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Abstract—This article addresses the measurement of
the power spectrum of red noise processes at the lowest
frequencies, where the minimum acquisition time is so long
that it is impossible to average on a sequence of data
record. Therefore, averaging is possible only on simultane-
ous observation of multiple instruments. This is the case
of radio astronomy, which we take as the paradigm, but
examples may be found in other fields such as climatology
and geodesy. We compare the Bayesian confidence interval
of the red noise parameter using two estimators, the spec-
trum average and the cross-spectrum. While the spectrum
average is widely used, the cross-spectrum using multiple
instruments is rather uncommon. With two instruments,
the cross-spectrum estimator leads to the Variance-Gamma
distribution. A generalization to g devices based on the
Fourier transform of characteristic functions is provided,
with the example of the observation of millisecond pulsars
with five radio telescopes (RTs). The simulations show
that the spectrum average is by a small amount more effi-
cient than the cross-spectrum, chiefly when the background
exceeds the signal. However, some notable differences
between their upper limit indicate that it should be wiser
to compute both estimators.

Index Terms— Bayesian statistics, characteristic func-
tion, confidence interval, cross-spectrum, Karhunen-Loéve
transform (KLT), Monte Carlo simulation, probability density
function, QR decomposition, spectrum average.

|. INTRODUCTION

HE term red noise refers to a variety of processes sharing
the property that the power spectral density (PSD) grows
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at low frequency as 1/f> (Brownian noise) or 1/f%, with
o > 2. We are interested in the estimation of the PSD of such
random signals out of the background noise of the instrument
in the specific case of very slow phenomena, which take
too long acquisition time for the average on a sequence of
datasets to be viable. Therefore, averaging out the background
is possible only by exploiting simultaneous measurements of
the same signal taken with multiple instruments, under the
obvious hypothesis that they are independent. The frequency
stability of the millisecond pulsars is the example we have
in mind. Such rapidly rotating neutron stars, emitting highly
stable periodic pulses out of the magnetic poles, rival the best
atomic clocks [1]-[4]. Among other fields, slow phenomena
are found in climatology [5] and geodesy, the latter nowadays
measured with Very Large Baseline Interferometry [6]. The
measurement of noise and phase noise with fully digital instru-
ments is another appealing application because increasing the
number of channels is reasonably simple. The phase noise of
oscillators can be measured with the multi-channel tracking
DDS [7]. An improved 16-channel version of the Tracking
DDS is now a semi-commercial instrument (we have recently
purchased two beta-test samples), albeit there is still no official
announcement. In Si, Ge, and GaAs semiconductors, low 1/f
noise is a quality indicator related to the effective number of
defects [8].

With the purposes stated in mind, we compare the efficiency
of the spectrum average (s.a) and with the cross-spectrum
(c-s) measuring the signal with ¢ instruments simultaneously.
The s.a estimator is the average of the g observed spectra S;,
weighted with the background noise o ,%,,i of the ith instrument.
The c-s method is the average of the all combinatorial choices
of the cross-spectrum S;;, i # j. The s.a is the classical
estimator used in these cases [9], while the c-s is rather
uncommon. Data are analyzed with the Bayesian statistics,
also known as the inverse problem, which consists of esti-
mating the most probable value of the signal (the slowest
spectral components) from the experimental outcomes and
their statistical properties. We take the 95% upper limit as the
efficiency criterion. Accordingly, the most efficient estimator
is the one that provides the most stringent upper limit on the
variance of the signal with the same dataset.

Our previous article [10] shows that the Variance-Gamma
(VI') distribution is the exact solution for the probability
density function (PDF) of the cross-spectrum in the case of
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[
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Fig. 1. Array of ginstruments measuring the signal r(f). Each instrument
adds a white noise to the output x(f) whose Fourier transform is X(f).
Then the estimate S is computed.

two instruments. We generalize the result to the case of the
cross-spectrum of ¢ instruments, each with its own background
noise o , assessing the confidence interval on the signal-level
0,%. Of course, the PDF is no longer a VI, and can only be
calculated numerically. The case of equally noisy instruments
is simpler, and at first sight similar to that of ¢ = 2, but it has
no analytical solution.

We run a simulation with up to five instruments, inspired
to the LEAP experiment [11]. Such experiment gathers the
five largest European radio telescopes (RTs) to increase the
sensitivity of high-precision pulsar timing. Interestingly, pul-
sar timing arrays seem a promising option to explore the
low-frequency gravity waves crossing our Galaxy [12], [13].
The c-s estimator commonly used in the frequency metrology
has recently been used in [14] to show the detection limit
of correlated red noise. Hence defining a confidence interval
on this estimator and comparing it with the commonly used
s.a will give hints on which estimator has to be privileged to
improve the sensitivity.

This article is intended to compare the s.a and the c-s
estimators generalized to multiple instruments measuring a
random signal, e.g., a red noise. In this respect, we define both
estimators of the PSD and describe their statistical properties
in Section II. Then in Section III we give their probability
density function. Sections IV and V compare the confidence
interval of the red noise respectively between the s.a and the
Karhunen—Loeve transform (KLT), and between the s.a and
the c-s. Conclusions are presented in Section VI.

