Seminar given at the Advanced Photon Source, Argonne National Laboratory Argonne, IL, USA

The Measurement of AM-PM Noise, and the Origin of Noise in Oscillators

June 8 2010, ANL - APS conference room Part 1: 11 AM, Part 2: 2 PM

Enrico Rubiola FEMTO-ST Institute, CNRS and UFC, Besancon, France

Contents

- Part 1: AM and PM noise in RF/microwave and photonic systems
- Part 2: The Leeson effect, aka Phase noise and frequency stability in oscillators

home page http://rubiola.org

Acknowledgements

I am indebted to dr. Tim Berenc for inviting me at ANL

I am grateful to Lute Maleki and to John Dick for numerous discussions during my visits at the NASA JPL, which are the first seed of my approach to the oscillator noise

This material would never have existed without continuous discussions, help and support of Vincent Giordano, FEMTO-ST, over more than a dozen of years

Part 1 is based on the draft book E. Rubiola, *Experimental methods in AM-PM noise metrology*

Part 2 is based on E.Rubiola, *Phase noise and frequency stability in oscillators*, Cambridge 2008, and on the complementary material E. Rubiola, R. Brendel, A generalization of the Leeson effect, <u>arXiv:1004.5539 [physics.ins-det]</u>

Phase noise and frequency stability in oscillators

THE CAMBRIDGE RF AND MICROWAVE ENGINEERING SERIES

Phase Noise and Frequency Stability in Oscillators Cambridge University Press, November 2008 ISBN 978-0-521-88677-2 hardback ISBN 978-0-521-15328-7 paperback

Contents

- Forewords (L. Maleki, D. B. Leeson)
- Phase noise and frequency stability
- Phase noise in semiconductors & amplifiers
- Heuristic approach to the Leson effect
- Phase noise and feedback theory
- Noise in delay-line oscillators and lasers
- Oscillator hacking
- Appendix

Another book is in progress, on the **Experimental methods for the measurement of AM/PM noise**

E. Rubiola Experimental methods in AM-PM noise metrology — book project —

4

The Wind Machines Artist view of the AM and PM noise Courtesy of Roberto Bergonzo, http://robertobergonzo.com

AM and PM noise in RF/microwave and photonic systems

Enrico Rubiola

FEMTO-ST Institute, CNRS and UFC, Besancon, France

Contents

- Phase noise & friends
- Saturated mixer & calibration
- AM-PM noise in amplifier and other devices
- Noise in amplifier networks & systems
- Experiments
- Photonic systems
- Cross-spectum measurements
- Bridge method
- AM noise and RIN

home page http://rubiola.org

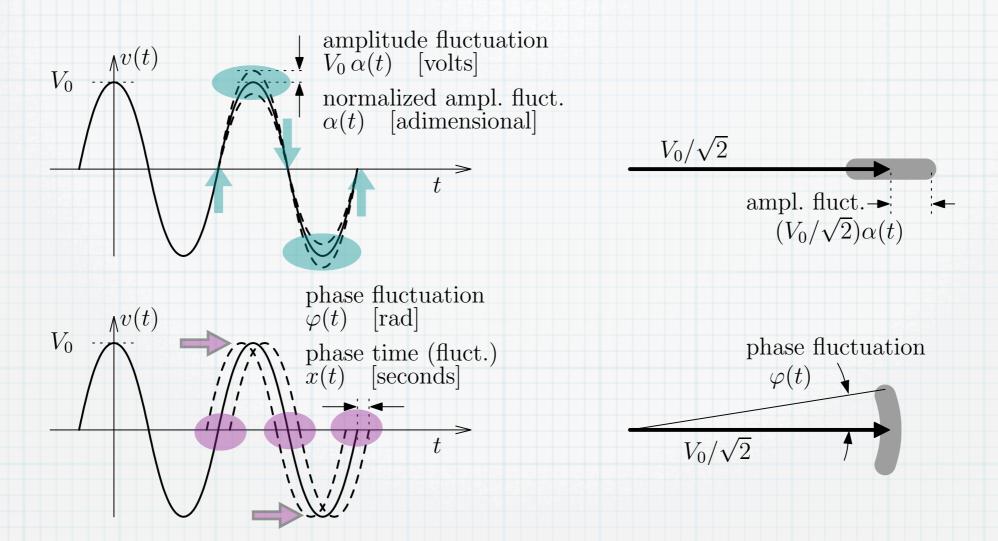
Phase noise & friends

Clock signal affected by noise

Time Domain

Phasor Representation

7



polar coordinates $v(t) = V_0 [1 + \alpha(t)] \cos [\omega_0 t + \varphi(t)]$ Cartesian coordinates $v(t) = V_0 \cos \omega_0 t + n_c(t) \cos \omega_0 t - n_s(t) \sin \omega_0 t$

 α

under low noise approximation

$$|n_c(t)| \ll V_0$$
 and $|n_s(t)| \ll V_0$

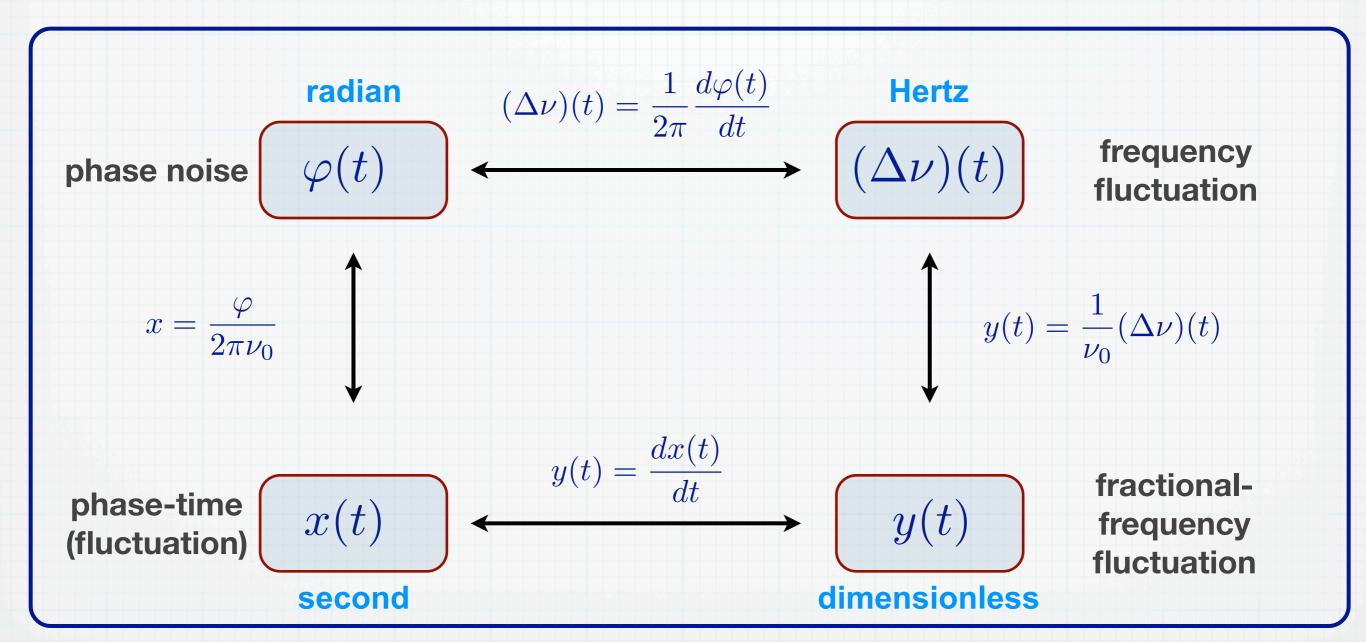
It holds that

$$(t) = \frac{n_c(t)}{V_0}$$
 and $\varphi(t) = \frac{n_s(t)}{V_0}$

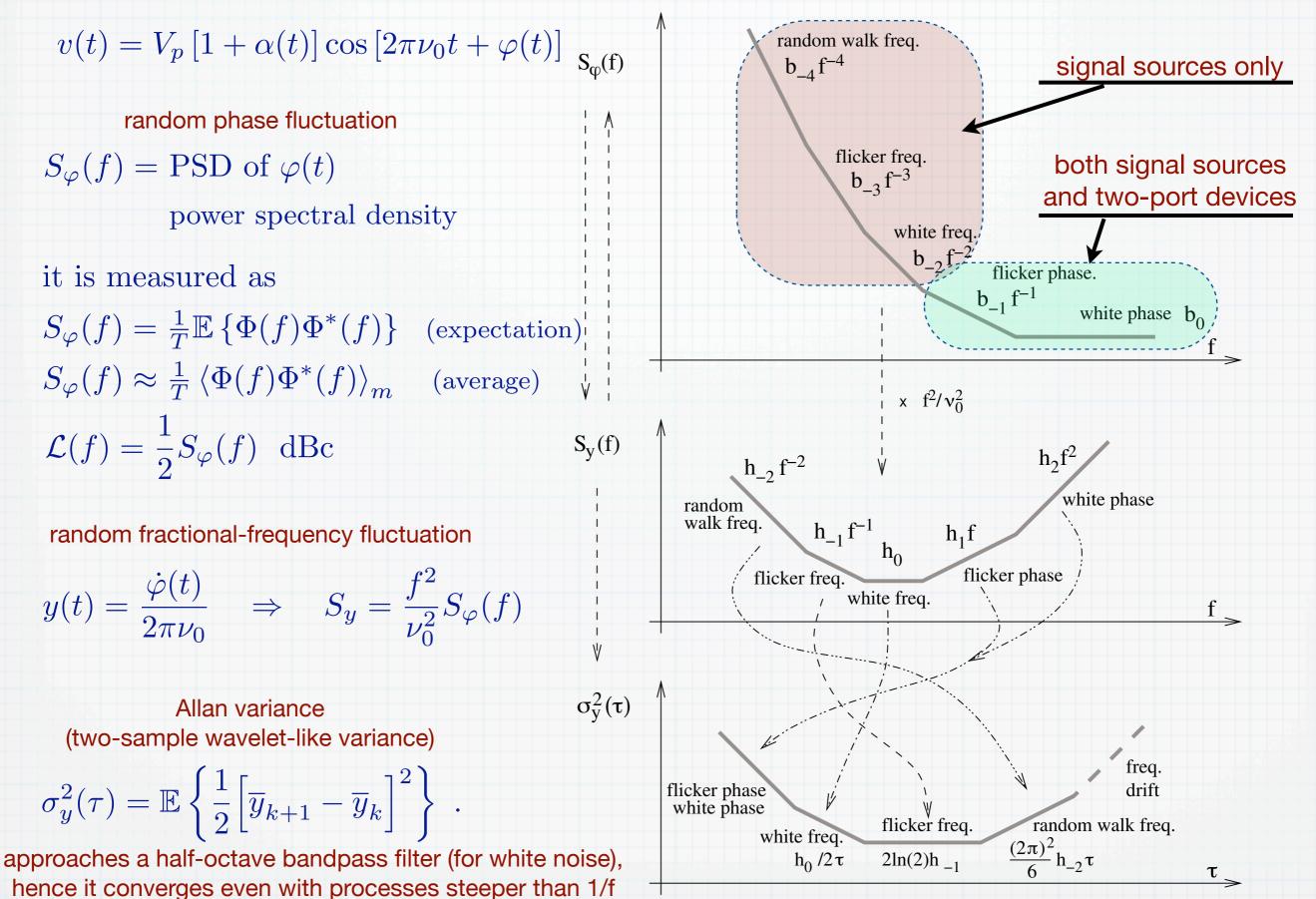
Physical quantities

$$v(t) = V_0 \left[1 + \alpha(t)\right] \cos \left[2\pi\nu_0 t + \varphi(t)\right]$$

Allow $\varphi(t)$ to exceed $\pm \pi$ and count the number of turns, so that $\varphi(t)$ describes the clock fluctuation in full



Phase noise & friends



Flicker never diverges in practice

 \boldsymbol{b}

a

$$P = \int_{a}^{b} S(f) df$$
$$P = \int_{a}^{b} \frac{h_{-1}}{f} df = h_{-1} \ln dt$$

1/a = 1E9 s (30 years)b = 500 THz (visible) $log_2(b/a) = 79 \text{ (bits)}$ $ln(b/a) \approx 54.6 (17.4 \text{ dB})$

1/a = 85400 s (day)b = 200 GHz (electronics) $\log_2(b/a) = 54$ (bits) $\ln(b/a) \approx 37.4$ (15.7 dB)

b/a = 1E6 log₂(b/a) = 20 (bits) ln(b/a) ≈ 13.8 (11.4 dB) b/a = 10 (1 decade) In(b/a) ≈ 2.3 (3.6 dB)

1/a = 3600 s (1h) b = 2 GHz (max ADC speed) log₂(b/a) = 42 (bits) ln(b/a) ≈ 29.6 (14.7 dB)

1/a = 1E18 s (universe lifetime) 1/b = 1E-44 s (Planck time) $\log_2(b/a) = 200 \text{ (bits)}$ $\ln(b/a) \approx 143 \text{ (21.5 dB)}$

Allan variance

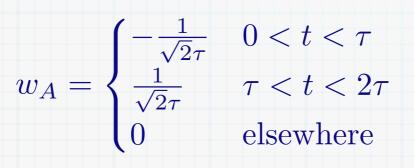
definition

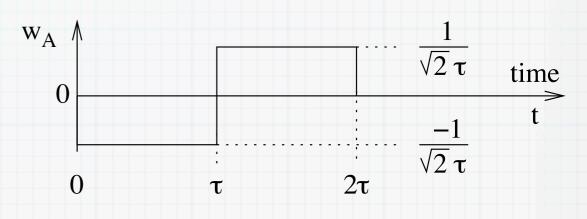
$$\sigma_y^2(\tau) = \mathbb{E}\left\{\frac{1}{2} \left[\overline{y}_{k+1} - \overline{y}_k\right]^2\right\}$$

$$\sigma_y^2(\tau) = \mathbb{E}\left\{\frac{1}{2} \left[\frac{1}{\tau} \int_{(k+1)\tau}^{(k+2)\tau} y(t) \, dt - \frac{1}{\tau} \int_{k\tau}^{(k+1)\tau} y(t) \, dt\right]^2\right\}$$

wavelet-like variance

$$\sigma_y^2(\tau) = \mathbb{E}\left\{ \left[\int_{-\infty}^{+\infty} y(t) \, w_A(t) \, dt \right]^2 \right\}$$





energy

$$E\{w_A\} = \int_{-\infty}^{+\infty} w_A^2(t) \, dt = \frac{1}{\tau}$$

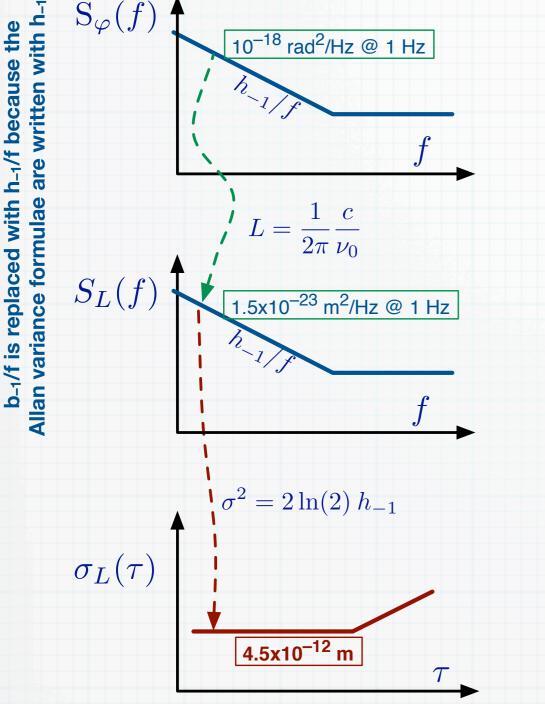
the Allan variance differs from a wavelet variance in the normalization on power, instead of on energy

