

Phase noise in DDS

C. E. Calosso*, Y. Gruson*, E. Rubiola*

✤ INRIM, Torino, Italy
★ CNRS FEMTO-ST, Besancon, France

Outline

- A short introduction
- Theory
- Experiments

home page http://rubiola.org

Basic DDS scheme

time $t = k/\nu_c$

 θ_{k-1} $\Re\{z\}$

 $\Im\{z\}$

2

AD9912, a popular fast DDS

48 bit accumulator, 14 bit DAC, 1 GHz clock

AD9854, a popular DDS

48 bit accumulator, 300 MHz clock, 12 bit DAC, I-Q output, AM/PM/FM capability

Theory

- Simple gearbox model
- Quantization noise
- Sampling theorem
- Spurs
- [PLL clock multiplier]

The noise-free synthesizer

- The noise-free synthesizer propagates the jitter x (phase time)
 - So, it scales the phase ϕ as N/D,
 - and the phase spectrum \pmb{S}_{ϕ} as $(\pmb{N}/\pmb{D})^2$
- Notice the absence of sampling

The Egan model

7

for phase noise in frequency dividers

For N/D <<1, the scaled-down noise hits the output-stage limit

W.F. Egan, Modeling phase noise in frequency dividers, TUFFC 37(4), July 1990

Quantization noise

W. R. Bennett, Spectra of quantized signals, Bell System Tech J. 27(4), July 1948

N

B

 $\sigma^2 = NB$

 $B = \frac{1}{2}\nu_s$ (Nyquist)

Analog-to-digital conversion introduces a quantization error x $[-V_{LSB}/2 \le x \le +V_{LSB}/2]$

n-bit conversion: $V_{\text{LSB}} = \frac{V_{\text{FSR}}}{2^n}$

S(f)

Wiener–Khintchine theorem: in ergodic systems, interchange time / ensemble The noise can be calculated with statistics

$$\sigma^2 = \frac{V_{\rm FSR}^2}{12 \times 2^{2n}} \qquad {\rm V}^2$$

1/12 -> -10.8 dB 2²ⁿ -> 6 dB/bit

Parseval theorem: Energy (power) calculated in time and in frequency is the same $N = \frac{V_{FSR}^2}{6 \times 2^{2n} \nu} \quad V^2/Hz$

Is b₀ (white PM) affected by v₀?¹⁰

- Consider two synthesized signals, $v_0 < v_1$ (i.e., $v_1 = n v_0$)
- Same sampling frequency v_s >> v₁
- v₀ has factor-n more samples-per-period than v₁
- Does v₀ have lower PM noise than v₁ ?
- The answer is NO!
- Analyzing at the Fourier frequency f with a resolution bandwidth B, the measurement time is $\approx 1/B$
- The degrees of freedom are v_s/B, regardless of v_{out}
- Accordingly, b_0 (white PM noise) at v_0 and v_1 is the same

- The input noise is sensed only during the rising edges
- This is equivalent to sampling at the at the clock frequency
- The phase noise in the full input bandwidth is "aliased" to half the clock frequency

Phase noise sampling in dividers

output sampling frequency $\nu_0 = \frac{1}{D}\nu_c$

- The output jitter results from sampling the input jitter at the frequency $v_0 = v_c / D$
- Aliasing increases the white part of S_{ϕ} by a factor of D

$$(S_{\varphi})_{\mathrm{out}} = rac{1}{\mathcal{D}}(S_{\varphi})_{\mathrm{in}}$$

• The 1/D² law still holds for autocorrelated noise (flicker, walk)

State-variable truncation

Truncation generates spurs

The power of spurs comes at expenses of white noise – yet not as one-to-one

Nonlinearity generates spurs

3.3 V: lower PM noise than 1.8 V

Probably related to the cell size and to the dynamic range

AD9951, AD9952, AD9953, AD9954

E. Rubiola, Mar 2007 (adapted from the Analog Devices data sheets)

Plots originally used to extract the noise parameters

Experiments

- AD9912 demo board
- AD9854 (9914) demo board
- Claudio's AD9854 board
 - V1 Current feedback OPA output stage
 - 25Ω input impedance, 8 nV/√Hz noise, kHz coupled
 - V2 Balun and MAV-11 RF output amplifier
 - F = 3.6 dB, AC coupled (≥1–2) MHz