Il. Two ESTIMATORS OF THE PSD
A. Spectral Measurement

Let us consider a red noise r(¢f) which is measured by ¢
independent instruments as shown in Fig. 1. We assume that
each instrument adds a white noise n;(¢) to the measurement
and that all these white noises are uncorrelated. In the follow-
ing, we call the red noise the “signal” and the white noise from
the measurement instrument is referred as the “measurement
noise.” The output of each channel is then:

xi=r+ni<—>X,-=R—|—N,~ (1)

where the subscript i corresponds to the ith instrument, <>
stands for the Fourier transform and inverse Fourier transform
pair, lower case is time domain, upper case is frequency
domain, and the variables ¢ and f are implied. Let us remind
that the Fourier transform of a white noise is a white noise,

Periodogram
SD

log[IXi(f)?]

fo log(f)

Fig. 2. Periodogram of x (white noise plus red noise). The PSD is the
expectation of the periodogram.

at least for sampled signals. Indeed, even if continuous pure
white noise have an infinite power, the Fourier transform for
discrete simulation can be defined. A realistic white noise
corresponds to a Markov process of the first order; more details
about colored noise are given in [15].

On the other hand, a red noise can be described as a
filtered white noise. Its spectrum is then the product of a white
spectrum by a deterministic function; so the random part of a
red noise is uncorrelated for each frequency bin. Consequently,
in term of random variable, working in the frequency domain
gives a precious advantage because the Fourier components
(frequency bins) are statistically independent unlike the time
data.

In the following we focus solely on one frequency bin,
thanks to energy equipartition it follows:

VIN;] = 2V[R[N;]] = 2V[I[N;]] = 01%/,,»
V[R] = 2V[R[R]] = 2V[I[R]] = o2 2)

where V[-], R[], and 3J[-] respectively denote the variance, the
real, and imaginary parts of the quantity within the brackets.

B. Periodogram and Power Spectral Density

First, let us recall some basics of frequency analysis. Using
a data record of duration 7' sampled at a suitable frequency,
the periodogram is

2
P(f) = 7|X(f)|2, f>0 A3)

where the factor “2” is needed for energy conservation after
deleting the negative frequencies. The expectation of the
periodogram is the PSD

S:(f) = E[%IX(J’)IZ} f>0. “)

Fig. 2 shows the periodogram and the PSD. We estimate
the PSD as the average periodogram, with the ultimate goal of
expecting the red noise parameters of r out of the measurement
noise n. Of course, r is the same for all instruments, while
the n; are specific to the ith instrument and its environment.

The total duration of the experiment is the major problem,
as the lowest frequency of interest sets 7. In turn, a long
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T goes with a small number p of averages because the total
duration of the experiment is pT. In this article, we focus on
the slowest red noise phenomena, up to years, for which we
have to set p = 1. In other words, the phenomena of interest
are so slow that we cannot average on multiple acquisitions.

C. Estimators

We are now focusing on one bin of the periodogram
of a single simultaneous measurement with ¢ instruments,
e.g., fo as represented on Fig. 2. Let us emphasize on the
term periodogram which designates a unique realization of
the red noise since all instruments observe this red noise
realization at the same time. Nevertheless, taking into account
the uncorrelated white noises coming from the instruments,
we have to deal with the PSD S. One bin of S represents
the power in a given bandwidth, i.e. the 2nd central moment,
or variance. Hereinafter, we work on a generic bin, thus S(f)
at that frequency is replaced with ¢2.

Because the N; are all different, it is appropriate to use a
weighted average, where the weights o; are to be found for
the optimum detection of R. We denote the estimates with a
“hat,” then

20X

> ai
where ¢ is the number of instruments. The variance of the
estimate 1 is

(5)

=)

_ ek +od)

Vizl ST ©6)
An optimal choice is obtained by solving
oVIul _ 0 @
oa;
which leads to the solution
a; = L ®)
‘71%/,1'

Therefore, the inverse-variance weighted average, described
in [16] with applications examples, has the least variance
among all weighted averages. Then (6) becomes

7 -1
o, = V[al = (Z T) : )

i O-N,i

Let us define now the two estimators of interest: the
spectrum average weighted by the noise variance o7 ; and the
Cross-spectrum

@y 2 9y 2
Sa = 4N aj E 21 +13 03 E 2'

T ON . ON,i
Ses = R[Xi - X;])w with i # j. (10)

Moreover 03 corresponds to the noise weight normalization
factor defined in (9). Finally, (-) stands for the m average over
the different combinations of instruments with m = (4) and
~ stands for the complex conjugate of the quantity which is

below. For better readability, we have omitted in (10) a factor

2/T, where T is the measurement time (acquisition of the data
record for one FFT), necessary for S( f) to have the dimension
of a PSD, and the factor fix the total power after deleting the
negative frequencies. In addition, only the random part has a
direct influence on the probability density function. Denoting
E[-] the mathematical expectation of the quantity within the
brackets

]E[S:s\a] = a,% + 03

— 11
E[Sa] = o (n

which means that the spectrum average estimator is biased.
Usually, one removes the bias to have the s.a estimate average
over realizations which tends toward the sought signal-level
o . This gives a clear advantage to the c-s estimator. However,
we will see that the computation of the confidence interval
over the signal-level o3 requires an estimation of this bias
03 whatever the chosen estimator, s.a or c-s. Therefore,
we want to estimate the PSD and we assume it follows a
1/f* power law, then we only have to estimate a level and
exponent of the first frequency bins.