Relationships between spectra and variances

<i>b</i> ₀	$h_2 f^2$	$h_2 = \frac{b_0}{\nu_0^2}$	$rac{3f_Hh_2}{(2\pi)^2} au^{-2}$	$3f_{\mu\tau_0}h_0$
		² 0	$(2\pi)^2$ $2\pi\tau f_H \gg 1$	$\frac{3f_H\tau_0h_2}{(2\pi)^2}\tau^{-3}$
$_{1}f^{-1}$	$h_1 f$	$h_1 = \frac{b_{-1}}{\nu_0^2}$	$[1.038 + 3\ln(2\pi f_H \tau)] \frac{h_1}{(2\pi)^2} \tau^{-2}$	$0.084 h_1 \tau^{-2}$ $n \gg 1$
$2f^{-2}$	h_0	$h_0 = \frac{b_{-2}}{\nu_0^2}$	$\frac{1}{2}h_0 \tau^{-1}$	$\frac{1}{4}h_0\tau^{-1}$
$_{3}f^{-3}$ /	$h_{-1}f^{-1}$	$h_{-1} = \frac{b_{-3}}{\nu_0^2}$	$2\ln(2) h_{-1}$	$\frac{27}{20}\ln(2) h_{-1}$
$_4f^{-4}$]	$h_{-2}f^{-2}$	$h_{-2} = \frac{b_{-4}}{\nu_0^2}$	$\frac{(2\pi)^2}{6}h_{-2}\tau$	$0.824 \frac{(2\pi)^2}{6} h_{-2} \tau$
linear frequency drift \dot{y}			$\frac{1}{2}(\dot{y})^2\tau^2$	$\frac{1}{2} (\dot{y})^2 \tau^2$
2 3 4	f^{-2} f^{-3} f^{-4} y drift	f^{-2} h_0 f^{-3} $h_{-1}f^{-1}$ f^{-4} $h_{-2}f^{-2}$ y drift \dot{y}	$f^{-2} \qquad h_0 \qquad h_0 = \frac{b_{-2}}{\nu_0^2}$ $f^{-3} \qquad h_{-1}f^{-1} \qquad h_{-1} = \frac{b_{-3}}{\nu_0^2}$ $f^{-4} \qquad h_{-2}f^{-2} \qquad h_{-2} = \frac{b_{-4}}{\nu_0^2}$ $y \text{ drift } \dot{y}$	$f^{-2} = h_0 \qquad h_0 = \frac{b_{-2}}{\nu_0^2} \qquad \frac{1}{2}h_0 \tau^{-1}$ $f^{-3} = h_{-1}f^{-1} \qquad h_{-1} = \frac{b_{-3}}{\nu_0^2} \qquad 2\ln(2) h_{-1}$ $f^{-4} = h_{-2}f^{-2} \qquad h_{-2} = \frac{b_{-4}}{\nu_0^2} \qquad \frac{(2\pi)^2}{6}h_{-2}\tau$

- Convert phase noise PSD into time-fluctuation PSD
- Integrate over the suitable bandwidth
- Jitter bandwidth:
 - lower limit is set by the "size" of the system
 - upper limit is set by the circuit bandwidth

Mechanical stability



Any phase fluctuation can be converted into length fluctuation

 $L = \frac{\varphi}{2\pi} \frac{c}{\nu_0}$

 b_{-1} = –180 dBrad²/Hz and v_0 = 10 GHz is equivalent to S_L = 1.46x10^{-23} m²/Hz at f = 1 Hz

Any flicker spectrum h_{-1}/f can be converted into a flat Allan variance

 $\sigma_L^2 = 2\ln(2) h_{-1}$

A residual flicker of -180 dBrad²/Hz at f = 1 Hz off the 10 GHz carrier is equivalent to $\sigma^2 = 2x10^{-23} \text{ m}^2$ thus $\sigma = 4.5x10^{-12} \text{ m}$ for reference, the Bohr radius of the electron is R = 0.529 Å

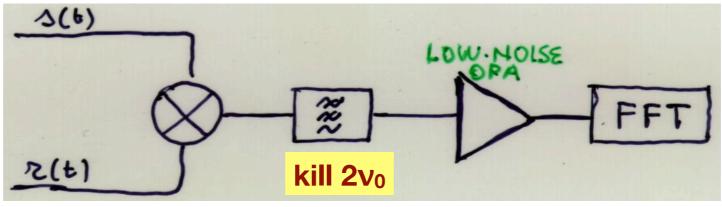
- Don't think "this is just engineering" !!!
- Learn from non-optical microscopy (bulk matter, 5x10⁻¹⁴ m)
- Careful DC section (capacitance and piezoelectricity)
- The best advice is to be at least paranoiac

Saturated mixer & calibration

Need only basic knowledge because commercial equipment does all the job

Double-balanced mixer

phase-to-voltage detector $v_o(t) = k_{\phi} \phi(t)$, $k_{\phi} \approx 100...500 \text{ mV/rad}$



1 – Power

narrow power range: ±5 dB around P_{nom} = 7–13 dBm r(t) and s(t) should have ~ same P

2 – Flicker noise

due to the mixer internal diodes typical $S_{\phi} = -140 \text{ dBrad}^2/\text{Hz}$ at 1 Hz in average-good conditions

3 – Low gain

 $k_{\phi} \sim 0.2-0.3$ V/rad typ. -10 to -14 dBV/rad

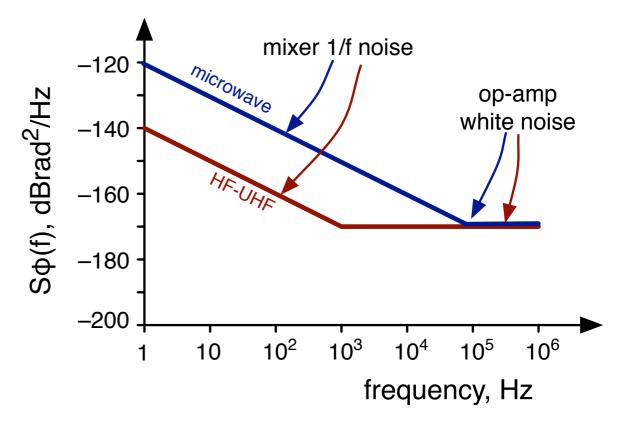
4 – White noise

due to the operational amplifier

5 – Takes in AM noise

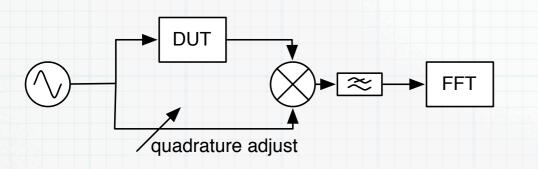
due to the residual power-to-offset conversion

E. Rubiola, Tutorial on the double-balanced mixer, arXiv/physics/0608211

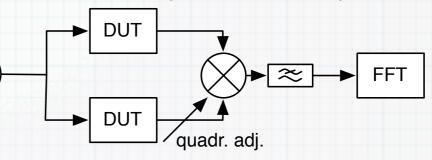


Useful schemes

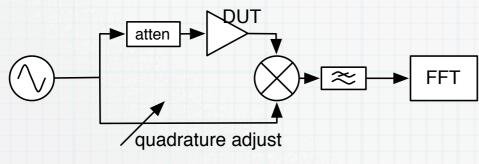
two-port device under test



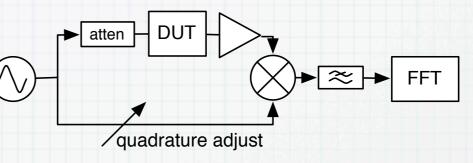
a pair of two-port devices 3 dB improved sensitivity



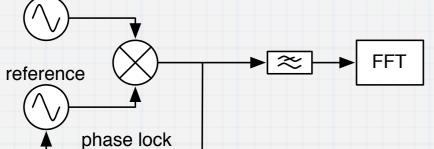
the measurement of an amplifier needs an attenuator



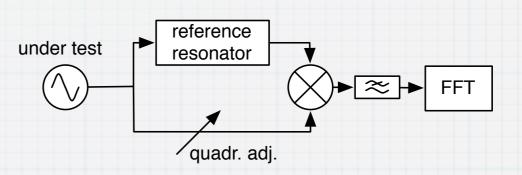
the measurement of a low-power DUT needs an amplifier, which flickers



measure two oscillators under test best use a tight loop

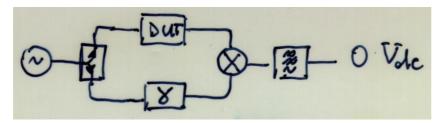


measure an oscillator vs. a resonator

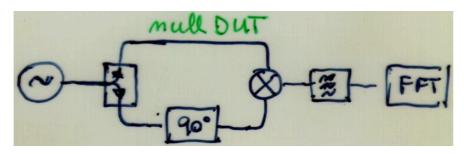


Calibration – general procedure

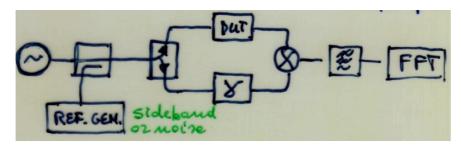
1 – adjust for proper operation: driving power and quadrature



- 2 measure the mixer gain k_{ϕ} (volts/rad) –> next
- 3 measure the residual noise of the instrument



4 – measure the rejection of the oscillator noise



Make sure that the power and the quadrature are the same during all the calibration process

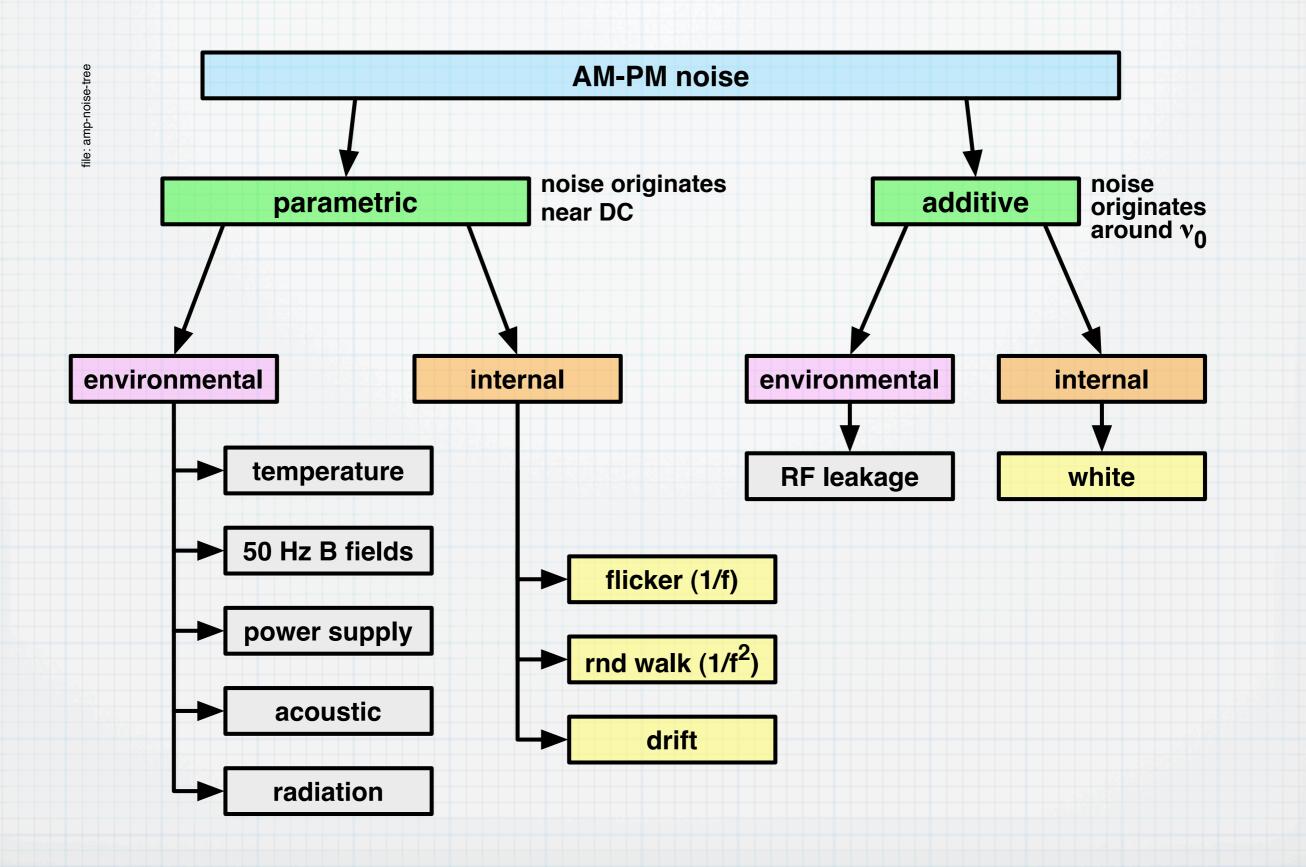
Calibration methods

- Send to the mixer two signals with small frequency difference Δv using two synthesizers driven by the same oscillator
 - read the gain on the oscilloscope using $\Delta \omega = d\phi/dt$
 - suggested, $\Delta v = 159$ Hz (1 krad/s)
- Add a sideband to the DUT signal, powers $P_{\rm s}$ and $P_{\rm 0}$
 - phase modulation $\varphi_{rms} = (P_s/2P_0)^{1/2}$
 - amplitude modulation $\alpha_{rms} = (P_s/2P_0)^{1/2}$
- Use a reference phase modulator, calibrated with a network analyzer

