

The Origin and the Measurement of Phase Noise in Oscillators

(2) CNRS FEMTO-ST Institute, Besancon, France

Outline

- Clock signal, phase noise, and friends
- The Leeson effect

- Noise in resonators Instruments, uncertainty, and loopholes • ...and something more

- Enrico Rubiola^{(1),(2)}
 - (2) INRiM, Torino, Italy

home page http://rubiola.org

The Clock Signal

phase fluctuation

polar coordinates v(t) =Cartesian coordinates $v(t) = V_0$ under low noise approximation $|n_c(t)| \ll V_0$ and $|n_s(t)| \ll V_0$

$$\begin{aligned}
\varphi_0 \left[1 + \alpha(t) \right] \cos \left[\omega_0 t + \varphi(t) \right] \\
\varphi_0 \cos \omega_0 t + n_c(t) \cos \omega_0 t - n_s(t) \sin \omega_0 t \\
& \text{It holds that} \\
\alpha(t) = \frac{n_c(t)}{V_0} \quad \text{and} \quad \varphi(t) = \frac{n_s(t)}{V_0}
\end{aligned}$$

Phase noise PSD $S_{\omega}(f)$ $S_{\varphi}(f) = 2\mathcal{F}\left\{C_{\varphi\varphi}(\tau)\right\}, \ f > 0 \qquad \text{(Autocovariance)}$ $S_{\varphi}(f) = 2 \mathbb{E} \left\{ \Phi(f) \Phi^*(f) \right\}, \ f > 0 \quad (WK \text{ theorem})$ $S_{\varphi}(f) \approx \frac{2}{T} \langle \Phi(f) \Phi^*(f) \rangle_m, \ f > 0 \quad \text{(measured)}$

The IEEE Std 1139-1999 defines $\mathscr{L}(f)$ as $\mathscr{L}(f) = \frac{1}{2}S_{\varphi}(f)$ $(\mathscr{L})_{dB} = (S\varphi)_{dB} - 3 dB$

The obsolete definition of $\mathscr{L}(f)$ is

SSB power in 1 Hz band

carrier power

The problem with this definition is that it does not divide AM noise from PM noise, which yields to ambiguous results

Units $S\phi \rightarrow [rad^2/Hz]$ 10 Log₁₀(S ϕ) \rightarrow [dBad²/Hz]

Phase Noise —> Time & Frequency Fluctuations⁵

Time fluctuation spectrum

You may like the Enrico's Noise Chart on http://rubiola.org

Fractional-frequenc spectrum

variance Allar

Additive vs Parametric Noise

R. Boudot, E. Rubiola, Phase noise in RF and microwave amplifiers IEEER T UFFC 59(12) p.2613-2624, December 2012.

Combining White and Flicker Noise

The corner frequency f_c , sometimes specified in data sheets is a misleading parameter because it depends on P₀

Example – Microwave Amplifier

The Leeson Effect

An Oscillator Model

With trivial changes — This describes oscillators from low RF to lasers

frequency fluctuation

Steady oscillation

- Barkhausen condition $A(f) \beta(f) = 1$
- Gain compression sets $|A\beta| = 1$,
- Closed-loop condition sets $arg(A\beta) = 0$

Phase noise & frequency stability

- Leeson effect (Q, v₀, noise)
- Resonator stability
- Output buffer

set a small phase or amplitude step κ at t=0, and linearize for $\kappa \rightarrow 0$

A General Method to Solve PN Problems¹¹

- A Dirac $\delta(t)$ in a trig function?
- NOPE
- Replace with Heaviside $u(t) = \int \delta(t) dt$
- Calculate the response
- Differentiate

Convolution theorem x(t) * y'(t) = x'(t) * y(t)

There is a catch

• We assume that the fluctuations are averaged over multiple limit cycles (and goodbye Floquet vectors)

E.Rubiola, Phase noise and frequency stability in oscillators, Cambridge 2008, E. Rubiola, R. Brendel, A generalization of the Leeson effect, arXiv:1004.5539 [physics.ins-det]

Add the transients, and differentiate

The Leeson Effect

definition

phase-noise transfer function

Oscillator Noise – Real Amplifier

The sustaining-amplifier noise is $S_{\varphi}(f) = b_0 + b_{-1}/f$ (white and flicker)

The oscillator tracks the resonator's natural frequency, and its fluctuations

The Effect of the Resonator Noise

Example from the Real World

Resonator Noise

In some fortunate cases, the origin of 1/f frequency noise is known

Numata provides fairly accurate prediction of 1/f noise

See also T. Kessler, T. Legero, U. Sterr, Thermal noise in optical cavities revisited, JOSA-B 29(1), 2012

1/f Noise and FD Theorem Flicker (1/f) dimensional fluctuation is powered by thermal energy

A single theory explains

- Heath capacity
- Elasticity
- Thermal expansion
- ... and fluctuations

Fluctuation Dissipation S(*f*) kT - B thermal bath **→**|*B*|**→** P = kTBdamping

Thermal equilibrium applies to all parts of spectrum

Dissipation in solids is structural (hysteresis)

There is no viscous dissipation

Thermal 1/f from Structural Dissipation

Structural dissipation nanoscale, instantaneous

Dissipated energy E

$$=\int F dx$$

Small vibrations

The hysteresis cycle keeps the aspect ratio $E \propto x_0^2$ lost energy in a cycle

Thermal equilibrium

The Volume Law

Gedankenexperiment

- Flicker is of microscopic origin because it has Gaussian PDF
- Join the m branches into a compound
- 1/f noise is proportional to 1/V, the volume of the active region