We now compare the estimator defined in (10) by deter-
mining their variance. We can demonstrate provided that
Vi, 0'1%/,1‘ = a,%, (see Annex )

o [V[5a],
w1 s
q_ S b

if a,% > a,%,

12
if 07 K oy 12)

This is confirmed by Fig. 3 which exhibits the variance of
the estimates of both estimators applied to a signal composed
of a mixture of uncorrelated white noise of level 1 arbitrary
unit (a.u.) and a common f~* noise of level 4096 a.u. for
two instruments. Therefore, the variance decreases in f -8 and
Fig. 3 compares these variances to the square of the PSD.
At f = 4 a.u., the signal PSD is 16 times higher than the white
level and therefore its square is 256 times higher. In this case,
the variances of both estimators coincide. On the other hand,
for frequencies higher than 16 a.u., the signal PSD is less than
16 times lower than the white level (256 for their squares) and
the variance of the c-s estimates is two times higher than the
variance of the s.a estimates. This seems to indicate a better
efficiency of the s.a estimator. Indeed, the spectrum average
estimator is a sufficient estimator which means of minimal
variance.

However what about the PDF of the estimates knowing the
parameter a,% for a given frequency?

I1l. PROBABILITY DENSITY FUNCTION
A. Spectrum Average Method

The spectrum average estimator leads to the following
x? distribution with two degrees of freedom resulting from
the real and imaginary parts of the spectrum:

Ssa

_— - D'Z
P(Salod) = 53 (13)
where
1
0% = = (0% + o) (14)

2
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Fig. 3. Variance of the estimate with the signal variance which is of the
form (02/f*)?, where 0% = 4096 a.u. is the signal level and a = 4 the red
noise exponent. The noise model is a white noise of level aﬁ, =1au.
with two instruments.

where ai is the weighted noise level according to (9) and

o} the signal level of interest.

B. Karhunen-Loéve Transform

The KLT method, denoting to the KLT, has been developed
in [17]. It uses the statistics of the data themselves instead of
the statistics of the estimates. This method has the advantage
to combine linearly independent Gaussian estimates. Further-
more, it also forms a sufficient statistics like the s.a method.
It is based on determining the covariance matrix M associated
with the real or imaginary part of the measurement X; obtained
by the g instruments

1
M,'i = 5(0'1%/’[ +0'R%)

| (15)
M;; = 50'1%, with i # j

where the extra factors 1/2 come from (2). This covariance
matrix has to be diagonalized and we denote the eigenvalues
Ai. Their associated normalized eigenvectors are V; and the
PDF is then given by

_ Lo (-Ee)
p(SKLT|0'1%) ZHWe ‘i

i=1

(16)

where j highlights the real and imaginary part obtained
through the Fourier transform therefore v = 2. Let us remind
that X corresponds to the matrix containing the set of Fourier
transform of the measurements at the output of each instru-
ment. The numerator of the exponential argument is then

w=X-V (17)

where V are the eigenvectors obtained from the diagonalized
covariance matrix.

C. Cross-Spectrum

The cross-spectrum estimator leads to the variance-gamma
(VD) distribution for two instruments as described in
Section III in [10] but for more than two instruments it iS no
longer the case. Having no exact solution known nowadays,

we propose a solution based on the characteristic function.
Expanding the model from the case of two instruments,
we define a basis such as in [10]

oN1/2  on1/2 on,1/2
O'N52/2 —O'N52/2 0 0
B = 0 0 —O'N,3/2 0
_O'N,q/2
OR 0 0 0

(18)

We apply the DGEQRF LAPACK subroutine on B. The
outputs enable the computation of the product of elementary
reflectors which is a matrix Q(¢g+1, g+ 1). Then we define W
the matrix where each column contains the standard deviation
of the spectrum according to (1) as

ON,1 0 0
| 0 ON,2 0 0
W= _—— 0 0 ON,3 0 (19)
V2
ON,q
OR OR OR OR

All the measurement noises are independent, as assumed,
whereas the signal is common. Then the columns of W
are projected onto the orthogonal basis Q and each pair
of cross-spectra according to (10) is determined. Finally,
we compute the eigenvalues 1; of the resulting components
using the DSYEV LAPACK subroutine. This leads to a linear
combination of y? distribution as follows:

q
Ses = Z/Ij){]z
J

where k is the number of degrees of freedom corresponding
to each eigenvalue, e.g., equal to 2 for the real and imagi-
nary parts without degeneration. In the special case of two
instruments, we obtain the subtraction of two y? random
variables with the same number of degrees of freedom. The
characteristic function of the y/ distribution is defined as