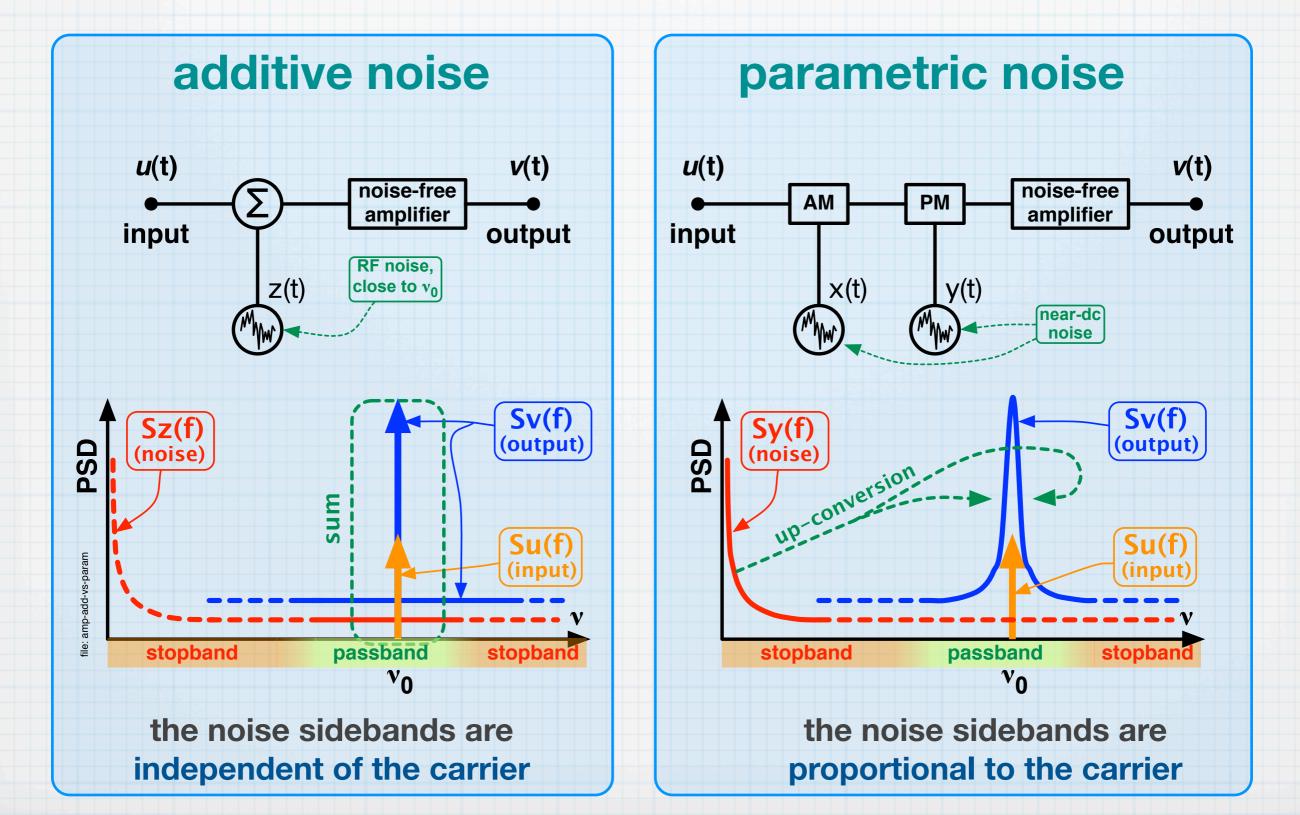
For precision measurements (≤2 dB), be aware of the pollution from AM, which is not the same for DUT and calibration, and also depends on the calibration method

AM-PM noise in amplifier and other devices

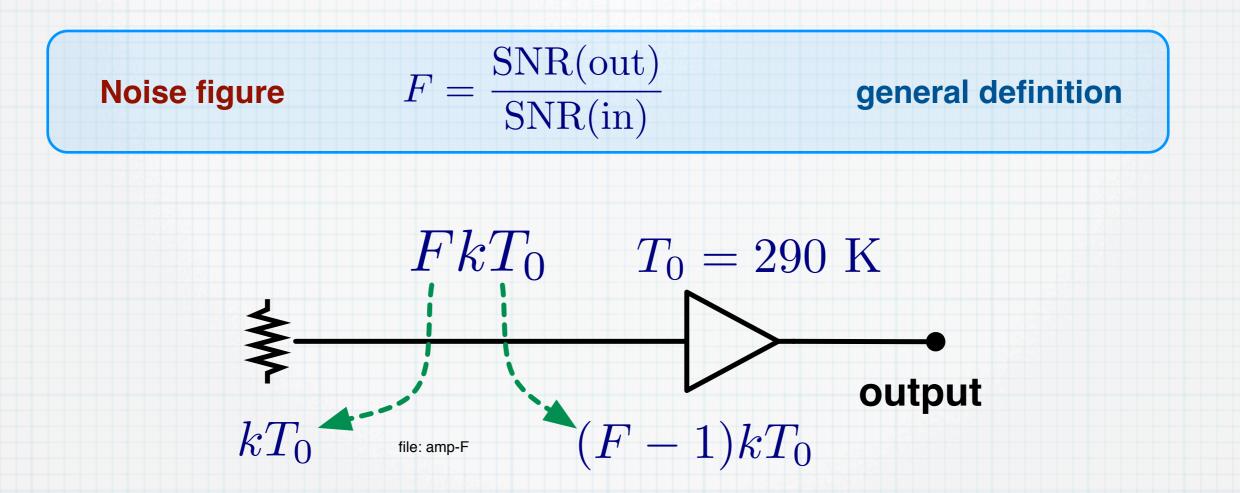
AM-PM noise types



The difference between additive and parametric noise



Noise figure



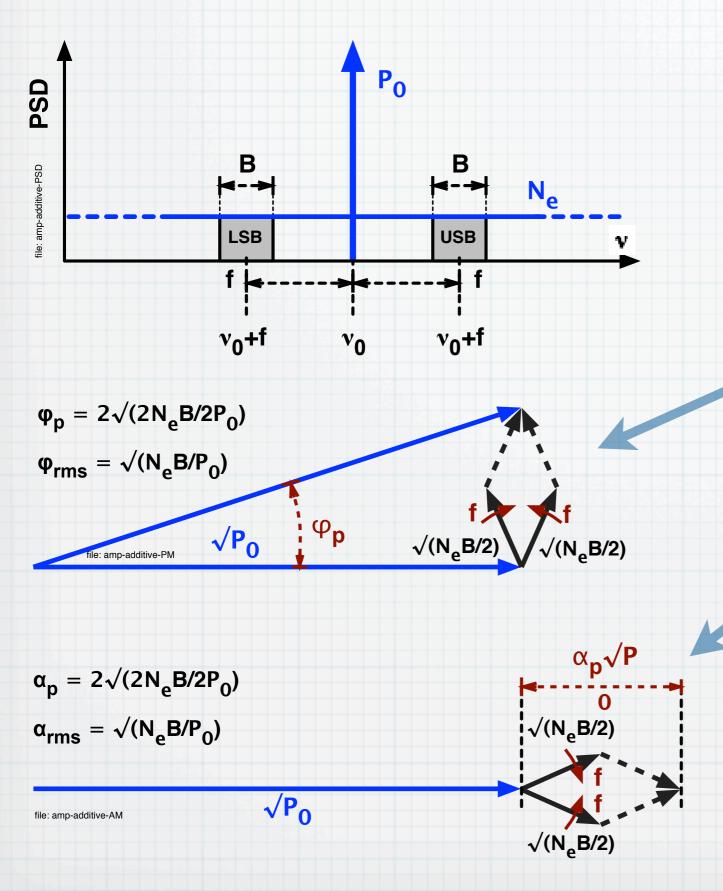
Assume that the whole circuit is at the reference temperature T0 = 290 K (17 °C)

The total noise referred to the amplifier input is FkT₀

amplifiers	$FkT_0 = kT_e$	$= k(T_a + T_0)$	$T_0 = 290 \mathrm{K}$
and RF/µw devices	$T_a + T_0$		1)/7
	$F' = \frac{T_0}{T_0}$	and $T_a = (F -$	$(-1)T_0$

Warning: the noise figure is a radio-engineer concept, can be misleading in optics

Amplifier white phase noise



Noise is equally split between AM and PM

PM (rms) $v_{\rm usb}(t) = i\sqrt{N_e B/2} e^{i2\pi ft}$ $v_{\rm lsb}(t) = -i\sqrt{N_e B/2} e^{-i2\pi ft}$

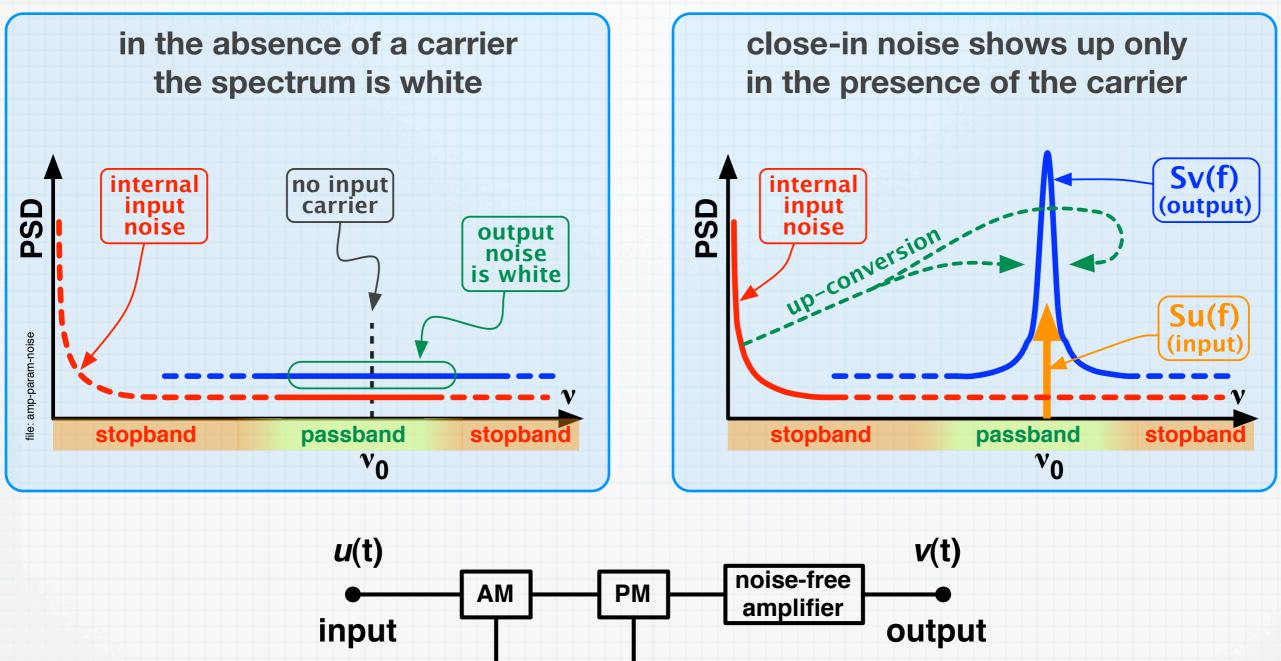
AM (rms) $v_{\rm usb}(t) = \sqrt{N_e B/2} e^{i2\pi ft}$ $v_{\rm lsb}(t) = \sqrt{N_e B/2} e^{-i2\pi ft}$

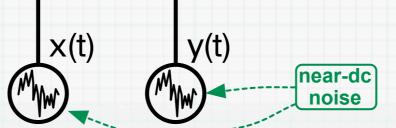
Normalize on B

 $S_{\varphi}(f) = \frac{N_e}{P_0}$, $S_{\alpha}(f) = \frac{N_e}{P_0}$

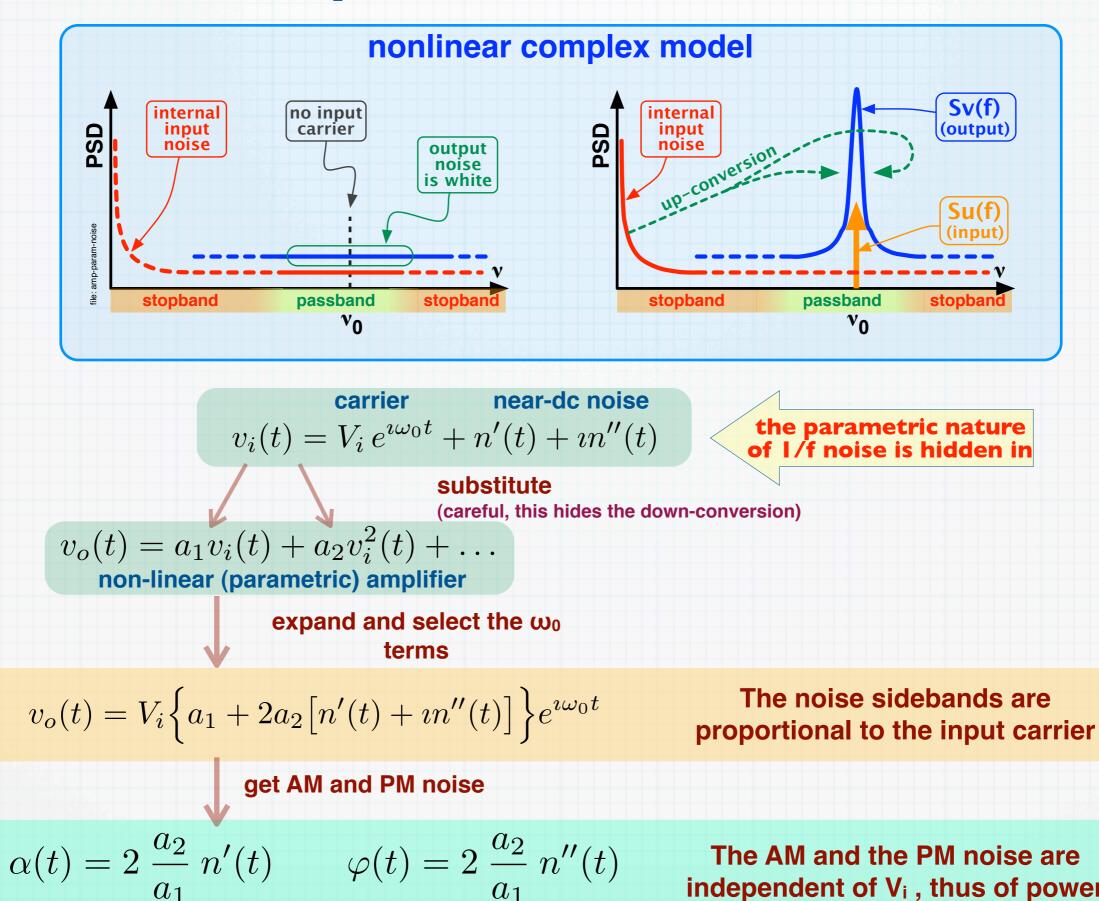
Amplifier flicker noise

linear parametric model



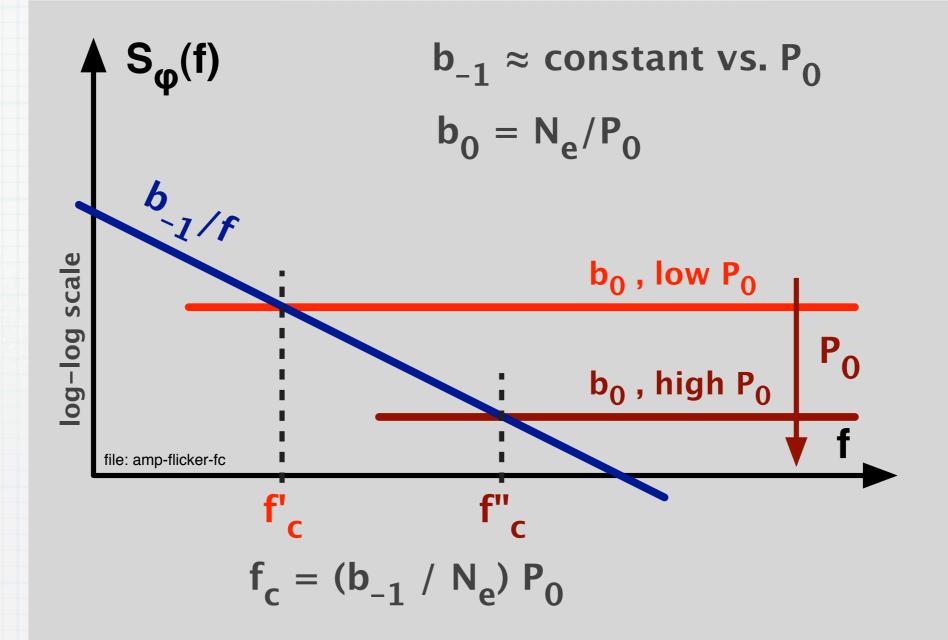


Amplifier flicker noise



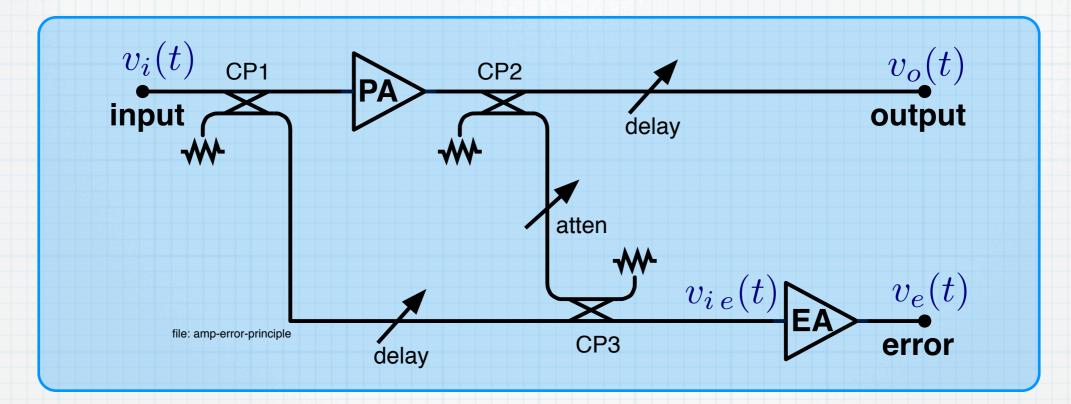
The AM and the PM noise are independent of V_i, thus of power

