samples

Averaging on a sufficiently large number *m* of spectra is necessary to reject the single-channel noise

Dual-channel (correlation) instrument

Salik, Yu, Maleki, Rubiola, Proc. Ultrasonics-FCS Joint Conf., Montreal, Aug 2004 p.303-306

- * uses cross spectrum to reduce the background noise
- requires two fully independent channels
- * separate lasers for RIN rejection
- optical-input version is not useful because of the insufficient rejection of AM noise
- implemented at the FEMTO-ST Institute

Dual-channel (correlation) measurement

the residual noise is clearly limited by the number of averaged spectra, m=200

Measurement of the optical-fiber noise

- matching the delays, the oscillator phase noise cancels
- this scheme gives the total noise

2 × (ampli + fiber + photodiode + ampli) + mixer

thus it enables only to assess an upper bound of the fiber noise

14

Phase noise of the optical fiber

The method enables only to assess an upper bound of the fiber noise b₋₁ ≤ 5×10⁻¹² rad²/Hz for L = 2 km (-113 dBrad²/Hz)
We believe that this residual noise is the signature of the two GaAs

power amplifier that drives the MZ modulator

Delay-line oscillator

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008

Delay-line oscillator

- 1.310 nm DFB CATV laser
- Photodetector DSC 402 (R = 371 V/W)
- RF filter $v_0 = 10$ GHz, Q = 125
- RF amplifier AML812PNB1901 (gain +22dB)

expected phase noise $b_{-3} \approx 6.3 \times 10^{-4}$ (-32 dB)

17

Nonlinear model

Anger-Jacobi expansion

A complex envelope equation

The complex envelope amplitude of the microwave obeys the equation

 $\dot{\mathcal{A}} = -\mu \mathcal{A} - 2\mu \gamma e^{-i\sigma} \cdot \operatorname{Jc}_1[2|\mathcal{A}_T|]\mathcal{A}_T$ where $\operatorname{Jc}_1(x) = \operatorname{J}_1(x)/x$ is the Bessel-cardinal function

 $\mu = \Delta \omega/2 =$ half-bandwith of the filter (= $2\pi \times 10$ MHz) $\gamma = \beta \sin 2\phi$ = effective normalized gain (can vary from -5 to 5) $\sigma = \Omega_0 T$ =microwave round-trip phase shift

The solutions of interest are:

 $A(t) \equiv 0 \qquad (no oscillations)$ $A(t) \equiv C^{te} \neq 0 \quad (pure monochromatic)$

These states are *fixed points* of the envelope equation.

We have to study the existence and the stability of the fixed point solutions, particularly for the solution $A(t)=C \neq 0$ which is of great technological interest. 19

Looks like sinus

cardinal, but the

maximum is $\frac{1}{2}$

instead of 1

Stability of the oscillating solution

It corresponds to the solution $A(t) \equiv A_o \neq 0$ with

$$\mathrm{Jc}_1[2|\mathcal{A}_o|] = -\frac{1}{2\gamma} e^{i\sigma}$$

Perturbation equation

$$\delta \dot{\mathcal{A}} = -\mu \cdot \delta \mathcal{A} - 2\mu \gamma \{ \mathrm{Jc}_1[2|\mathcal{A}_o|] + 2|\mathcal{A}_o|\mathrm{Jc}_1'[2|\mathcal{A}_o|] \} \delta \mathcal{A}_T$$

Stability condition

$$\left|\frac{1}{2} + \frac{|\mathcal{A}_o|\mathrm{Jc}_1'[2|\mathcal{A}_o|]}{\mathrm{Jc}_1[2|\mathcal{A}_o|]}\right| < \frac{1}{2} \quad \text{fulfilled when} \quad 1 < \gamma < 2.3, \text{ when } e^{-i\sigma} = -1$$

What does occur beyond 2.3 ???

Х

the Fourier spectrum of OEOs

Hopf bifurcation, observed

The Hopf bifurcation leads to the emergence of robust modulation side-peaks in the Fourier spectrum, which may drastically affect the phase noise performance of OEOs

Small resonators

- * Technology development in progress (quartz CaF₂, MgF₂)
- * A bunch of technical problems (and Ryad Bendoula left)
- * Taper coupling still problematic
- * some interesting phenomena observed

Raman oscillations

- •The Raman amplification is a quantum phenomenon of nonlinear origin that involves optical phonons.
- •An amplifier inserted in a high-Q cavity turns into an oscillator, like masers and lasers.
- •Oscillation threshold ~ 1/Q²
- •In CaF2 pumped at 1.56 $\mu m,$ Raman oscillation occurs at 1.64 μm
- •Due to the large linewidth, the Raman oscillation appears as a bunch of (noisy) spectral lines spaced by the FSR (12 GHz, or 100 pm in our case)
- •Raman phonons modulate the optical properties of the crystal, which induces noise at the pump frequency (1.56 µm)

High temperature gradient

•cross section of the field region 1 μm^2

- •CaF₂ thermal conductivity 9.5 W/mK
- dissipated power 300 μW
- •wavelength 1.56 μm
- •air temperature 300 K
- •still air thermal conductivity 10 W/m²K
- simplification: the heat flow from the mode region is uniform

inner bore at a reference temperature

24

bottom plane at a reference temperature

Thermal effect on frequency

5.5 mm

•wavelength 1.56 μ m (v₀=192 THz) •Q=5x10⁹ -> BW=40 kHz

 a dissipated power of 300 μW shifts the resonant frequency by 1.2 MHz (6x10⁻⁹), i.e., 37.5 x BW

•time scale about 60 μs

•Q>10¹¹ is possible with CaF₂ and other crystals!!

laser scan

calibration (2 MHz phase modulation)

Low-power oscillator operation

D = 50 Ohm

with F=0 dB (!!!)

 $-1560 \, \text{nm}$

Accumo

Assume.	$\rho = 0.8 \text{ A/W}$	$(P_{\lambda})_{peak} = 2x10^{-5} \text{ W} (20 \ \mu\text{W})$
Shot noise (n	n=1)	Thermal noise (m=1)
$I_{RMS} = \frac{1}{\sqrt{2}} \rho_{-}^{2}$	\overline{P}_{λ}	$I_{RMS} = \frac{1}{\sqrt{2}} \rho \overline{P}_{\lambda}$
$S_I = 2q\overline{I} = 2q$	$ ho \overline{P}_{\lambda}$	$S_I = \frac{4kT}{R}$ or $\frac{4FkT}{R}$
$SNR = \frac{1}{4} \frac{\rho \overline{P}_{\gamma}}{q}$		$SNR = \frac{1}{8} \frac{\rho^2 \overline{P}_{\lambda}^2 R}{kT}$
In practice, -131 dBrad ² /Hz		In practice, –110 dBrad ² /Hz

- •Thermal noise is dominant: below threshold, SNR ~ $1/P_{\lambda^2}$
- Thermal noise can be reduced (10 dB or more?) using VGND amplifiers
- What about flicker of photodetectors with integrated VGND amplifier?
- •Dramatic impact on the (phase) noise floor

26