$i(t) = (1 —2i1;0)™*? 1)

where i is the imaginary unit and we apply a variable change
of —t for the negative eigenvalues. The y? distributions
according to (20) being independent, the characteristic func-
tion of the c-s becomes

(20)

q
o) =[]0 (22)
J

It leads to the moment generating function of the VI’
distribution for two instruments but it is no longer the case
for more instruments. When all the instruments have the same
level of intrinsic noise anz, the diagonalization of the matrix
W defined by (19) leads to two eigenvalues. One is unique
and the second one has a degeneration of ¢ — 1 with g the
number of instruments. Consequently, it leads to the difference
of two 2 random variables with different degrees of freedom.
Howeyver, even if it looks like the case with two instruments,
the difference in the degrees of freedom of the y? distributions
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Fig. 4. Comparison of the empirical (red boxes) and theoretical (green
line) PDF of the c-s for five instruments where the variances are 0% =
6a.u.and o =10a.u.

has no analytical solution. Therefore, the probability density
function of the c-s for any noise level is defined as

p(Ses|o) = % /]R e S p(r)dr.

We perform the integration of the real part of the function
using the Simpson method only on the positive reals because
the real part of this function is even whereas the imaginary
partis odd. Fig. 4 shows that the theoretical probability density
function fits very well the histogram obtained by 10’ Monte
Carlo simulations for 5 instruments. The variance of each
white noise is the same o3 = 10 a.u. whereas the signal level
is o3 =6au.

(23)

D. Bayesian Inference

1) Posteriori Distribution: We seek to determine a confidence
interval on 0,%, but (13), (16) and (23) define the PDF of
a set of measurement X given the sought parameter oj.
So we have to solve the inverse problem which means to
determine the PDF of o3 given a set of measurement X called
the posterior distribution. The Bayes theorem leads to the

following relation:
p(o;IX) o< p(Xlog) - 7 (ok)
oo
| plorixyaci =1
0

where n(a,%) is the prior, i.e., the PDF before any measure-
ment. One of the main issue of Bayesian analysis concerns
the choice of this prior.

2) Choice of the Prior: To be as general as possible, we will
assume a total ignorance of the signal level. In such a case, it is
generally considered that any order of magnitude has the same
probability which suggests a constant prior in a logarithmic
scale, i.e., 71'(0'1%) = 1/0,%. However, our perfect knowledge of
the measurement noise level induces an implicit scale factor.
In other words, since we did not remove the “bias” 05 in (11),
the s.a estimator is shifted by 03. In a very similar case [18],
we decided that the true parameter should be the sum of both
levels 8 = aj + 3. Moreover according to (9) higher noise
will have lower weight and in our case, since the mathematical

(24)

expectation of the s.a estimator is 03 + a,%, it comes naturally
that the true parameter should be

0= 03 + J,%. (25)
From these considerations, we will choose 7 (8) = 1/6 =
(1/ (03 + ¢2)) and then, our prior for the s.a estimator will be

T(o}) (26)

2 2"
Jﬂ—i—aR

To be fair in the trial of c-s against s.a, the same prior will
be used for both estimators.

In the following we will compare the different methods,
starting with the spectrum average and KLT in Section IV.

IV. SPECTRUM AVERAGE AND KLT COMPARISON

A. Particular Case: all the Instruments Have the Same
Variance

Let us define Vi, 01%, ;= 01%,, i.e., all the ¢ instruments have

the same noise level. At a first step we determine the s.a PDF,
in this case according to (9) and (2), the variance defined
by (14) leads to the following expression:

1(c}
T 5(71\/ +01%).

From (10), the estimate S‘:a now becomes

q 2
S [ER|:02 Xi “ +[~~
g i O-I%l,i
1 q 2 q 2
(] el

According to (13), the s.a PDF is given by

27)

2]
1
Q
RSN
- Y

Q
Zl 23
L
[ —
(38

B qiz !:n[z;’ Xi]2+3[2? xi]zl

2
N
e q

2
+UR

P(Salog) = (29)

2
ON 2
— o
q+ R

In a second step let us define the KLT PDF. The eigenvalues
of the covariance matrix resulting from (15) are given by

/11 = (0'1%, +(]O’1%)

—_ DN | =

Ai = withi € {2,...,q}. (30)

2%
The first and highest eigenvalue being the only one to
depend of o7, we solely define its associated eigenvector

J,
VlzL’l

31
NGi (€2
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where J, 1 is the all-ones column vector. Then the numerator
in the exponential in (16) is

v
A2
Z Wy,
j

v

> viJ’

J

I ’
= — X.J
q Ej [ J q,l]

l —| < ’
= - 2| 2%
9514

1 q 2 q 2
= 1% D x| +3] DX (32)
q i i
The KLT PDF defined by (16) is given by
H-‘“[Z? R b Xiﬂ
- o +q62
5 e NTaoR
p(Skirlog) =C (33)

7 (0% +aok)
where C is the Gaussian remaining product with a variance
depending only on the measurement noise level. However,
what we want to characterize is not the estimates but the para-
meter o3. According to (24), the PDF of the true parameter
o} is proportional to the prior 7 () multiplied respectively
by (29) and (33) for the s.a and KLT estimates. The Bayes
theorem leads then to