Specified above 50 MHz, yet works well below

Experimental method (PM noise)

- Pseudorandom noise, slow beat (days)
- The probability that two accumulators are in phase is ≈ 0
- Two separate DDS driven by the same clock have a random and constant delay
- The delay de-correlates the two realizations, which makes the phase measurement possible

Single channel

Dual channel

kind of virtual mixer, after (sub)sampling & direct ADC

Claudio's prototypes

PM noise vs. output frequency

AD9912 noise vs. out frequency – low Fourier frequencies –

PM noise vs. output frequency

• The –140 dB floor is due to AD8002 at the DDS output

AD9854 noise

Flicker is in fair agreement White is made low by spurs

Basic formula for white noise rad^2/Hz $b_0 =$ $\overline{3}$ $\overline{2^{2n} \nu_s}$ meas, dB math, dB clock, MHz who 300 -159 -155.8 specs YG -158 -155.0 250 CC -162.5 -153.6180

AD9854 I-Q noise

Flicker is in quite a good agreement between YG and CC

I–Q spectra cannot be compared to specs

100000

PM noise vs. output amplitude

PM noise scales 6 dB per factor-of-two output amplitude

 Signature of digital multiplication: lower amplitude is obtained by reducing the integer number at the DAC input

PM noise vs. clock amplitude

The effect of the clock frequency

Thermal effects

• Low-frequency temperature fluctuations induce phase noise

A large thermal mass helps

AD9912 Voltage sensitivity

AD9912 temperature sensitivity

• Temperature control (chamber)

Measured: -2 ps/K

 Includes cables, baluns etc

AD9912 sensitivity to temperature (alternate)

AD9912 temperature sensitivity³³

High frequency: -2 ps/K, constant
Low frequency: 1/v³ law

PM noise of the AD 9912

- At 50 MHz and 10/12.5 MHz we get ≈15 dB lower flicker than the data-sheet spectrum
- Experimental conditions unclear in the data sheets

Spurs reduce the white noise

Spurs can be amazing

More about a PM-noise bump

- Low PSRR (power-supply rejection ratio) of PM noise
- For instance The AD9912 at 25 MHz out has 15 ps/% supply-voltage sensitivity
- No bump at 10³–10⁵ Hz is seen in the data-sheet spectra
- DC regulator may show a similar bump, alone or or with the output capacitor

X7R SMD capacitor shows low ESR ($\leq 5 \text{ m}\Omega$)

38

AD9912: 10->640->10, carrier at 1.3 MHz

40

Effect of other parts on the PCB⁴¹

A blinking LED somewhere on the PCB spoils the output spectrum

ADEV vs. clock frequency

ADEV vs. output frequency

ADEV vs. output frequency

Experimental method (AM noise) Cross-spectrum

$$v_a(t) = 2k_a P_a \alpha(t) + \text{noise}$$

 $v_b(t) = 2k_a P_b \alpha(t) + \text{noise}$

The cross spectrum $S_{ba}(f)$ rejects the single-channel noise because the two channels are independent.

$$S_{ba}(f) = \frac{1}{4k_a k_b P_a P_b} S_\alpha(f)$$

E. Rubiola, The measurement of AM noise of oscillators, arXiv:physics/0512082, Dec. 2005 E. Rubiola, F. Vernotte, The cross-spectrum experimental method, arXiv:1003.0113v1 [physics.ins-det], Feb. 2010

AM noise (1)

AM noise (2)

Conclusions

- Noise theory and model for the DDS
- A lot of still-not-published experimental data
 - Phase noise
 - Allan deviation
 - Amplitude noise
- Experiments done at INRIM and at FEMTO-ST
- Model and experimental data are in fair agreement

http://rubiola.org