Phase noise in DDS

C. E. Calosso*, Y. Gruson ${ }^{\star}$, E. Rubiola${ }^{\star}$
* INRIM, Torino, Italy
\star CNRS FEMTO-ST, Besancon, France

Outline

- A short introduction
- Theory
- Experiments
home page http://rubiola.org

Basic DDS scheme

quantity	digital	analog
state variable	n	$\theta=2 \pi \frac{n}{\mathcal{D}}$
assoc. complex		$z=e^{j \theta}$
modulo	$\mathcal{D}=2^{m}$	2π
increment	\mathcal{N}	$\eta=2 \pi \frac{\mathcal{N}}{\mathcal{D}}$
time	$k, \quad 0,1,2, \ldots$	$t=k / \nu_{s}$
clock freq. ν_{s}		output freq. $\nu_{0}=\frac{\mathcal{N}}{\mathcal{D}} \nu_{s}$

The contents n of the m-bit register is interpreted as a complex number

time $t=k / \nu_{c}$

AD9912, a popular fast DDS

48 bit accumulator, 14 bit DAC, 1 GHz clock

AD9854, a popular DDS

 48 bit accumulator, 300 MHz clock, 12 bit DAC, I-Q output, AM/PM/FM capability

Theory

- Simple gearbox model
- Quantization noise
- Sampling theorem
- Spurs
- [PLL clock multiplier]

The noise-free synthesizer

- The noise-free synthesizer propagates the jitter x (phase time)
- So, it scales the phase φ as N / D,
- and the phase spectrum S_{φ} as (N/D) ${ }^{2}$
- Notice the absence of sampling

The Egan model

for phase noise in frequency dividers

For N/D $\ll 1$, the scaled-down noise hits the output-stage limit

Quantization noise

W. R. Bennett, Spectra of quantized signals, Bell System Tech J. 27(4), July 1948

Analog-to-digital conversion introduces a quantization error $\mathrm{x}\left[-\mathrm{V}_{\mathrm{LSB}} / 2 \leq \mathrm{x} \leq+\mathrm{V}_{\mathrm{LSB}} / 2\right]$

$$
n \text {-bit conversion: } V_{\mathrm{LSB}}=\frac{V_{\mathrm{FSR}}}{2^{n}}
$$

Wiener-Khintchine theorem: in ergodic systems, interchange time / ensemble The noise can be calculated with statistics

$$
\sigma^{2}=\frac{V_{\mathrm{FSR}}^{2}}{12 \times 2^{2 n}} \quad \mathrm{~V}^{2} \quad \begin{aligned}
& 1 / 12 \rightarrow-10.8 \mathrm{~dB} \\
& 2^{2 \mathrm{n}} \rightarrow 6 \mathrm{~dB} / \mathrm{bit}
\end{aligned}
$$

Parseval theorem: Energy (power) calculated in time and in frequency is the same

$$
N=\frac{V_{\mathrm{FSR}}^{2}}{6 \times 2^{2 n} \nu_{s}} \quad \mathrm{~V}^{2} / \mathrm{Hz}
$$

Quantization and PM noise

The maximum power is

$$
P_{0}=\frac{1}{8} V_{\mathrm{FSR}}^{2} \quad \mathrm{~V}^{2}
$$

The white PM noise is

$$
\begin{aligned}
& \text { quantization noise } \\
& N=\frac{V_{\mathrm{FSR}}^{2}}{6 \times 2^{2 n} \nu_{s}} \quad b_{0}=\frac{4}{3} \frac{1}{2^{2 n} \nu_{s}} \quad \mathrm{rad}^{2} / \mathrm{Hz}
\end{aligned}
$$

Recall the quantization noise

Example:
14 bit, $1 \mathrm{GHz} \rightarrow-173 \mathrm{~dB}$
14 bit , $400 \mathrm{MHz} \rightarrow-169 \mathrm{~dB}$
12 bit, 300 MHz -> -156 dB

Is bo (white PM) affected by v_{0} ?

- Consider two synthesized signals, $\mathrm{v}_{0}<\mathrm{v}_{1}$ (i.e., $\mathrm{v}_{1}=\mathrm{n} \mathrm{v}_{0}$)
- Same sampling frequency $\mathbf{v}_{\mathrm{s}} \gg \mathrm{v}_{1}$
- v_{0} has factor-n more samples-per-period than v_{1}
- Does v_{0} have lower PM noise than v_{1} ?
- The answer is NO!
- Analyzing at the Fourier frequency f with a resolution bandwidth B, the measurement time is $\approx 1 / B$
-The degrees of freedom are v_{s} / B, regardless of $v_{\text {out }}$
- Accordingly, b_{0} (white PM noise) at v_{0} and v_{1} is the same

Phase noise sampling

- The input noise is sensed only during the rising edges
- This is equivalent to sampling at the at the clock frequency
- The phase noise in the full input bandwidth is "aliased" to half the clock frequency

Phase noise sampling in dividers

output sampling frequency $\nu_{0}=\frac{1}{\mathcal{D}} \nu_{c}$

- The output jitter results from sampling the input jitter at the frequency $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{c}} / D$
- Aliasing increases the white part of S_{φ} by a factor of D

$$
\left(S_{\varphi}\right)_{\text {out }}=\frac{1}{\mathcal{D}}\left(S_{\varphi}\right)_{\text {in }}
$$