~ Hzn[z? X[z Xi]2]

2 2

9 =~ ) e oNTaoR
4
p(aR|Ssa) x n(aR) 01%1 —i—c]a,% (34)

and
H:n[z?){i]2+3[z?xi]2]

2/\ 5 e_ rr,zv-#qrffze

p(oglSkir) o 7 (op) o2 + g0 (35)

Multiplying respectively (34) and (35) by a factor 1/g and
7 does not change the PDF since it is normalized. It is exactly
the same for (35) where C does not depend on a,% and vanish
through the normalization. Therefore, both expressions are
exactly the same. It should also be noted that the noise-level
o3 is necessary in both cases and the bias does not influence
the sought parameter density whereas it does regarding the
estimates. This implies a very interesting consequence: both
PDF for the s.a and KLT lead to the exact same confidence
interval for the same noise level.

B. General Case

In this part any number of instruments and different noise
level for each of them can be considered. In Section IV-A,
we showed analytically that both methods lead to the same
PDF of the signal level knowing the estimates in the event that
all noise levels are the same. However when each noise level is
different (30) giving the relation between the eigenvalues and
the signal becomes much more complicated without degener-
ation. In this case, let us consider a number of instruments
solely up to 5, referring as instance to the number of RTs
part of the LEAP project. Then we make several empirical

TABLE |
UPPER LIMIT AVERAGE OF THE PARAMETER a,% TAKING INTO
ACCOUNT 2 TO 5 RTS. THESE DATA WERE OBTAINED FROM A SET
OF 1000 SIMULATED SPECTRA. THE SIGNAL AND NOISE LEVEL USED
FOR THE COMPUTATION ARE 04 = 1 AND a%“ = i WHERE /IS THE
INDEX OF THE RT

Spectrum average / KLT ~ 95% upper limit

RTs number | Mean | Median [ Std [ Min | Max
2 17.44 12.88 3.10 | 630 | 115.32

3 16.32 11.78 239 | 5.16 91.78

4 15.66 11.10 295 | 454 | 108.82

5 14.84 10.67 228 | 4.14 86.99

comparisons by computing the upper limit at 95% for the
spectrum average and KLT methods. It should be noticed
that the 5% lower bound has no interest since we are more
particularly interested in the case where the signal is weaker
than the noise level. This bound then greatly depends on the
prior and is very close to zero.

Table I gives the average over 1000 realizations of the 95%
upper bound for 2 to 5 RTs. The signal and noise levels are
respectively o7 = 1 a.u. and a,%,,i = i a.u. where i is the
ith RT. Then the 2nd and 3rd RT are respectively two and
three times more noisy than the first one and so forth.

First, these comparisons show as expected that the 95%
bounds obtained by both estimators as in Section IV-A for the
same noise variance are exactly the same.

Second, the mean and median of the 95% upper limit of
the s.a and KLT estimates obtained over 1000 realizations
are decreasing as the number of RTs increases. Therefore,
adding a new instrument to the array, as long as we have
a perfect knowledge of its noise level, necessarily contributes
to lowering the upper limit and then improve the parameter
estimation. The maximum value is not really significant since
the tail of the distribution is very long and thin.

Finally, it should be noticed that both methods require the
noise-level knowledge for the expression of the probability
density function. The spectrum average method being the
fastest way to compute the confidence interval is then to
be privileged. Therefore, we will only compare the spectrum
average method with the cross-spectrum in the next section.

V. 95% UPPER LIMIT: SPECTRUM AVERAGE VERSUS
CROSS-SPECTRUM

We have set the direct problem, i.e., the statistics
of the s.a or c-s knowing the signal level and noise
level (which is assumed to be known), respectively in
Sections III-A and III-C. Now we tackle the inverse problem
from the direct problem, i.e., the statistics of the signal level
knowing the s.a or c-s estimate. The Bayes theorem enables
us to establish this link as described in Section III-D. The
posterior distribution of the s.a and c-s are given by

p(oalSa) ¢ ————— (36)
(03 + a,%)
and
1

5 —
Ses e
p(URI C‘) < 2 (a/%—f-a,%)

/ S p(dr  (37)
R
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where ¢ 3 is the noise variance weighting according to (9). Let
us describe our simulation algorithm to assess the 95% upper
limit.

First simulation (S; to S3): simulate a set of real data from
q instruments, assuming the red noise level is known (as well

TABLE Il
MEASUREMENT SET FOR THE OUTPUTS OF EACH RT (5 IN TOTAL)
WHERE 0% = 6 a.u. AND 05 = 10 a.u.

as, of course, the measurement noise levels).

S;: Assign the number of RTs, the noise variance of each
one and the sought true signal level.

S>: Generate a set of spectral measurement according to (1)

S3: Compute the s.a and c-s estimates, as stated in (10),

which are now fixed as parameters.