- The 1/f coefficient b_{-1} is independent of power
- The flicker of a branch does not increase at P/2
- At the output,
 - the carrier adds up coherently
 - the phase noise adds up statistically
- With m branches, the 1/f PM noise is reduced by 1/m
- White noise cannot be reduced in this way

Volume Law

optical resonator (10-7?) $(50 \ \mu m^2) \times (\pi \times 5.5 \ mm)$ $\approx 1 \times 10^{-12} \text{ m}^3$

optical fiber (10^{-12}) 5 MHz quartz (10⁻¹³) $(50 \ \mu m^2) \times (2 \ km)$ $0.3 \times [\pi \times (2/2 \text{ cm})^2] \times (0.1 \text{ mm})$ $\approx 1 \times 10^{-8} \text{ m}^3$ $\approx 1 \times 10^{-7} \text{ m}^3$

sapphire resonator (<10⁻¹⁶) $0.1 \times [\pi \times (5/2 \text{ cm})^2] \times (2.5 \text{ cm}) \approx 5 \times 10^{-6} \text{ m}^3$

Phase Noise Measurement Sets

The NIST Scheme

analyze

Average cross spectrum <S_{yx}>

- rejects a and b
- ideally, converges to S_c

However

- dark-port noise $\langle S_{yx} \rangle$ converges to $S_c - S_d$
- DUT AM noise
 - correlated DC fluctuation
 - positive or negative correlation
- ...and other flaws

Consequence

• the error can be negative

Normalization: in 1 Hz bandwidth $var{A} = var{B} = 1$, $var{C} = \kappa^2$ $var{A'} = var{A''} = var{B'} = var{B''} = 1/2$, and $var{C'} = var{C''} = \kappa^2/2$

A, B, C are independent Gaussian noises Re{ } and Im{ } are independent Gaussian noises

Problems with Digital Electronics

- Large averaging power for cheap encourages thoughtless trust in noise rejection
- Manufacturers use |Syx| instead of Re{Syx}
- ...and something has to go wrong

Type-A, Type B, and Null Uncertainty

2.28

Type A evaluation of measurement uncertainty

Type A evaluation

evaluation of a component of measurement uncertainty by a statistical analysis of measured quantity values obtained under defined measurement conditions

2.29 **Type B evaluation of measurement** uncertainty

Type B evaluation

evaluation of a component of measurement uncertainty determined by means other than a Type A evaluation of measurement uncertainty

4.29 null measurement uncertainty

measurement uncertainty where the specified measured quantity value is zero

Null measurement uncertainty is associated NOTE 1 with a null or near zero **indication** and covers an interval where one does not know whether the **measurand** is too small to be detected or the indication of the **measuring** instrument is due only to noise.

Null —> Detection threshold When the error bar Q±U hits 0, the outcome is Q=0 with null uncertainty U

A —> Data-series statistics

Averaging multiple FFTs results in reduced uncertainty

B —> Ensemble statistics Averaging multiple FFTs results in reduced uncertainty

Version 2008 avec corrections mineure

Type-A, Type B, and Null Uncertainty

rad//Hz

10⁻⁹

×

noise,

Phase

- A-type (noise-like) uncertainty
- B-type (system) uncertainty
- Combined $U^2 = A^2 + B^2$
- "Regular" case S –> $S_0 \pm U$
- Zero uncertainty, applies to S > 0When $S_0 \pm U$ hits 0, the outcome is 0 with zero-uncertainty of U

Pushing the instruments to the limit takes deep understanding of the system and of metrology

The Rohde-Colpitts Oscillator

R_s resonator С **K**

U. L. Rohde, Electronic Design Oct 11, 1975 p.11, 14

• Off resonance, either X_L >> R_S or X_C >> R_S The motional resistance R_S is not coupled to the output • No thermal noise from $R_S \rightarrow output$ The quartz also filters out harmonics and spurs

Practical Ultralow-Noise Oscillators

Thermal-limited oscillator

Sub-thermal oscillator

Something weird must happen

What Happens at the Instrument Input

Also internal crosstalk, and AM to DC-fluctuation in the mixers

The correlation thermometer has been in use since ≈ 1960

...But Instruments Display $|S_{yx}(f)|$

A forthcoming paper by Y.Gruson, U.L.Rohde, A.Roth, A.Rus, E.Rubiola

...And Something More

Oscillator Instability Measurement Platform³⁵

Microwave photonic oscillators

- Si Monocrystal FP, Bragg mirrors
- 17 K natural turning point
- Projected stability 3E–17
- First tests

Also

- Spherical FP cavity, 1E–15 stability
- Compact FP cavity, A3 size breadboard

- REFIMEVE+ in progress
- White Rabbit
- Frequency distribution on fibers

Time System 3rd Time site in France

- 3 H masers & 3 CS
- TWSTFT
- Common view GPS

- **BIPM CMC**
- COFRAC, top level
- 2 FS combs
- Shielded chamber
- 10 mK dilution cryo
- Prop-Integr Temp & hygro contr. rooms
- ULISS traveler

Three-cornered hat noise measurements

Liquid-He Sapphire Oscillator

- Pound frequency lock to the cavity
- The same cavity is used in the VCO

- Crash course on T&F for newcomers
- Oscillators, measurement, atomic standards, time scales, and general topics
- Broad target audience: PhD/PostDoc Students, Academics, Private Company Engineers
- Balance between academic and applied issues
- Instructors from leading European institution
- Plenary lectures 23 H, labs 12 H in small groups
- Capped no of participants, set by the labs

Every year in Besançon, end June / beginning July http://efts.eu