- The $1 / \mathrm{D}^{2}$ law still holds for autocorrelated noise (flicker, walk)

State-variable truncation

$$
n_{k}=\left(n_{k-1}+\mathcal{N}\right) \bmod \mathcal{D}, \quad \mathcal{D}=2^{m}
$$

- Only quantization shows up with full m-bit conversion
- Technology -> q max
- Why p > q
- Slow pseudorandom beat, 3d 6h 11m 15s @ 1 GHz, 48 bit
- Spurs \rightarrow next

Truncation generates spurs

PLL clock multiplier

3.3 V: lower PM noise than $1.8 \mathrm{~V}^{17}$

Probably related to the cell size and to the dynamic range

AD9951, AD9952, AD9953, AD9954

E. Rubiola, Mar 2007 (adapted from the Analog Devices data sheets)

Experiments

- AD9912 demo board
- AD9854 (9914) demo board
- Claudio's AD9854 board
- V1 - Current feedback OPA output stage
- 25Ω input impedance, $8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ noise, kHz coupled
- V2 - Balun and MAV-11 RF output amplifier
- F = 3.6 dB , AC coupled ($\geq 1-2$) MHz
- Specified above 50 MHz , yet works well below

Experimental method (PM noise)

- Pseudorandom noise, slow beat (days)
- The probability that two accumulators are in phase is ≈ 0
- Two separate DDS driven by the same clock have a random and constant delay
- The delay de-correlates the two realizations, which makes the phase measurement possible

Single channel

Dual channel

kind of virtual mixer, after (sub)sampling \& direct ADC

Claudio's prototypes

PM noise vs. output frequency

AD9854 ck 180 MHz
 - low Fourier frequencies -

PM noise vs. output frequency

AD9854 ck 180 MHz

- The $\mathbf{- 1 4 0} \mathbf{d B}$ floor is due to AD8002 at the DDS output
- The flicker is unchanged (comes from the DDS)

AD9854 noise

AD9852, AD9854

Flicker is in fair agreement White is made low by spurs

Basic formula for white noise	
$b_{0}=\frac{4}{3} \frac{1}{2^{2 n} \nu_{s}} \quad \mathrm{rad}^{2} / \mathrm{Hz}$	
who meas, dB math, dB clock, MHz specs -159 -155.8 300 YG -158 -155.0 250 CC -162.5 -153.6 180	

ADOQ

Flicker is in quite a good agreement between YG and CC

I-Q spectra cannot be compared to specs

- PM noise scales 6 dB per factor-of-two output amplitude
- Signature of digital multiplication: lower amplitude is obtained by reducing the integer number at the DAC input

PM noise vs. clock amplitude

The effect of the clock frequency

Thermal effects

- Low-frequency temperature fluctuations induce phase noise
- A large thermal mass helps

AD9912 Voltage sensitivity

AD9912, ck 180 MHz , out 50 MHz

- Temperature control (chamber)
- Measured: -2 ps/K
- Includes cables, baluns etc

- High frequency: $-2 \mathrm{ps} / \mathrm{K}$, constant
- Low frequency: $1 / \mathbf{v}^{3}$ law

PM noise of the AD 9912

AD9912

Figure 16. Absolute Phase Noise Using CMOS Driver at 3.3 V , SYSCLK $=1 \mathrm{GHz}$ Wenzel Oscillator (SYSCLK PLL Bypassed) DDS Run at 200 MSPS for 10 MHz

- At 50 MHz and $10 / 12.5 \mathrm{MHz}$ we get $\approx 15 \mathrm{~dB}$ lower flicker than the data-sheet spectrum
- Experimental conditions unclear in the data sheets

Phase Noise PSD

Spurs can be amazing

More about a PM-noise bump

- Low PSRR (power-supply rejection ratio) of PM noise
- For instance The AD9912 at 25 MHz out has $15 \mathrm{ps} / \%$ supply-voltage sensitivity
- No bump at $10^{3}-10^{5} \mathrm{~Hz}$ is seen in the data-sheet spectra
- DC regulator may show a similar bump, alone or or with the output capacitor

X7R SMD capacitor shows low ESR ($\leq 5 \mathrm{~m} \Omega$)

PLL clock multiplier

AD9912: $10 \rightarrow>40 \rightarrow 10$, carrier at 1.3 MHz

PLL clock multiplier

PLL clock multiplier

Effect of other parts on the PCB

A blinking LED somewhere on the PCB spoils the output spectrum

ADEV vs. clock frequency

ADEV vs. output frequency

AD9912 ck 400 MHz

ADEV vs. output frequency

Experimental method (AM noise)

Cross-spectrum

E. Rubiola, The measurement of AM noise of oscillators, arXiv:physics/0512082, Dec. 2005
E. Rubiola, F. Vernotte, The cross-spectrum experimental method, arXiv:1003.0113v1 [physics.ins-det], Feb. 2010

AM noise (1)

Conclusions

- Noise theory and model for the DDS
- A lot of still-not-published experimental data
- Phase noise
- Allan deviation
- Amplitude noise
- Experiments done at INRIM and at FEMTO-ST
- Model and experimental data are in fair agreement
http://rubiola.org