Second simulation: we no longer modify the data (these are
acquired measurement results) and we look for a confidence
interval on the red noise, assuming the level of the measure-
ment noise is known.

measurement set 1 measurement set 2
Real part [ Imaginary part | Real part [ Imaginary part
X1 -3.8947 -1.7994 -0.1494 8.9456
Xo -5.0950 -3.9125 -0.5275 4.4659
X3 -2.5133 -5.5431 0.2176 5.7742
X4 0.6433 -1.9566 1.6044 3.2146
X5 -0.2294 -2.5738 -0.5284 0.3563
TABLE Il

95% UPPER LIMIT STATISTICS FOR THE S.A (TOP), C-S (MIDDLE) AND
THE RATIO OF THE S.A BY THE C-S OVER 100 SIMULATIONS WHERE
02 =6 a.u. AND 02 = 10 a.u. EACH Rows RESPECTIVELY FROM THE
LEFT TO THE RIGHT CORRESPONDS TO THE NUMBER OF RTS, THE
MEAN, MEDIAN, STANDARD DEVIATION, MINIMUN AND MAXIMUM
VALUE OF THE 95% UPPER BOUND

S4: Define any basis and perform an orthogonalization and
normalization of it using the DGEQRF subroutine from
LAPACK

Ss: Establish, from (19), one W matrix for each signal
level varying from O to an upper limit for which (36)
and (37) are close enough to zero according to the
required precision.

Sg: Perform S7 to S;; for each a,% value.

S7: Project the ¥V matrix onto the orthogonal basis.

Ss: Compute the c-s denoted Z from the result of S.

So: Determine the eigenvalues of Z using the DSYEV
subroutine from LAPACK which has now the form
of (20).

S;0: Define the product of each characteristic function
defined by (21).

S;1: Compute the posterior distribution respectively of the s.a
and c-s estimates according to (36) and (37). For the c-s,
we perform a numerical integration of one signal value
using the Simpson method.

S;2: Normalize the s.a and c-s posterior PDF.

S;73: Determine the cumulative distribution function (cdf)

by integrating the s.a and c-s posterior PDF and find
the 95% upper limit corresponding onto the cdf value
associated with the signal level.

The loops for the different values of the signal are computed
in parallel to save computing time. Let us give an example
of such a process. We set the number of RTs to 5 and the
variances of the signal and noise are respectively o7 = 6 a.u.,
o2 = 10 a.u. Then we produce two sets of random mea-
surement with these parameters, shoEn\in Table II. The first
measurement set gives respectively Sgo.; = 14.886 a.u. and
S/CS,\l = 13.226 a.u. for the s.a and c-s estimates whereas the
second one gives Ea\2 = 20.730 a.u. and ?cq\z = 18.564 a.u.
It leads for the first set to the 95% upper limit on the signal
01% following value, 125.8 for the s.a and 127.3 for the c-s.
Furthermore, the second set gives us 167.1 for the s.a and
164.8 for the c-s. These results show that either the c-s or the
s.a can be the most efficient even with the same parameters,
then it only depends on the measurement set. However, the
difference between the 95% upper limit for both methods is
relatively low.

Spectrum average 95% upper limit
RTs number | Mean | Median | Std [ Min | Max
2 112.99 79.45 32.93 48.50 | 440.60
3 98.41 72.60 35.66 31.70 | 453.20
4 78.00 51.50 18.30 23.80 | 260.10
5 90.11 67.95 28.47 19.00 | 373.40
Cross-spectrum 95% upper limit
RTs number | Mean | Median | Std [ Min [ Max
2 116.49 83.00 27.38 67.90 | 388.90
3 99.74 79.65 34.54 41.00 | 443.40
4 76.37 54.10 18.03 28.50 | 255.80
5 91.87 65.35 28.98 22.20 | 380.20
s.a/c-s 95% upper limit
RTs number | Mean | Median | Std [ Min [ Max
2 0.97 0.90 0.12 0.71 2.21
3 0.98 0.94 8.13 x1072 | 0.74 1.79
4 1.02 0.98 4.86 x10~2 0.74 1.50
5 0.97 0.96 3.73 x10=2 | 0.78 1.34
1800 t } }
=== Cross-spectrum
1600 | [ Spectrum average
1400 + L

2 1200 - 3

2 L

8 1000 F

3 =

£ 800 | |

o -
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Fig. 5. Histogram comparison of 95% upper bound between the c-s and

s.a for 10000 realizations. The parameters are set for five RTs, 0,2:, =

6a.u.and o3 =10 a.u.

Let us now compare the s.a and c-s 95% upper limit
over 100 simulations as shown in Table III for the sought
signal-level set to 6 a.u. and a noise level equal to 10 a.u. for
each RT. The 95% upper limit is given respectively for, from
the top of the Table to the bottom, the spectrum average, the
cross-spectrum, and the ratio of the 95% bound of s.a over
c-s. The mean and median are decreasing when the number
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250 p— mss_spectmm; estimate for the cross.—spectrum. which may corresponds to a

i x  Spectrum average spectrum average estimate having a not so small value and

200 f so a higher 95% bound. Fig. 6 shows the comparison of the

3 95% upper limit for the s.a and c-s methods for a window of

< 150 hundred data among the same set of realizations. The 6 620th

§ f X 3 realization framed by a blue rectangle highlights the fact that

® 100 1 . o the c-s can sometimes be much more stringent than the s.a

* & LINE " dil T o Ttls method. However, in most of the other realizations we notice
%0 ) k that the 95% limit is almost the same.

