

2014 IFCS, Taipei, Taiwan, 19–22 May 2014

Phase Noise and Jitter in Digital Electronic Components

Claudio E. Calosso⁷ and Enrico Rubiola³

▼ INRIM, Torino, Italy
■ CNRS FEMTO-ST Institute, Besancon, France

Outline

- Noise mechanisms
- Phase noise in selected devices
- Some facts related to phase and noise
- Phase noise in microwave devices

home page http://rubiola.org

Motivations

- Low-noise frequency synthesis
 - Started with the Λ dividers on a CPLD (10 phases)
 - Successful, and ridiculously simple
 - Hoped a 1 GHz -> 5 MHz divider (200 phases) on FPGA kills the noise, and compete with the analog dividers
 - No way!
- The world goes digital
 - IC manufacturers / users only care about total jitter
 - We all want
 - Phase noise,
 - ADEV
 - Stability of the delay

Noise Mechanisms

Phase and phase-time

random phase

You may be more familiar to $\sigma_y^2(\tau) = h_0/2\tau + 2\ln(2)h_{-1}$

Phase noise in the input stage

Threshold-noise measurement

- Keep the logic at the threshold, where it shows analog gain
- Measure the voltage (current) fluctuation needed to stabilise at the threshold
- Works only on simple (old) circuits
- Threshold-mismatched cascade -> gain not accessible
- FPGAs complexity make the analog gain inaccessible

Internal delay fluctuation

x-type noise

- The internal delay fluctuates by an amount x(t)
- This has nothing to do with the threshold and to the frequency – if any

Full noise mechanism

- The φ-type noise noise may show up or not, depending on input noise and SR
- At the comparator out, the edges attain full SR and bandwidth of the technology
- Complex distribution -> independent fluctuations add up $x(t) = \sum_{i} x_i(t)$ and $\langle x^2(t) \rangle = \sum_{i} \langle x_i^2(t) \rangle$

Aliasing mechanism

Flicker and slow noise types

- Too low power at high frequency
- No aliasing

White noise

- The variance σ² is independent of frequency
- Parseval theorem applies $\sigma^2 = b_0 B = b_0 v_0$
- Aliasing -> higher phase noise at lower carrier frequency

Summary of the noise types

Phase Noise in Selected Devices

11

Measurements are performed with the Symmetricom (Microsemi) DS 5125 and 5120 dual-channel phase meter

MAX 3000 CPLD [300 nm] (1)

- Flicker region –> Negligible aliasing
- The Π divider is still not well explained
- The Λ divider exhibits low 1/f and low white noise

MAX 3000 CPLD [300 nm] (2)

13

• Slope $1/\tau$, typical of white and flicker PM noise

• The Λ divider performs 2×10^{-14} at $\tau = 1$ s, 10 MHz output

Max V CPLD [180 mn]

Two lambda dividers

- output-to-output and common clock,
- low f, emphasizes the 1/f noise
- Same, only output-tooutput and common clock

Max V CPLD [180 nm]

- Two lambda dividers
 - output-to-output and common clock,
 - low f, emphasizes the 1/f noise
- Clock, difference between the two outputs

Cyclone A divider [90 nm]

Cyclone II Clock Buffer [90 nm]

Cyclone III Clock Buffer

Flicker

- High v₀ -> scales as v₀ (x-type)
- Low v₀
 - tends to ϕ -type
 - bumps 0.1–10 Hz

White

 Aliasing shows up at low v₀

Zynq (28 nm), Λ divider

74S140 – Old TTL 50 Ω driver

Flicker coefficient b-1

Some Facts Related to Phase and Noise

Cyclone III, voltage supply

All but one low-noise voltage supplies
The noise is critical only in the core supply

Input Chatter (1/3)

Chatter occurs when the RMS Slew Rate of noise exceeds the slew rate of the pure signal

Pure signal

$$x(t) = V_0 \cos(2\pi\nu_0 t)$$

 $SR = 2\pi\nu_0 V_0$

Wide band noise

$$\left< \text{SR}^2 \right> = 4\pi^2 \int_0^B f^2 S_V(f) \, df$$
$$= \frac{4\pi^2}{3} \sigma_V^2 B^2 \quad \text{(rms)}$$

24

Chatter threshold

$$\nu_0^2 = \frac{1}{3} \; \frac{S_v B^3}{V_0^2}$$

With high-speed devices, chatter can occur at unexpectedly high frequencies

Example

- 200 mVp signal
- 10 nV/√Hz noise
- 1 GHz max -> 3 GHz noise BW
- Chatter threshold v = 4.7 MHz

Simulation of Chatter (2/3)