Amplifier white and flicker noise



The corner frequency f_c, sometimes specified in data sheets is a misleading parameter because it depends on P₀ – **■**<u>examples</u>

The virtues of the error amplifier



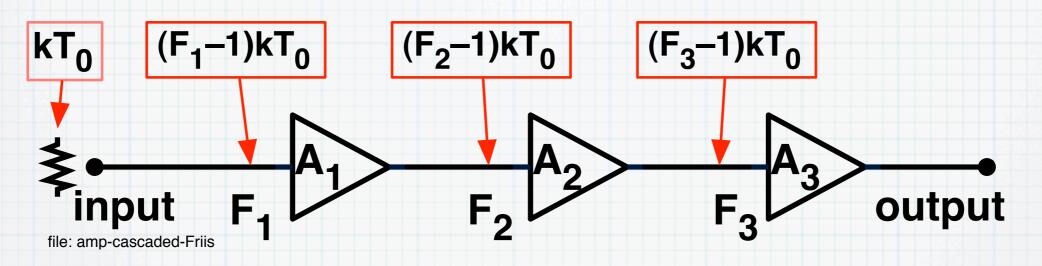
- Use a Power Amplifier (PA) and an Error amplifier (EA)
- The carrier is suppressed (strongly rejected) at the EA input
- Delay matching is needed for wide suppression bandwidth
- Low 1/f sidebands at the EA output because there is no carrier
- v_e(t) is proportional to the PA noise sidebands
- Use $v_e(t)$ for the real-time correction of the PA noise
- feedback or feedforward correction schemes are possible

Noise in amplifier networks & systems

Still not like how this section is organized

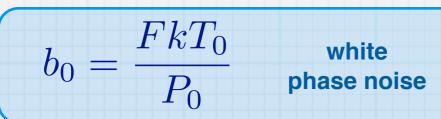
White noise in cascaded amplifiers

White noise is chiefly the noise of the first stage



$$\begin{cases} N_e = F_1 k T_0 + \frac{(F_2 - 1)k T_0}{A_1^2} + \frac{(F_3 - 1)k T_0}{A_2^2 A_1^2} + \dots \\ F = F_1 + \frac{(F_2 - 1)}{A_1^2} + \frac{(F_3 - 1)}{A_2^2 A_1^2} + \dots \end{cases} \end{cases}$$

Friis formulae H. T. Friis, Proc. IRE 32 p.419-422, jul 1944 Noise is chiefly that of the 1st stage

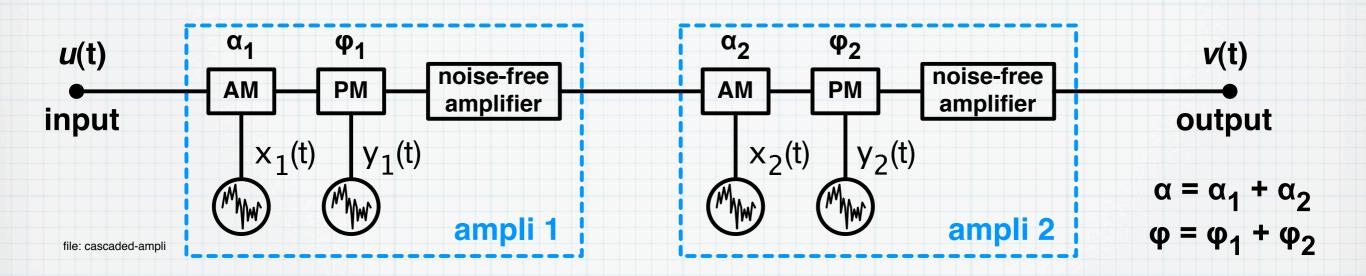


 $b_0 = \frac{F_1 k T_0}{P_0} + \frac{(F_2 - 1)k T_0}{A_1^2 P_0} + \frac{(F_3 - 1)k T_0}{A_2^2 A_1^2 P_0} + \dots$

Friis formula for phase noise

Parametric noise in cascaded amplifiers

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

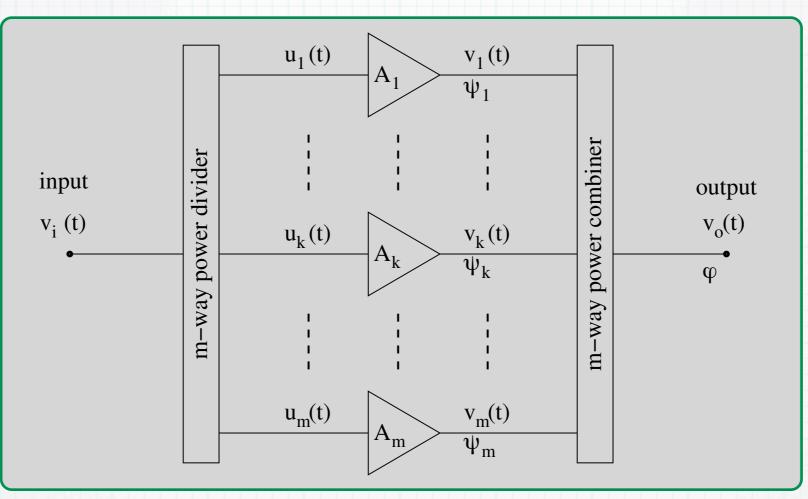


Flicker: the two amplifiers are independent $\mathbb{E}\{\alpha^2\} = \mathbb{E}\{\alpha_1^2\} + \mathbb{E}\{\alpha_2^2\}$ $S_{\alpha} = S_{\alpha 1} + S_{\alpha 2}$ $\mathbb{E}\{\varphi^2\} = \mathbb{E}\{\varphi_1^2\} + \mathbb{E}\{\varphi_2^2\}$ $S_{\alpha} = S_{\varphi 1} + S_{\varphi 2}$

Environment: a single process drives the two amplifiers $\alpha = \alpha_1 + \alpha_2$ $\mathbb{E}\{\alpha^2\} = \mathbb{E}\{(\alpha_1 + \alpha_2)^2\}$ $\varphi = \varphi_1 + \varphi_2$ $\mathbb{E}\{\varphi^2\} = \mathbb{E}\{(\varphi_1 + \varphi_2)^2\}$ Yet there can be a time constant, not necessarily the same for the two devices

Flicker noise in parallel amplifiers

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

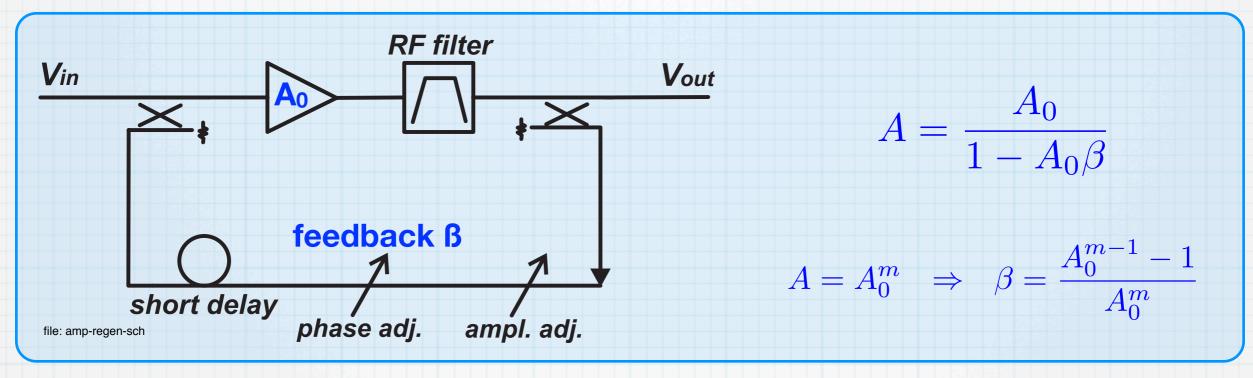


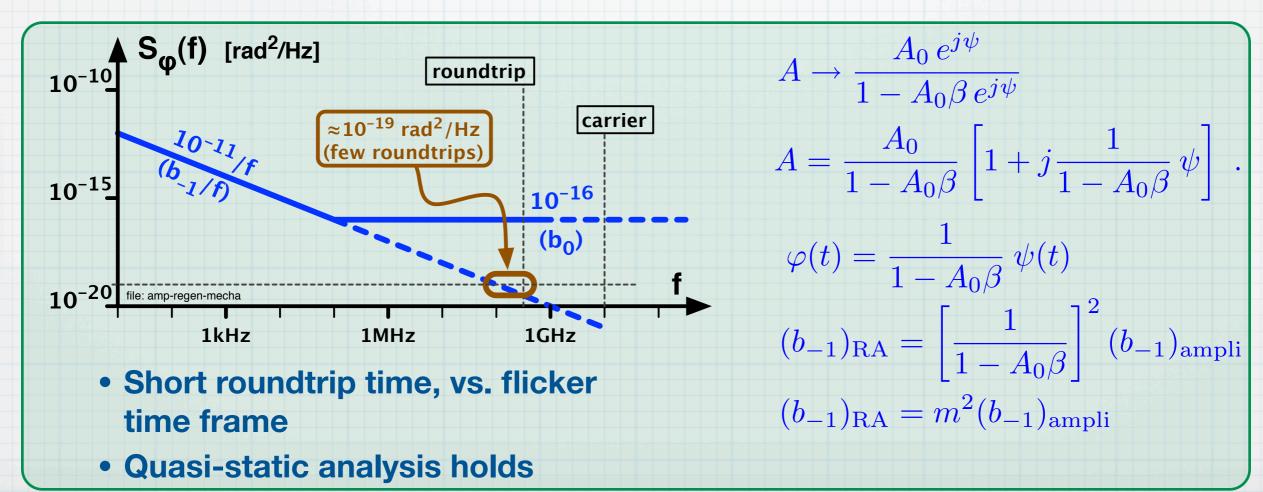
- The phase flicker coefficient b₋₁ is about independent of power
- The flicker of a branch is not increased by splitting the input power
- At the output,
 - the carrier adds up coherently
 - the phase noise adds up statistically
- Hence, the 1/f phase noise is reduced by a factor m
- Only the flicker noise can be reduced in this way

$$b_{-1} = \frac{1}{m} \left[b_{-1} \right]_{\text{cell}}$$

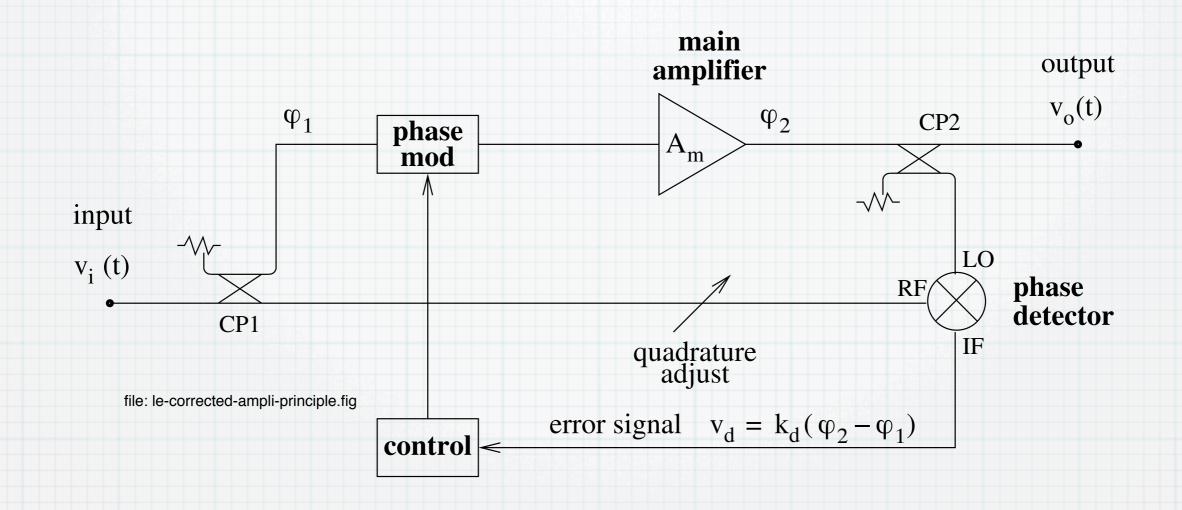
Parametric noise in regenerative amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT





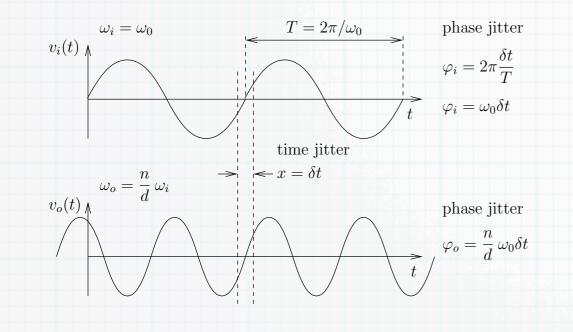
Baseband-feedback amplifier

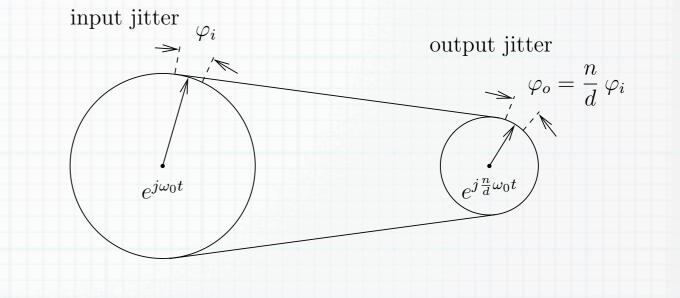


- The detector measures the phase φ₂ φ₁ across the main amplifier plus phase modulator
- The control stabilizes $\varphi_2 \varphi_1 = \text{constant}$ (virtual ground)
- The correction of AM noise is also possible in a similar way