. THTH hﬁ'ﬂﬁ TTW WTT HH i T TT I WTTTT Fig. 7 depict thf: 95% upper bound median among

6560 6580 6600 6620 6640 1000 simulations with five RTs, for the s.a over c-s ratio

Realization depending on the signal-to-noise level ratio (with o3 = 1 a.u.).

Fig. 6. Set of 100 realizations for five RTs of 95% bounds for cross-
spectrum (green +) and spectrum average (red x) where a,% =6a.u.
and o3 =10 a.u.

1.01 }
sa/cs upper bound

0.99

0.98

0.97

0.96

0.95
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0.94
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Fig. 7. Evolution of the 95% upper bound median of the s.a over c-s
ratio obtained for 1000 realizations depending on the signal-to-noise level
ratio. The parameters are set for 5 RTs and 0%, =1 a.u. The red curve
corresponds to the sa/cs upper bound and the green curve indicates
when both s.a and c-s have the same upper bound in median.

of RTs is increasing. However, for four RTs the results are
much more lower but it is just an artifact of “luck.” Indeed
the maximum value is 1.4 times lower than for five RTs
and the standard deviation (std) is also very much more lower.
The sample size can have a significant effect on the values
obtained but is necessary to have a good precision with a
reasonable computation time. However, the minimum value of
the 95% bound obtained for both methods permits to override
this randomness. Indeed when the cross-spectrum estimate is
negative or the spectrum average estimate tends toward zero it
leads to the smallest 95% bound. Whereas the maximum 95%
bound obtainable for a reasonable amount of simulations can
“wriggle” a lot as the tail of the posterior PDF is very long
especially with higher noise level than signal level which is
of interest. The minimum value of the upper bound decreases
as the number of RTs increases. It seems that the s.a method
gives the most stringent confidence interval.

Fig. 5 shows the histogram of the 95% limit with 5 RTs
for 10000 realizations, o3 = 6 a.u. and 67 = 10 a.u. Both
histograms exhibit a similar distribution which extend up
to high values. However, the first bin corresponding to the
lowest 95% bound shows a high number of realizations
for the c-s method. This can be explained by a negative

When 63 <« o3 then the s.a seems to be the most stringent
most of the time. However when the signal level becomes
higher than the noise level, both the s.a and the c-s methods
give in median the same 95% limit.

Considering all these observations it is wiser to compute
both estimators and use the most restrictive one. Even if most
of the time both estimators give a very close upper bound,
sometimes the gap is clearly significant.

VI. CONCLUSION

First, we demonstrated that the spectrum average variance
is g/(q — 1) lower than the cross-spectrum variance for g > 2.

Second, to assess the confidence interval of the signal level
we defined its probability density function knowing the s.a
and c-s estimates but also the noise of each instruments
(RTs). In addition, a method directly using the statistics of
the measurement (KLT) has also been compared. It turns out
that the KLT and the s.a methods lead to the exact same PDF
of the signal-level o3 knowing the estimates, so the precision
is the same. Furthermore, whereas the cross-spectrum has
a well-defined analytic probability density function for two
instruments called VI, there is no equivalent for more than
two instruments. We proposed then a generalized method
based on a numerical integration of the characteristic function
product. This method works very well according to the Monte
Carlo simulations.

Finally, the efficiency of both estimators, the spectrum
average versus the cross-spectrum, is highlighted through the
comparison of the 95% Bayesian upper limit. We found a
slight advantage for the spectrum average estimator when the
noise level is higher than the signal level. However, we showed
that sometimes the c-s gives the most stringent confidence
interval but above all a little more often than the s.a for the
lowest upper limit. Nevertheless, it is the s.a method which
gives us the minimum 95% limit reachable. To conclude, it is
wiser to compute both estimates and use the most stringent.

APPENDIX
Glossary of Symbols
q Number of instruments.
r(t) Common signal measured by ¢ RTs (red noise).
R(f) Fourier transform of r(z).
S.(f)  Power spectral density of r(z).
n;(t)  Intrinsic white noise of the ith RT.
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N;(f) Fourier transform of n;(t).
Sn,i(f)  Power spectral density of n;(¢).
x;i (1) x;(t) = r(t) + n;(¢), received at the output of
the ith RT.
X;(f) Fourier transform of x;(t).
Syi(f) Power spectral density of x;(¢).
~ estimate as in S. Here we consider three estimators
§s\a Spectrum average.
S/KE Karhunen-Loeve transform.
§c\s Cross-spectrum.
01% Variance of R in a bandwidth, i.e., the power in
one bin of S(f). It takes three different flavors:
s.a, KLT or c-s.
ON.; Same as above, with the noise of the ith RT.
aj Noise weight factor, inverse of the sum of the

: 2
inverse of ON.-

Variance of the Estimators §; and §c\s

1) Measurements: Let us define ¢ instruments measure-
ments X, X», ..., and X, as

X;j=Nj+iN;+R+iR (38)

where N;, N ; are independent Gaussian-centered random
variables of variance oy/2 and R, R’ are independent
Gaussian-centered random variables of variance o 2/2.