 $\mathbf{v}_0 = \mathbf{1} \mathbf{Hz},$ $V_0 = 1 V_{peak}$ $\sqrt{\langle v_0^2 \rangle} = 10 \text{ mV}$ rms noise **Noise BW** increases in

De-normalize for your needs

Input chatter – Example (3/3)

Fairly good agreement with theory

Experiment

- Cyclone III FPGA
- Estimated noise 10 nV/√Hz

26

- Estimated BW 2 GHz
- $2V_0 = 100 \text{ mV}_{pp}$ $v_0 = 4.7 \text{ MHz}$

 $2V_0 = 200 \text{ mV}_{pp}$ $v_0 = 4.7 \text{ MHz}$

Asymmetry shows up Explanation takes a detailed electrical model, which we have not

Cyclone III Internal PLL (1/3)

27

A Λ divider (inside the FPGA) enables the measurement

- The divider noise is low enough
- A trick to work at low frequency

Cyclone III Internal PLL (2/3)

PLL used as a multiplier

28

10 MHz input

N x 10 MHz out

Stability 1.5x10–12 @ 1 s (f_H = 500 Hz)

- 1/f phase noise is dominant
- Scales as xN² -> gear work

Cyclone III Internal PLL (3/3)

• x-type 220 fs/√Hz @ 1 Hz

PLL used as a buffer

29

Same frequency at input and output

Crossover between phi-type and x-type at 20 MHz

Thermal effects (1/3)

Principle

- FPGA dissipation change ΔP by acting on frequency
- Energy $\mathbf{E} = \mathbf{C}\mathbf{V}^2$ dissipated by the gate capacitor in a cycle

Conditions

- Cyclone III used as a clock buffer
- Environment temperature fluctuations are filtered out with a small blanket (necessary)
- Two separate measurements (phase meter and counter) -> trusted result

Outcome (Left to right)

- (1) Thermal transient, due to the change of the FPGA dissipation
- (2) Overall effect of ΔP
- (3) Slow thermal drift, due to the environment

Warning: In real applications, other parts of the same FPGA impact on the temperature, thus on phase – drift is possible

Thermal effects (3/3)

Phase Noise in Microwave Dividers

NB7L32M ÷2 µwave divider 10 GHz ÷ 2 = 5 GHz Method

- Compare two dividers
- Use 5.01 GHz as a common oscillator, and beat

- Digital PM noise measurement at 10 MHz
- O-I: Two equal dividers
- O-O: Two outputs of the same divider
- Shown: spectrum of one divider

NB7L32M ÷2 µwave divider

Phase noise vs input frequency

NB7L32M ÷2 µwave divider

Works fairy well even at low input power (useful)

Notes

- At –16 dBm the white noise increases by 3 dB
- The critical power where (b₀)_φ = (b₀)_x is –16 dBm
- Hence

 (b₀)_{x-type} ≈ -140 dB

NBSG53A SiGe ÷2 µwave divider

Method

- Use 5.01 (2.51) GHz as a pivot oscillator, and mixers
- Digital PM noise measurement at 10 MHz
- One divider shown

1/f -> pure gearbox model (as expected)

White -> aliased gearbox model (as expected)
 Debugged:
 _97.5 and _137* Likely, 1 dB discrepancy in w and 1/f (mixer response)

NBSG53A SiGe ÷2 µwave divider

More noise and less tolerance to low power

NBSG53A SiGe ÷2 µwave divider

Output vs Output gives info about the output stage

The problem seems in the gear box, rather in the output stage

Hittite HMC-C040, ÷10 divider

Microwave dividers compared

	10 GHz ÷2	5 GHz ÷2	2.5 GHz ÷2	lower	
NB7L32M	-100	-109	-109	-109	600 MHz 1.2 GHz ÷2
NBSG53A	97.5	-103.5		-104	800 MHz 1.6 GHz ÷2
HMC-C040				-113	1 GHz 10 GHz ÷10
HMC705LP4		1 1		-121	0.5 GHz 2.5 GHz ÷5

Conclusions

- Two main noise types, x-type and φ -type
 - Observed on a few logic devices and gate arrays
 - Also in microwave dividers
- The 1/Volume law describes 1/f (few cases)
- Other effects (chatter, temperature, etc.)
- The choice of devices is independent of this work
 No expressed/implied endorsement on these device

• Funds

- ANR Oscillator IMP and First-TF
- Region Franche Comte
- EMRP Project IND 55 Mclocks

A special thanks to all members of the Go Digital working group, at FEMTO-ST and INRIM

All slides {are | will be} on my home page

http://rubiola.org