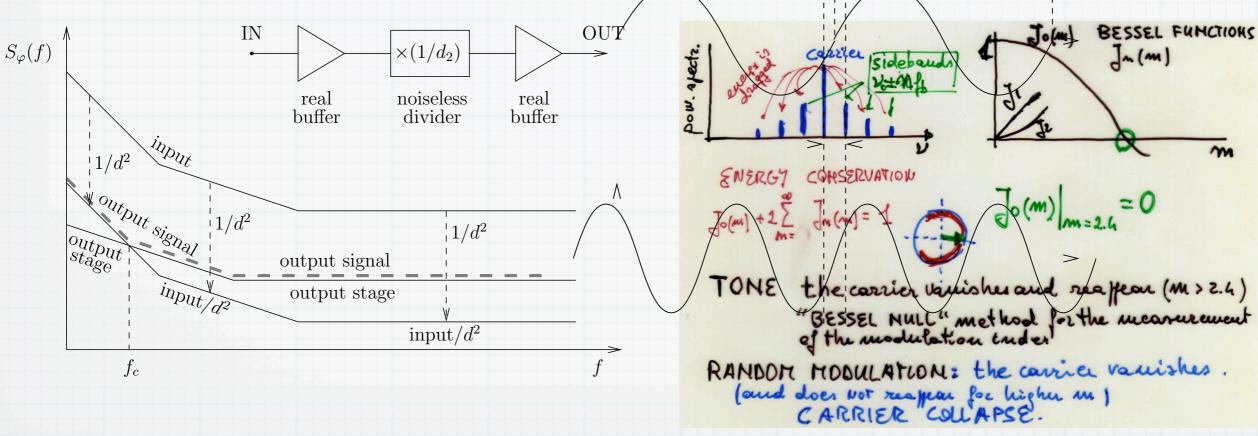
Frequency synthesis

The ideal noise-free frequency synthesizer repeats the input time jitter





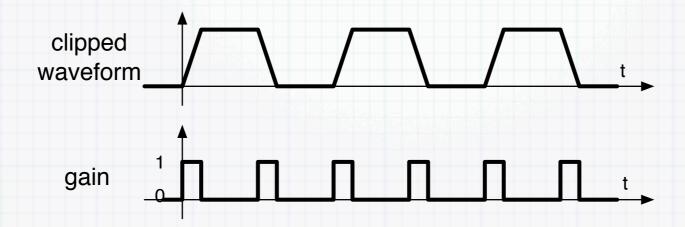
After division, the noise of the output buffer may Λ be larger than the input-noise scaled down



After multiplication, the scaled-up phase noise sinks energy from the carrier. At m \approx 2.4, the carrier vanishes

m

Saturation and sampling



Saturation is equivalent to reducing the gain

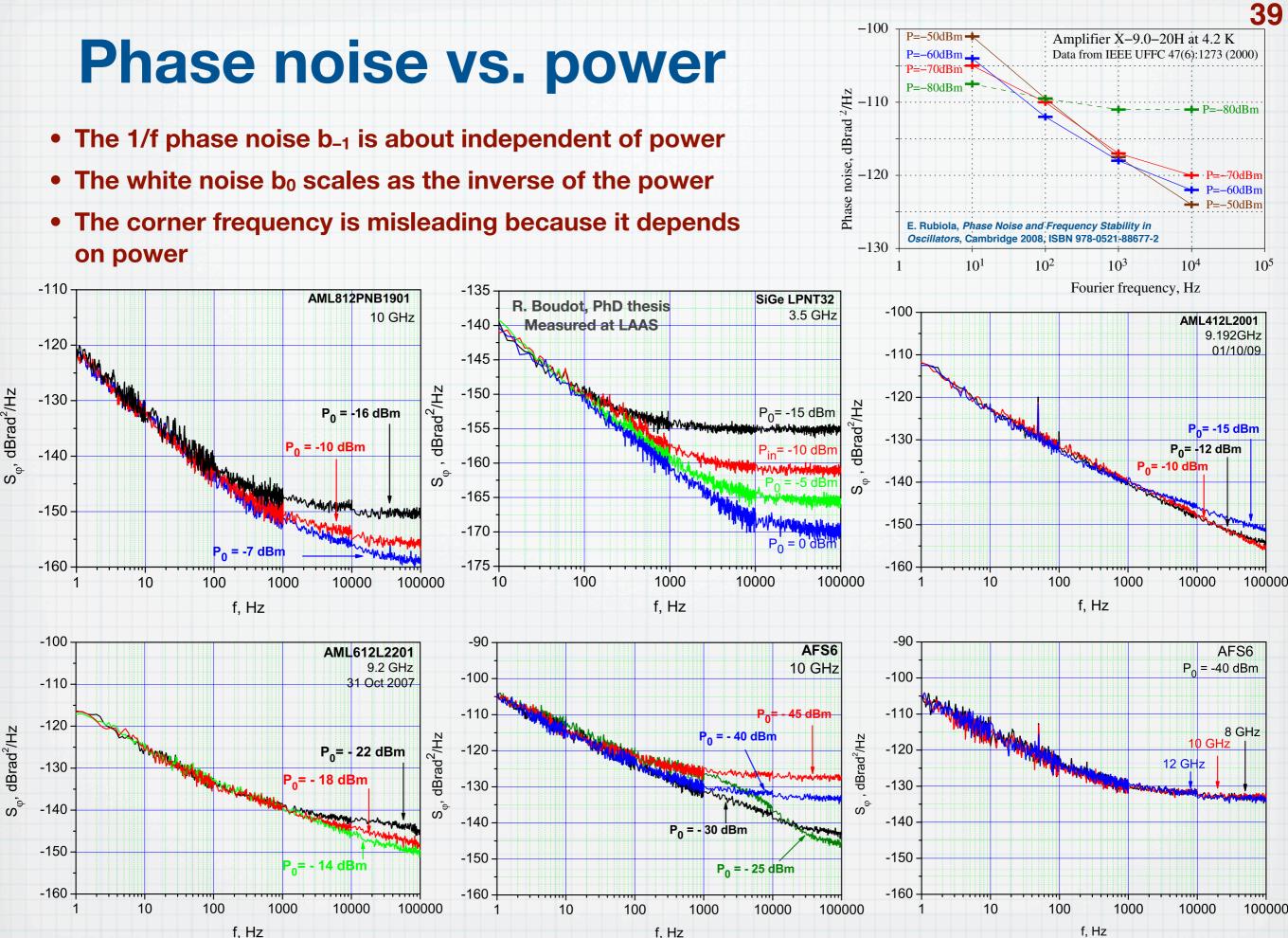
Digital circuits, for example, amplify (linearly) only during the transitions

Experiments

Flicker noise of some amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

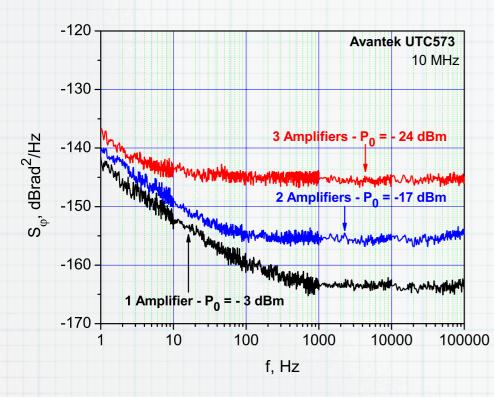
Amplifier	Frequency	Gain	$P_{1\mathrm{dB}}$	F	DC	b_{-1} (meas.)
	(GHz)	(dB)	(dBm)	(dB)	bias	$(dBrad^2/Hz)$
AML812PNB1901	8 - 12	22	17	7	$15\mathrm{V},425\mathrm{mA}$	-122
AML412L2001	4 - 12	20	10	2.5	$15 \mathrm{V},100 \mathrm{mA}$	-112.5
AML612L2201	6 - 12	22	10	2	$15 \mathrm{V},100 \mathrm{mA}$	-115.5
AML812PNB2401	8 - 12	24	26	7	15V,1.1A	-119
AFS6	8 - 12	44	16	1.2	$15 \mathrm{V}, 171 \mathrm{mA}$	-105
JS2	8 - 12	17.5	13.5	1.3	$15\mathrm{V},92\mathrm{mA}$	-106
SiGe LPNT32	3.5	13	11	1	$2\mathrm{V},10\mathrm{mA}$	-130
Avantek UTC573	0.01 - 0.5	14.5	13	3.5	$15 \mathrm{V}, 100 \mathrm{mA}$	-141.5
Avantek UTO512	0.005-0.5	21	8	2.5	$15\mathrm{V},23\mathrm{mA}$	-137

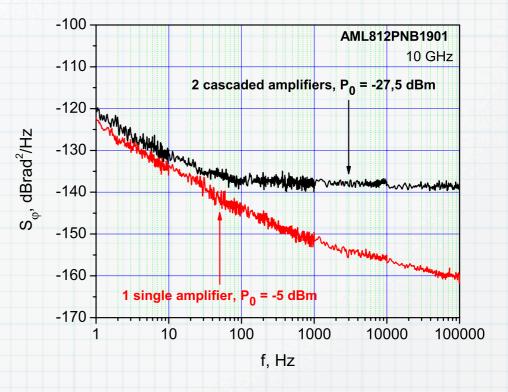


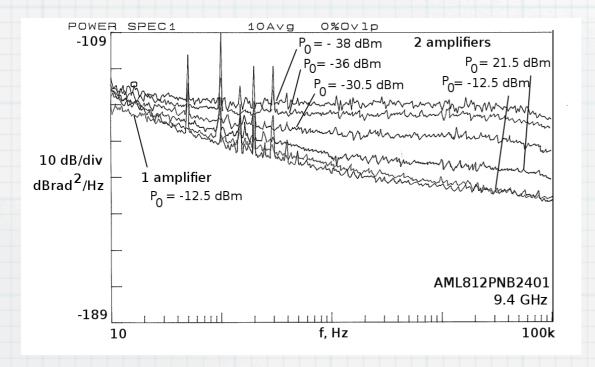
R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

Phase noise in cascaded amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT



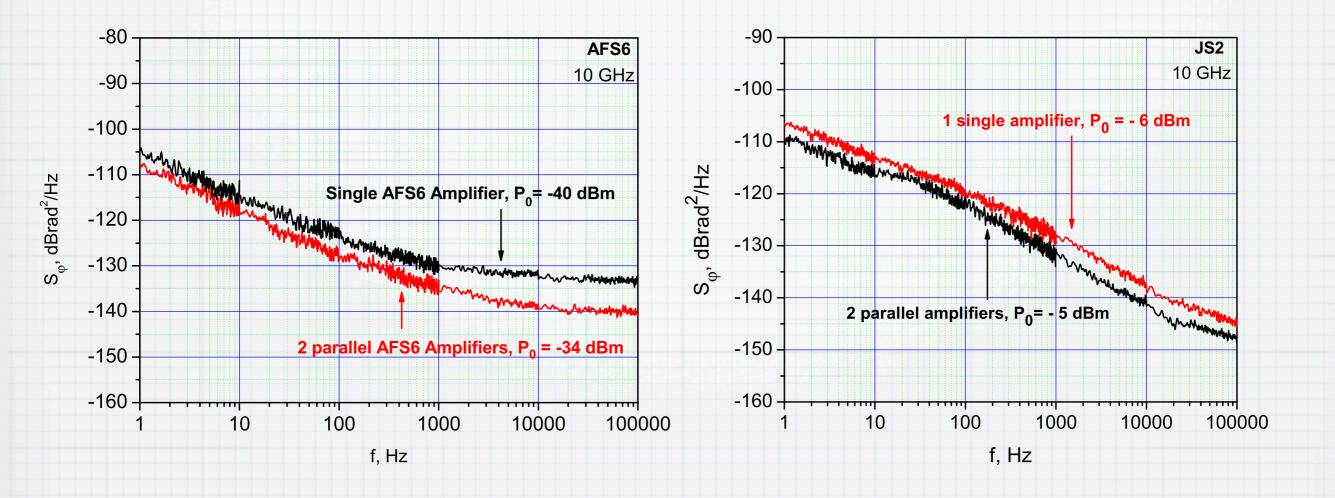




The expected flicker of a cascade increases by: 3 dB, with 2 amplifiers 4.8 dB, with 3 amplifiers White noise is limited by the (small) input power

Phase noise in parallel amplifiers

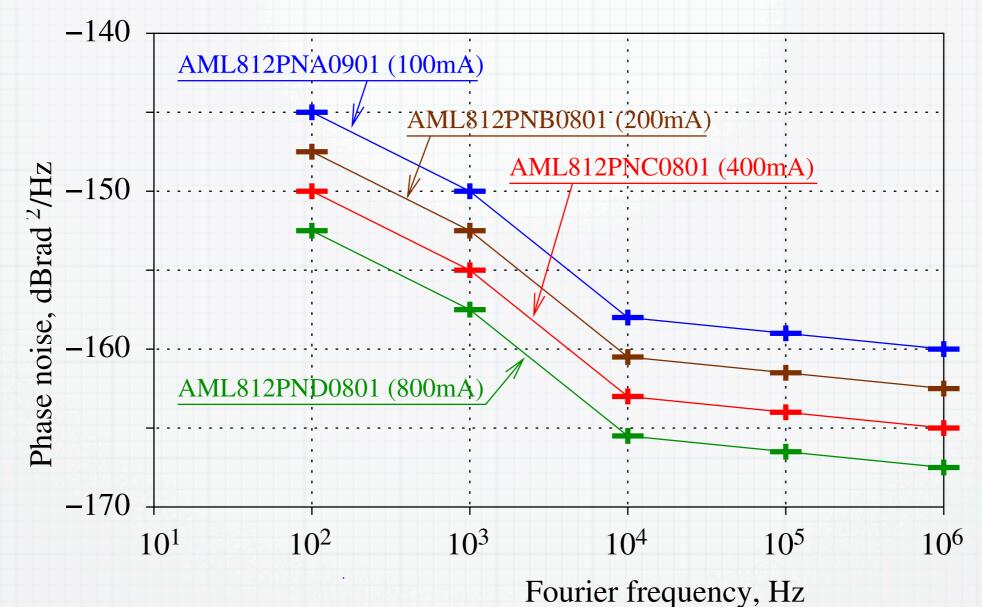
R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT



Connecting two amplifier in parallel, a 3 dB reduction of flicker is expected

Flicker noise in parallel amplifiers

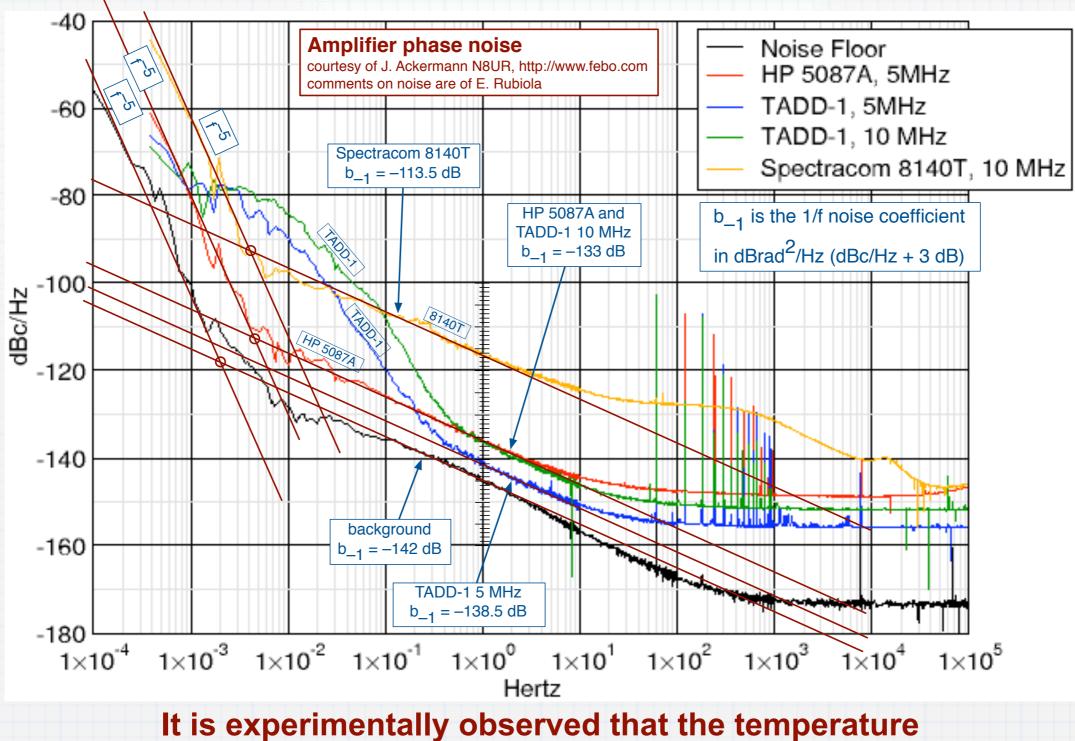
E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2



Specification of low phase-noise amplifiers (AML web page)								
amplifier	parameters			phase noise vs. f , Hz			2	
	gain	F	bias	power	10^{2}	10^{3}	10^{4}	10^{5}
AML812PNA0901	10	6.0	100	9	-145.0	-150.0	-158.0	-159.0
AML812PNB0801	9	6.5	200	11	-147.5	-152.5	-160.5	-161.5
AML812PNC0801	8	6.5	400	13	-150.0	-155.0	-163.0	-164.0
AML812PND0801	8	6.5	800	15	-152.5	-157.5	-165.5	-166.5
unit	dB	dB	mA	dBm		dBrad	d^2/Hz	

Environmental effects in RF amplifiers

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2



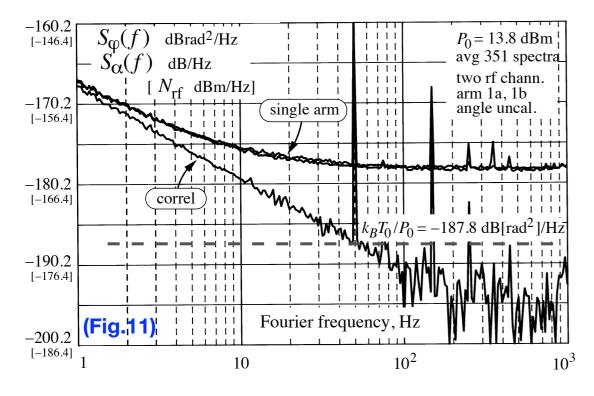
It is experimentally observed that the temperature fluctuations cause a spectrum $S_{\alpha}(f)$ or $S_{\phi}(f)$ of the 1/f⁵ type

Yet, at low frequencies the spectrum folds back to 1/f

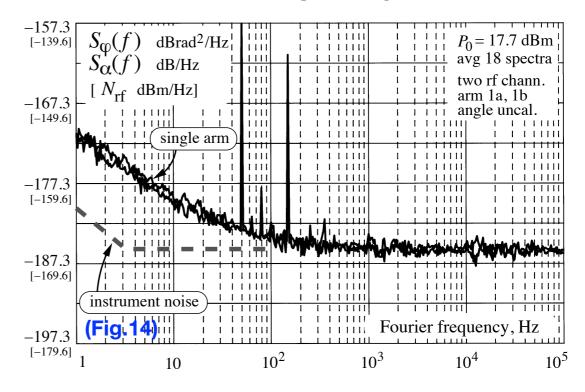
VHF passive devices

E. Rubiola, V. Giordano, RSI 73(6) p.2445-2457, 2002

two by-step attenuators



two ferrite hybrid junctions

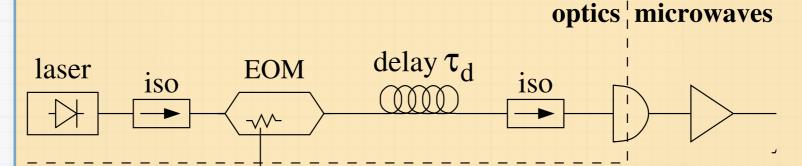


Flicker noise of components

device	PM b ₋₁	AM h ₋₁	frequency	References and comments
Si bipolar HF-UHF amplifier	-135145		51000 MHz	(general experience)
SiGe HBT <i>µ</i> wave amplifier	-120130		420 GHz	(general experience)
GaAs HBT <i>µ</i> wave amplifier	-95110		310 GHz	(general experience)
Cr ³⁺ maser amplifier (0.2 cm ³)	≈ –160		11 GHz	G.J.Dick, private discussion
HF-UHF double-balanced mixer	-135150		51000 MHz	(general experience)
<i>µ</i> wave double-balanced mixer	-110125		420 GHz	(general experience)
μ wave circulator (iso port)	-170	-170	9.1 GHz	Rubiola & al, IEEE T.UFFC 51(8) 957-963 (2004)
wave isolator (terminated circulator)	-150	-150	≈ 10 GHz	Woode & al, MST 9(9) 1593-9 (1998)
HF-UHF ferrite power splitter	-170	-170	100 MHz	Rubiola, Giordano, RSI 73(6) 2445-2457 (2002)
HF-UHF variab. attenuator (potentiometer)	-150		100 MHz	Rubiola, Giordano, RSI 70(1) 220-225 (1999)
HF-UHF by-step attenuator	-170	-170	100 MHz	Rubiola, Giordano, RSI 73(6) 2445-2457 (2002)
μ wave variable attenuator (absorber)	-150		9.1 GHz	Rubiola, Giordano, RSI 70(1) 220-225 (1999)
μ wave line stretcher	-150		100 MHz	Rubiola, Giordano, RSI 70(1) 220-225 (1999)
µwave power detector (Schottky)		-120	10 GHz	Grop, Rubiola, preliminary (in progress)
wave photodetector	-120	-120	10 GHz	Rubiola & al, TMTT/JLT 54(2) 816-820 (2006)
2-4 km optical-fiber microwave ink	<-110		10 GHz	Volyanskiy & al, JOSAB 25(12) 2140-2150 (2008)

Photonic systems

Opto-electronic delay line



intensity modulation $P(t) = \overline{P}(1 + m \cos \omega_{\mu} t)$

photocurrent

microwave power

$$i(t) = \frac{q\eta}{h\nu} \overline{P}(1 + m\cos\omega_{\mu}t)$$

an

shot noise

$$N_s = 2 \frac{q^2 \eta}{h\nu} \,\overline{P} R_0$$

thermal noise $N_t = FkT_0$

total white noise $S_{\varphi 0} = \frac{2}{m^2} \left[2 \frac{h\nu_{\lambda}}{\eta} \frac{1}{\overline{P}} + \frac{FkT_0}{R_0} \left(\frac{h\nu_{\lambda}}{q\eta} \right)^2 \left(\frac{1}{\overline{P}} \right)^2 \right]$

 $\overline{P}_{\mu} = \frac{1}{2} m^2 R_0 \left(\frac{q\eta}{h\mu}\right)^2 P^2$

flicker phase noise

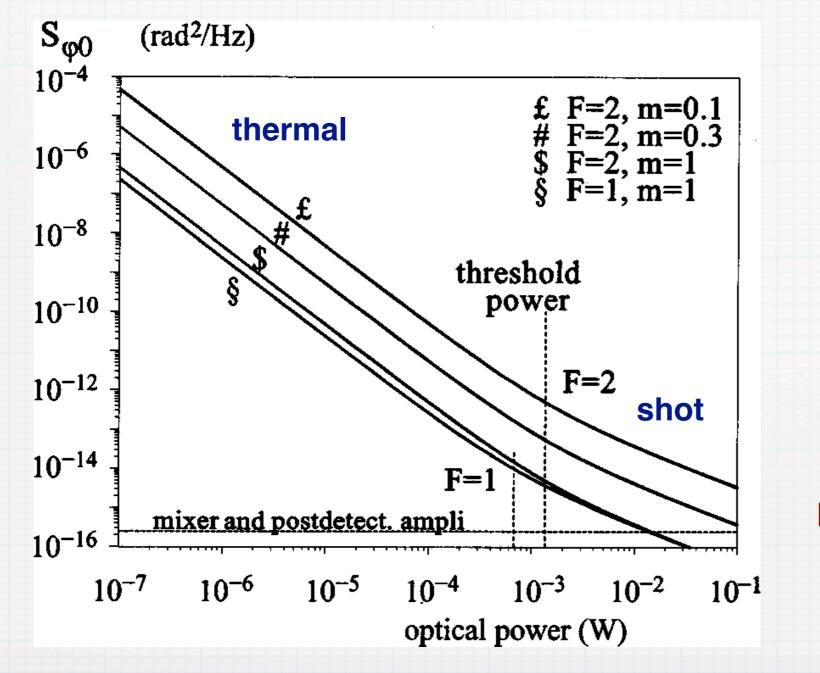
- amplifier GaAs: $b_{-1} \approx -100$ to -110 dBrad²/Hz, SiGe: $b_{-1} \approx -120$ dBrad²/Hz
- photodetector $b_{-1} \approx -120 \text{ dBrad}^2/\text{Hz}$ [Rubiola & al. MTT/JLT 54(2), feb. 2006
- (mixer $b_{-1} \approx -120 \text{ dBrad}^2/\text{Hz}$)
- the phase flicker coefficient b₋₁ is about independent of power
- in a cascade, (b₋₁)_{tot} adds up, regardless of the device order

optical-fiber phase noise? still an experimental parameter

Threshold power

$$S_{\varphi 0} = \frac{16}{m^2} \left[\frac{h\nu_{\lambda}}{\eta} \frac{1}{\overline{P}} + \frac{FkT_0}{R_0} \left(\frac{h\nu_{\lambda}}{q\eta} \right)^2 \left(\frac{1}{\overline{P}} \right)^2 \right]$$

holds for two detectors



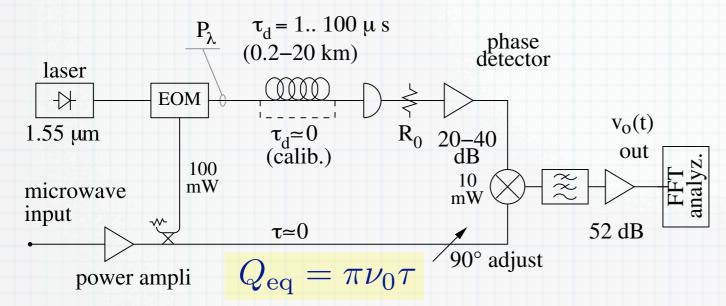
threshold power

$$P_{\lambda,t} = \frac{FkT_0}{R_0} \frac{h\nu_\lambda}{q^2\eta}$$

new high-power photodetectors 5–10 mW

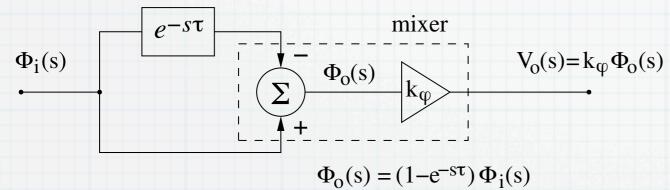
Opto-electronic discriminator

Rubiola & al., JOSAB 22(5) p.987–997 (2005) --- Volyanskiy & al., JOSAB 25(12) p.2140–2150 (2008)



The short arm can be a microwave cable or a photonic channel

Laplace transforms



- delay –> frequency-to-phase conversion
- works at any frequency
- long delay (microseconds) is necessary for high sensitivity
- the delay line must be an optical fiber fiber: attenuation 0.2 dB/km, thermal coeff. 6.8 10⁻⁶/K cable: attenuation 0.8 dB/m, thermal coeff. ~ 10⁻³/K

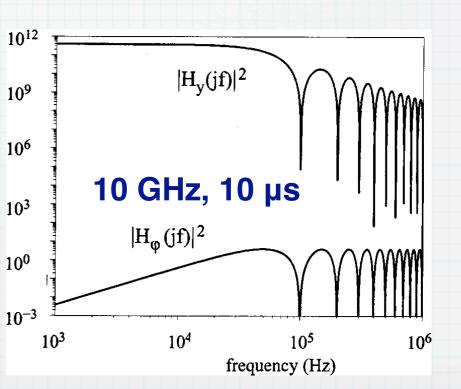
Laplace transforms

$$\Phi(s) = H_{\varphi}(s)\Phi_i(s)$$

$$|H_{\varphi}(f)|^2 = 4\sin^2(\pi f\tau)$$

 $S_y(f) = |H_y(f)|^2 S_{\varphi i}(f)$

$$|H_y(f)|^2 = \frac{4\nu_0^2}{f^2} \sin^2(\pi f\tau)$$



Photodetector 1/f noise

-100

-120

-130

-140

-110 -110

-120 -120

-130 -130

-140

ap (**j**)**s** -110

file plot711a.pdf

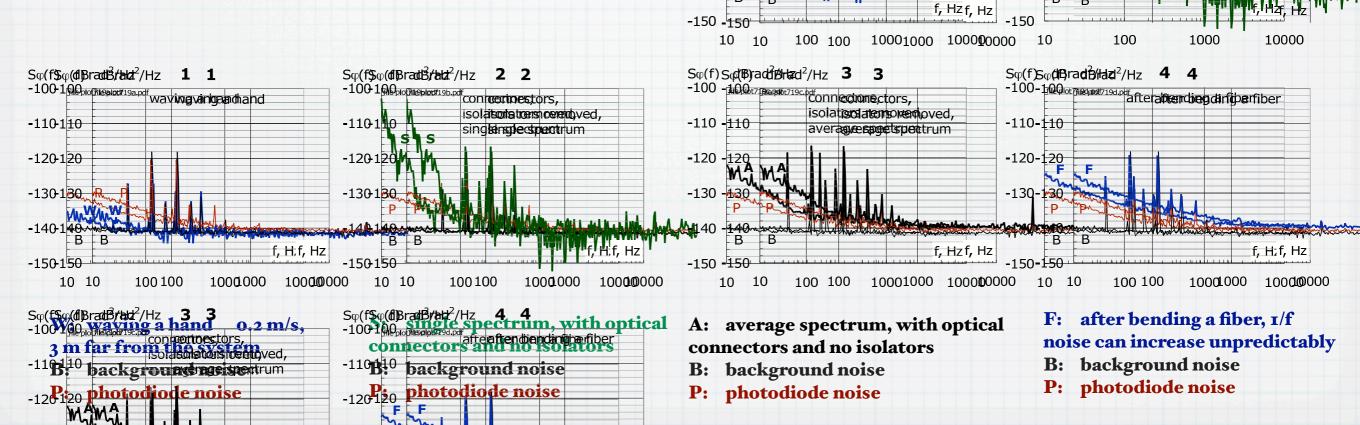
am

wine hand

background

Rubiola, Salik, Yu, Maleki, MTT 54(2) p.816-820, Feb 2006

- the photodetectors we measured are similar in AM and PM 1/f noise
- the 1/f noise is about -120 dB[rad²]/Hz ٠
- other effects are easily mistaken for the ٠ photodetector 1/f noise
- Sq(f) Sq年了ad2的日本d2/Hz -100 -100017時時で1920を取る environment and packaging deserve attention • in order to take the full benefit from the low noise of the junction