2) Estimators: The estimator ch is defined by (10) as

1 -1

Ses = TZ Z RN +iN;+ R +iR)
2 j=1 k=j+1
X (Ny—iN; + R—iR")]. (39)
On the other hand, S'; is defined by (10) as

q g q A’

—~ Nj+qR N;+qR

Sa= (> % > w@o)
J Jj

3) Statistics Reminder: If A and B are two independent
random variables of zero expectation

V[AB] = V[A]V[B] 41)

according to (a) from [19] where V[-] stands for the variance
of the quantity within the brackets. Moreover, according to the
Isserlis’ theorem [20]
= E[A*] - {E[A%]}’ = 3{E[4%]}’
= 2V?[A]

— {Eran)’

(42)

V[A?]

where E[-] stands for the mathematical expectation of the
quantity within the brackets. It is also useful to consider the
covariances. If A, B, C, D are four Gaussian centered random
variable

E[ABCD] =E[AB]-E[CD] + Elac] - E[BD]

+E[AD]-E[BC]. (43)

If A, B, C, D are 4 independent Gaussian-centered random
variables, this can be derived to the following particular cases
(Isserlis’ theorem [20]):

1) E[ABCD] = E[AB]-E[CD]+E[ac]-E[BD]+E[AD]-
E[BC] = 0 since each mathematical expectation product
E[XY] is null

2) E[A2BC] = E[A?]-E[BC]+2E[AB]-E[ac] = 0 since
the only mathematical expectation which is not null,
E[A?], is multiplied by E[CD] =0

3) E[A3B] =3E[A?]-E[BC] = 0 since E[BC] =0

5 E[A?B?] = E[A?] - E[B?] + 2E*[AB]
= E[A?] - E[B?] #0.
) Cov[A2B?] = E[A%*B?] — E[A?] - E[B?]

= E[A?]- E[B?] — E[A%] - E[B?] = 0.
4) Variance of é:s From (39), it comes

1|

q
@ > > (NiNe + NN

2/ | j=1k=j+1

—
Scs =

q
x(q—1) D _(N;R+N;R)

j=1

x (’;) (R* + R?)

-1

(44)

1 q
(g) Jj=lk

q
x (g — 1)> D _(VIN;R] + VIN;R'])

=1
2
x (‘2]) (V[R2]+V[R/2D].

where all covariance terms are null thanks to Isserlis’ theorem.
From the properties (41) and (42), it comes

q
> (VIN; N1+ VIN,N;D)
=j+1

(45)

1 q—1 q
@ Z Z [N;IVING] + VIN/IVIN])
2 j=I1

x(q—1) Z(V[NjW[R] + VIN/IVIR'])

Jj=1

V[Se] =

2
x (‘21) QV[R] +2V2[R’]):|. (46)
According to the binomial formula
! -1
qy___ 4" _a4-b @7
2 21(g —2)! 2

Therefore

—~ 1 q 01‘\‘, 20,%,01% q 20,‘,}
V[SCS]ZW 2 2 T+ZCI(Q_1)T+4 2 T
2

1 2
= ———oy+ 0N0R+0R

48
q(q — 1) “9)
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5) Variance ofé;: From (40), it comes

r 1 d / /
Sa = p D (N} + NP +q*(R* + R?)
j=1
g-1 ¢
> (NN + NN
j=1k=j+1

+2

q
+2g Z(NjR +N/R) |. (49)

j=1
Then

_ 1| <
ViSal = > (VIN}1+ VIN?]) + ¢*(VIR*] + VIR?))

j=1
g—1 q

+4>° D" (VIN; N + VNN
j=1k=j+1

q

+4¢% > (VIN;R] + V[N/R']) (50)
j=1

where all covariance terms are null thanks to Isserlis’ theorem.

From the properties (41) and (42), it comes

P 1<
VISal = = | D @VAIN;1+2V7[N]])
j=1
+g*QV?[R] + 2V3[R])
qg-1 q
+4D° D" (VIN;IVIN + VIN;IVIN])
j=1k=j+1
q
+4g7 > (VIN;IVIR] + VIN;IV[R]) |. (51)
j=1
Therefore
L[ a8 |, .0% (q)axt N
VISl = F[MT + 4q 74-8 5 74—8(] Ti|

Ly, 2,5, 4
paN—i-gaNaR—i—aR.

(52)

6) Variance Ratios: Let us compare the cross-spectrum and
spectrum average estimates variances for limit signal-to-noise
ratio values.

If 07 < 0}

— 1 — 1
V[Ses] % ————or and V[S,] ~ —op. 53
[Ses] CI(C] — 1)0N an [Ssal qzo'N (53)
Consequently
— q —
V[Scs] ~ HV[Ssa]- (54)

If 07 < 0j

V[Se] = op and V[S,] = op. (55)
Consequently
V[See] ~ V[Sal. (56)
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