

Renaissance Baltimore Harborplace Hotel \infty Baltimore, MD, USA 🔨 May 21-24, 2012

ULISS project – First comparison of two cryocooled sapphire oscillators at the 10⁻¹⁵ level

Serge Grop¹, Benoit Dubois¹, Jean Louis Masson², Gregory Haye^{1,2}, Pierre-Yves Bourgeois², Yann Kersalé², **Enrico Rubiola**² and Vincent Giordano^{1,2}

¹⁾ULISS-ST Business Unit, FEMTO-ST/UFC, Besancon, France ²⁾ FEMTO-ST Institute, Time and Frequency Dept., Besancon, France

Outline

- Review of the CSO at Femto-ST
- The ELISA project
- The ULISS project
- ULISS validation and preliminary tests

The ULISS project is funded by:

Need for high short-term stability

Some applications in remote sites (Deep Space Network Antenna) Challenge: reliable cryogenerator – let alone the L-He bath

Cryogenic sapphire oscillator at FEMTO-ST

ELISA project – CSO for the European Space Agency

Target 3x10⁻¹⁵ ADEV 1s<t<1000s, without LHe bath

S. Grop et al., Electronics Lett., 46(6) p.420-422, 8 March 2010

Elisa, before moving to Argentina

ELISA in Malargüe, Argentina April 2012

30 km unpaved road

ASS

cesa

Elisa frequency stability

7

Defective air conditioning system, 2 K_{pp} over 1 hour

Resonator design – mode and frequency

offset mech. tolerances -> DDS

- Oversimplify the synthesizer
- Over-specify the synthesizer, thanks to favorable frequency-leverage
 - Ready for better-than-expected resonator
- Fully reproducible machine

Frequency synthesis

ULISS project

- Develop a new cryocooled oscillator specially designed to be transportable.
- Testing it in the potential user's sites through Europe.
- Create a business unit ULISS (managed by Univ. FC)

Uliss

www.uliss-st.com

Since April 2012:

- ULISS was build and validated
- Two sites already visited (Neuchâtel and Toulouse)
- ULISS was in Goteborg (EFTF 2012)
- ELISA installation in Malargue

ULISS CSO

ULISS in Neuchâtel (LTF) - Feb 2012 -

After 36h warm-up (actually, cooling down)

Test photonic generation of µ-wave: ULE-cavity stabilized laser + fs

5 MHz OCXO from OSA

ULISS at CNES, Toulouse, April 2012

Validate the flight prototype of the PHARAO synthesizer

Coming soon – three sapphire oscillators

Planned full measurement of S ϕ (f) and σ (τ) of Uliss before and after traveling

15

SUMMARY

Already demonstrated

- state-of-the-art short term stability
- reliability and reproducibility
- ☞ suitability to remote sites / difficult logistics
- metrology applications

Some people believe that "cryogenic sapphire is more about a lab experiment than a reliable machine" This is definitely not true

The ULISS Odyssey will continue

- New travels planned soon
- Suggestions are welcome

http://uliss-st.com