DSC30-1k and HSD30

PBrad Brad 2/Hz

-130

100

 connections are spliced • isolators are inserted

• myself > 3 m far away

avg m=40

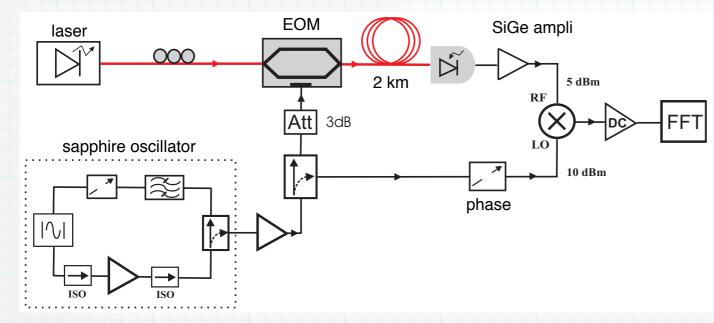
f, Hz

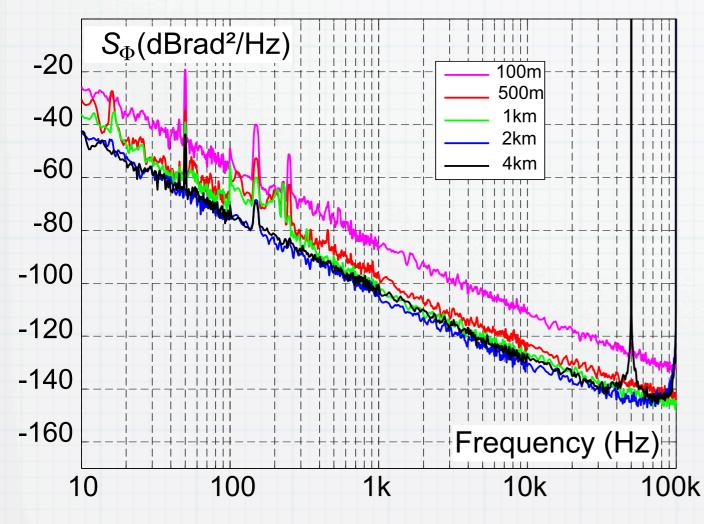
air-flow shielding

2 2

Measurement of a sapphire oscillator

JOSAB 25 (12) p.2140-2150, Dec 2008. Also arXiv:0807.3494v1 [physics.optics] Jul 2008.

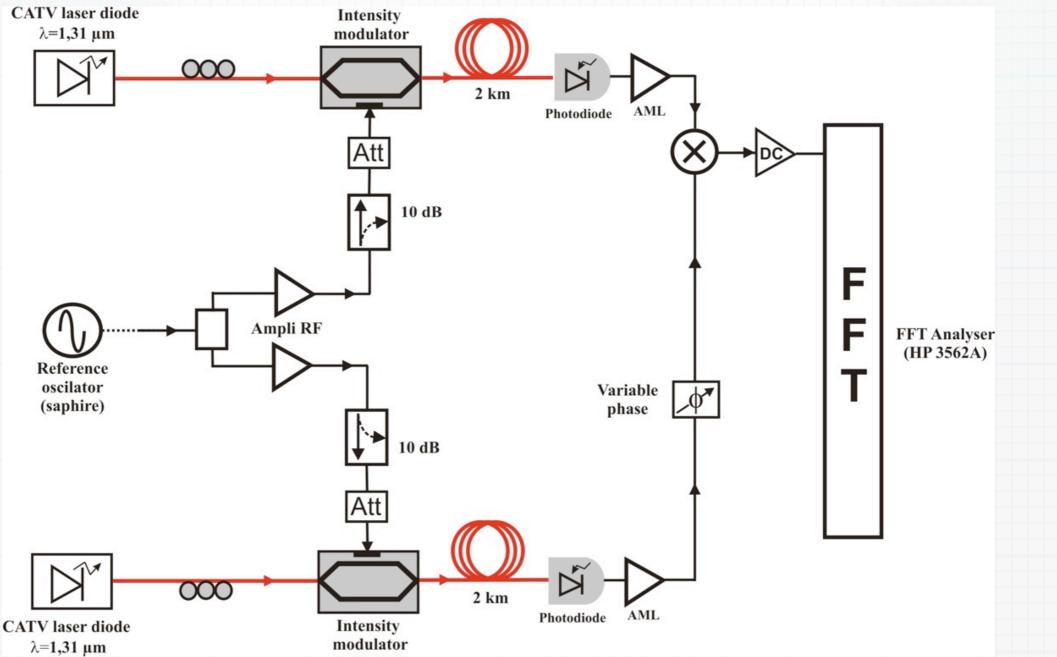




- The instrument noise scales as 1/T, yet the blue and black plots overlap magenta, red, green => instrument noise blue, black => noise of the sapphire oscillator under test
- The 1/f³ phase noise (frequency flicker) outperforms the 10 GHz sapphire oscillator (the lowest-noise microwave oscillator)
- Low AM noise of the oscillator under test is necessary

Measurement of the optical-fiber noise

Volyanskiy & al., JOSAB 25(12) 2140-2150, Dec.2008. Also arXiv:0807.3494v1 [physics.optics] July 2008.

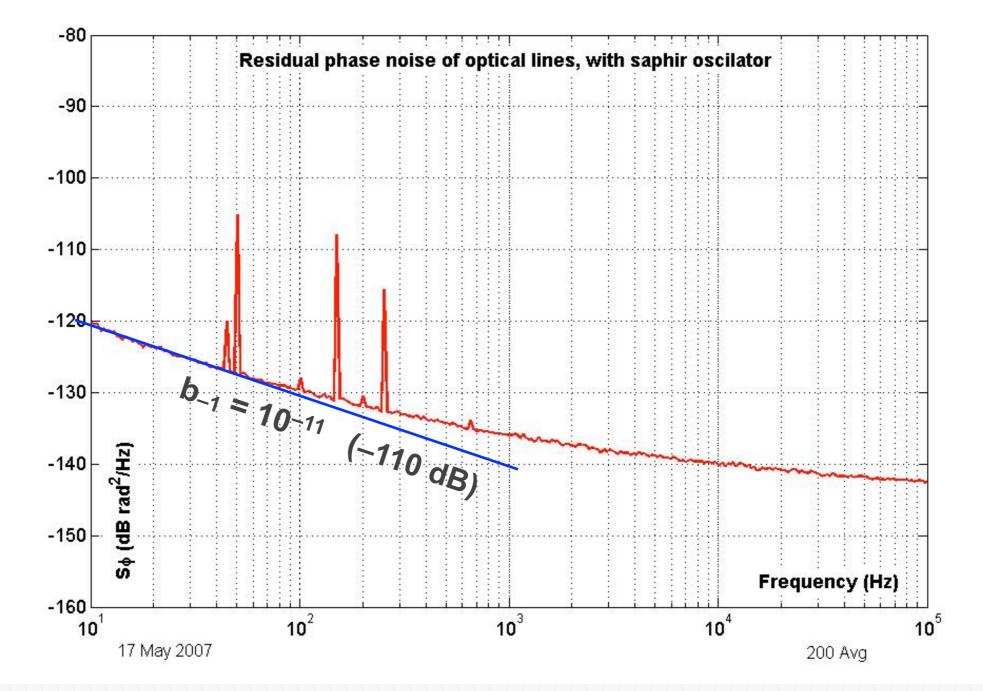


- matching the delays, the oscillator phase noise cancels
- this scheme gives the total noise

2 × (ampli + fiber + photodiode + ampli) + mixer thus it enables only to assess an upper bound of the fiber noise **52**

Measurement of the delay-line noise (2)

Volyanskiy & al., JOSAB 25(12) 2140-2150, Dec.2008. Also arXiv:0807.3494v1 [physics.optics] July 2008.



- The method enables only to assess an upper bound of the delay-line noise b₋₁ ≤ 5×10⁻¹² rad²/Hz for L = 2 km (–113 dBrad²/Hz)
- We believe that this residual noise is the signature of the two GaAs power amplifier that drives the MZ modulator

Physical phenomena in optical fibers

Birefringence. Common optical fibers are made of amorphous Ge-doped silica, for an ideal fiber is not expected to be birefringent. Nonetheless, actual fibers show birefringent behavior due to a variety of reasons, namely: core ellipticity, internal defects and forces, external forces (bending, twisting, tension, kinks), external electric and magnetic fields. The overall effect is that light propagates through the fiber core in a non-degenerate, orthogonal pair of axes at different speed. Polarization effects are strongly reduced in polarization maintaining (PM) fibers. In this case, the cladding structure stresses the core in order to increase the difference in refraction index between the two modes.

Polarization mode dispersion (PMD). This effect rises from the random birefringence of the optical fiber. The optical pulse can choose many different paths, for it broadens into a bell-like shape bounded by the propagation times determined by the highest and the lowest refraction index. Polarization vanishes exponentially along the light path. It is to be understood that PMD results from the vector sum over multiple forward paths, for it yields a well-shaped dispersion pattern.

Bragg scattering. In the presence of monocromatic light (usually X-rays), the periodic structure of a crystal turns the randomness of scattering into an interference pattern. This is a weak phenomenon at micron wavelengths because the inter-atom distance is of the order of 0.3--0.5 nm. Bragg scattering is not present in amorphous materials.

Brillouin scattering. In solids, the photon-atom collision involves the emission or the absorption of an acoustic phonon, hence the scattered photons have a wavelength slightly different from incoming photons. An exotic form of Brillouin scattering has been reported in optical fibers, due to a transverse mechanical resonance in the cladding, which stresses the core and originates a noise bump on the region of 200--400 MHz.

Raman scattering. This phenomenon is similar to Rayleigh scattering, but it involves the optical branch of phonons.

Rayleigh scattering. This is random scattering due to molecules in a disordered medium, by which light looses direction and polarization. A small fraction of the light intensity is thereby back-scattered one or more times, for it reaches the fiber end after a stochastic to-and-fro path, which originates phase noise. In SM fibers at 1.55 μ m it contributes 0.15 dB/km to the optical loss.

Kerr effect. This effect states that an electric field changes the refraction index. So, the electric field of light modulate the refraction index, which originates the 2nd-order nonlinearity.

Discontinuities. Discontinuities cause the wave to be reflected and/or to change polarization. As the pulse can be split into a pulse train depending on wavelength, this effect can turn into noise.

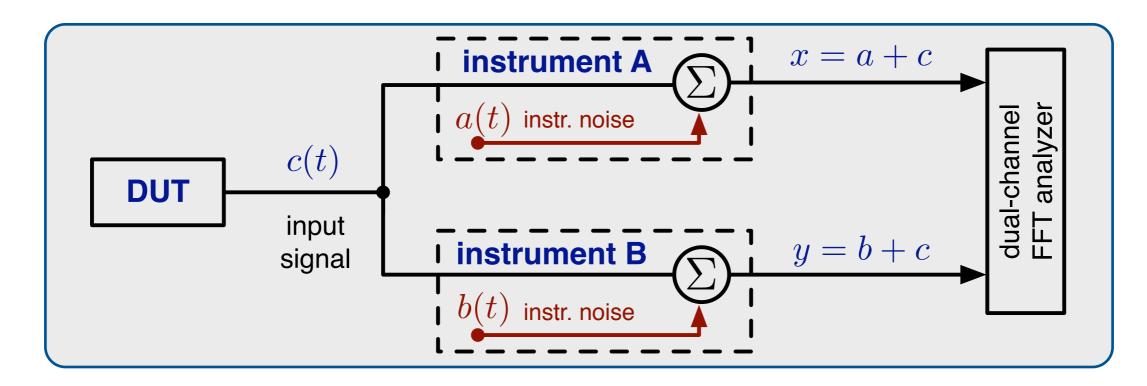
Group delay dispersion (GVD). There exist dispersion-shifted fibers, that have a minimum GVD at 1550 nm. GVD compensators are also available.

PMD-Kerr compensation. In principle, it is possible that PMD and Kerr effect null one another. This requires to launch the appropriate power into each polarization mode, for two power controllers are needed. Of course, this is incompatible with PM fibers.

Which is the most important effect? In the community of optical communications, PMD is considered the most significant effect. Yet, this is related to the fact that excessive PMD increases the error rate and destroys the eye pattern of a channel. In the case of the photonic oscillator, the signal is a pure sinusoid, with no symbol randomness.

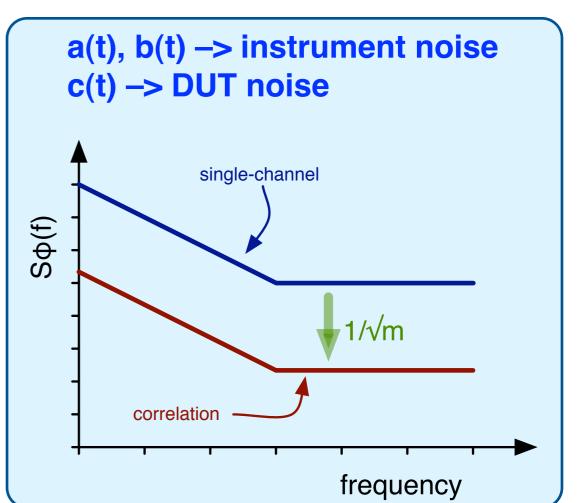
Cross-spectum measurements

Correlation measurements

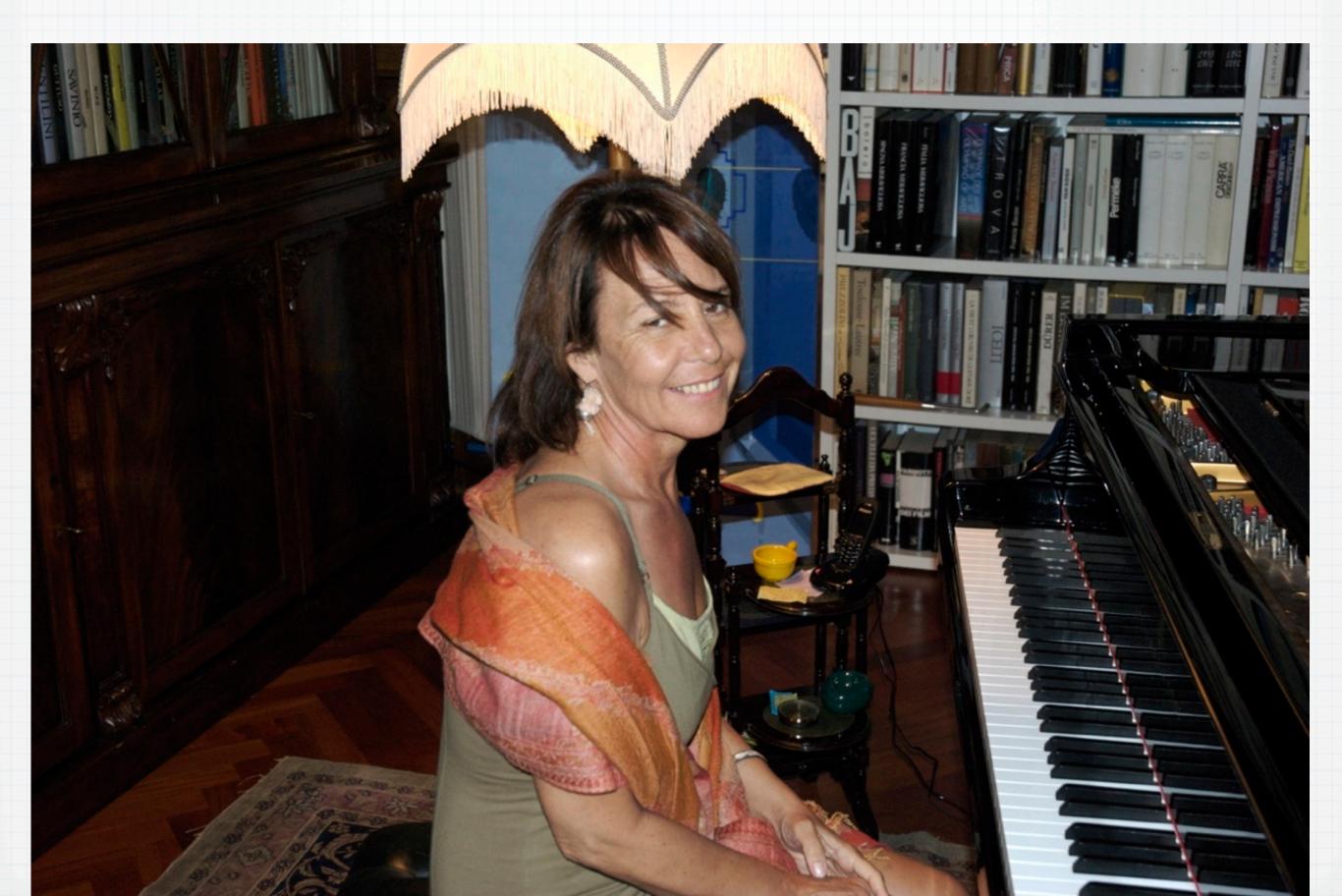


Two separate instruments measure the same DUT. Only the DUT noise is common

noise measurements				
DUT noise, normal use	a, b c	instrument noise DUT noise		
background, ideal case		instrument noise no DUT		
background, real case	a, b c ≠ 0	c is the correlated instrument noise		

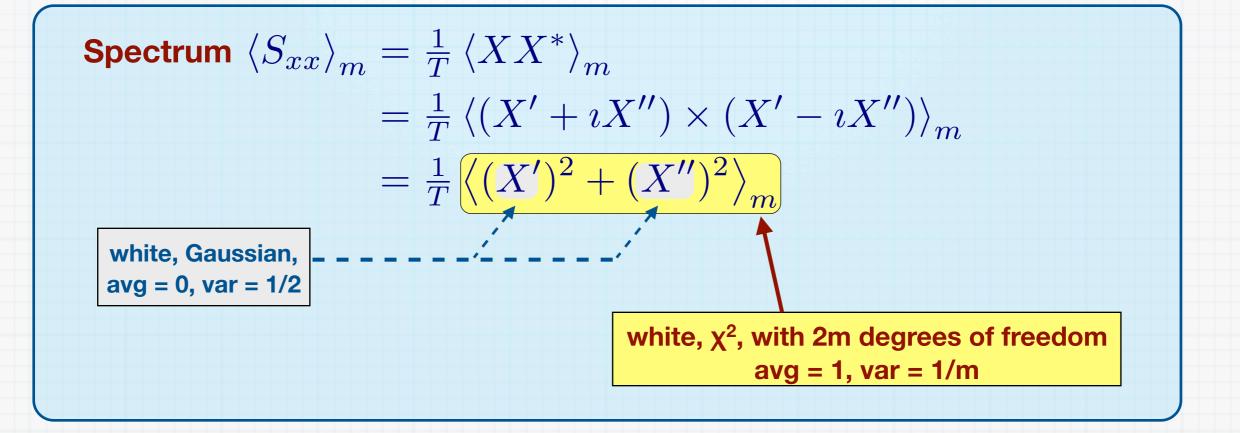


Boring exercises before playing a Steinway



Power spectral density S_{xx}

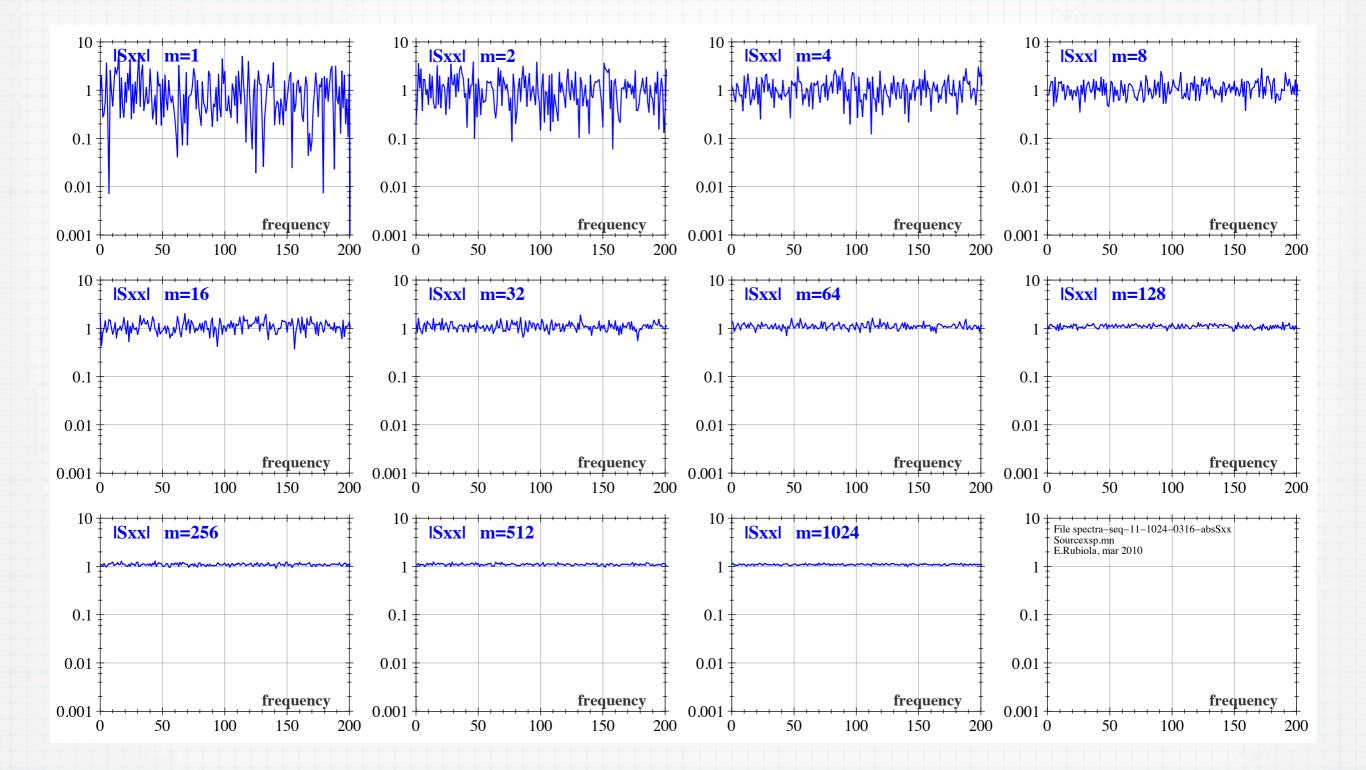
X is white Gaussian noise Take one frequency, S(f) -> S. Same applies to all frequencies



 $\frac{\text{dev}}{\text{avg}} = \sqrt{\frac{1}{m}} \qquad \text{the S}_{xx} \text{ track on the} \\ \text{FFT-SA shrinks as 1/m}^{1/2}$

Normalization: in 1 Hz bandwidth var{X}= 1, and var{X'}= var{X"}= 1/2

Measurement of |Sxx|



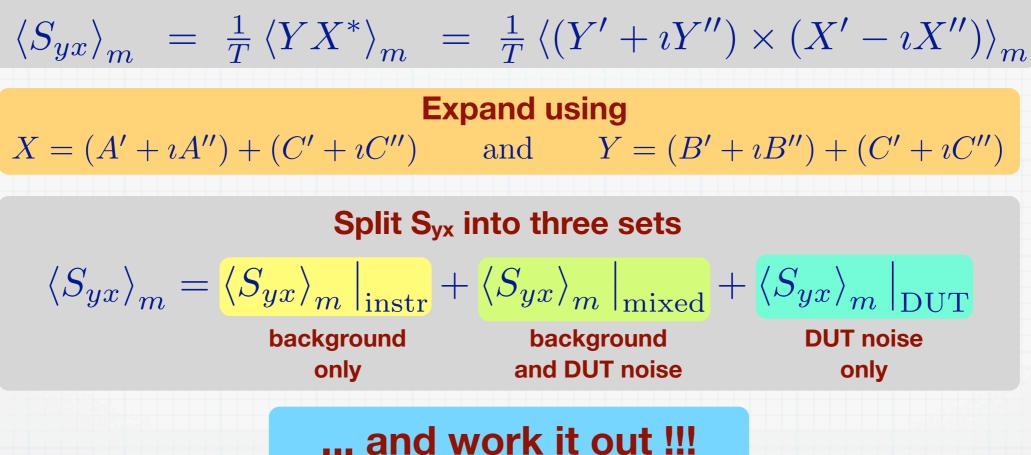
Running the measurement, m increases and S_{xx} shrinks => better confidence level

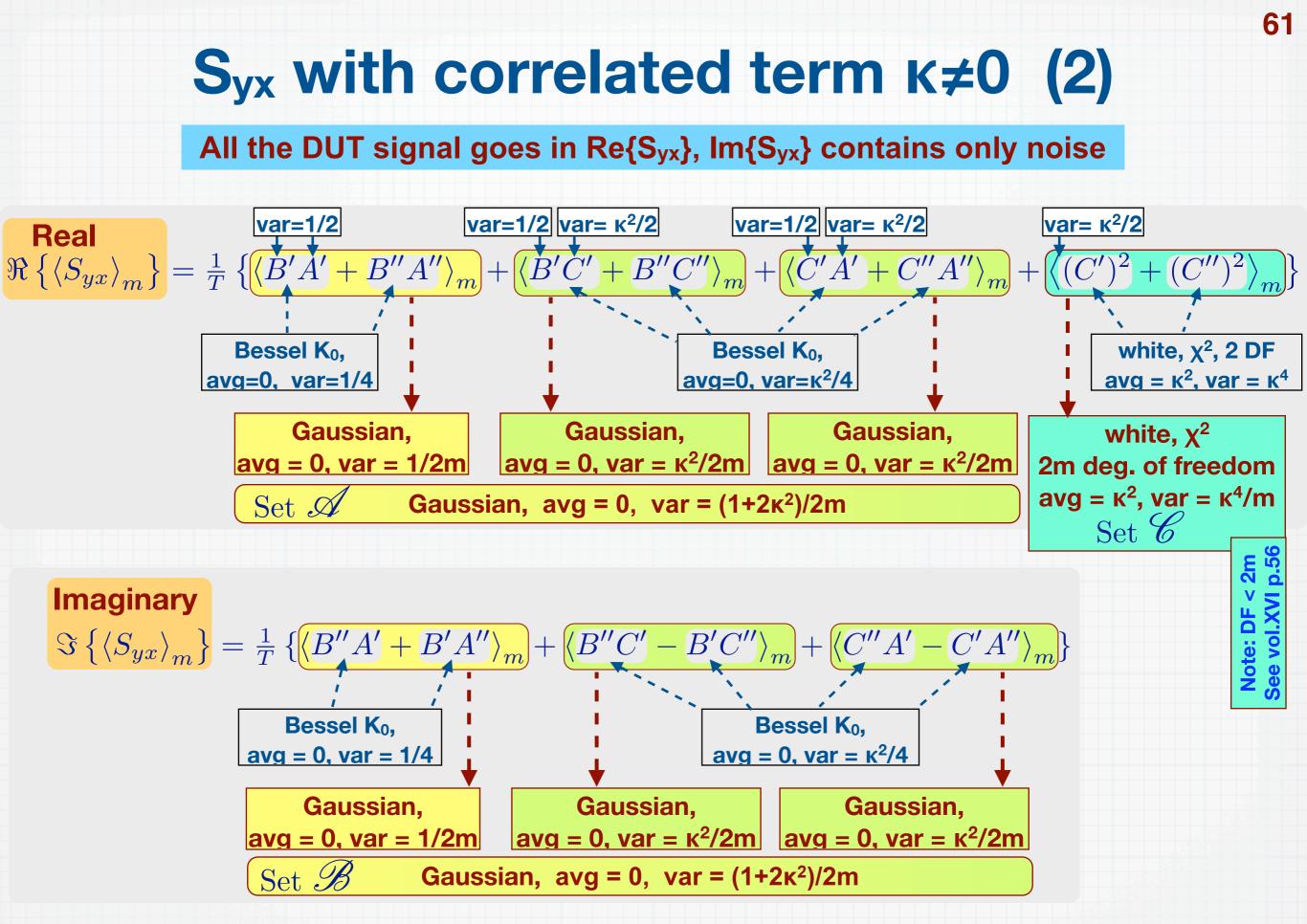
Syx with correlated term (1)

A, B = instrument background C = DUT noise channel 1 X = A + C channel 2 Y = B + C A, B, C are independent Gaussian noises Re{ } and Im{ } are independent Gaussian noises

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Cross-spectrum





Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

A, B, C are independent Gaussian noises Re{ } and Im{ } are independent Gaussian noises

Expand Syx

$$S_{yx} = rac{1}{T} \mathbb{E} \left\{ \mathscr{A} + \imath \mathscr{B} + \mathscr{C}
ight\}$$

Bessel K₀, avg=0, var=1/4 $\mathscr{A} = \frac{B'A' + B''A'' + B'C' + B''C'' + C'A' + C''A''}{\mathscr{B} = B''A' + B'A'' + B''C' - B'C'' + C''A' - C'A''}$ Bessel K₀, avg=0, var=1/4 $\mathscr{A} = \frac{B'A' + B'A'' + B'C' + B''C'' + C''A' + C''A''}{\mathscr{B} = B''A' + B'A'' + B''C' - B'C'' + C''A' - C'A''}$ Bessel K₀, avg=0, var=1/4

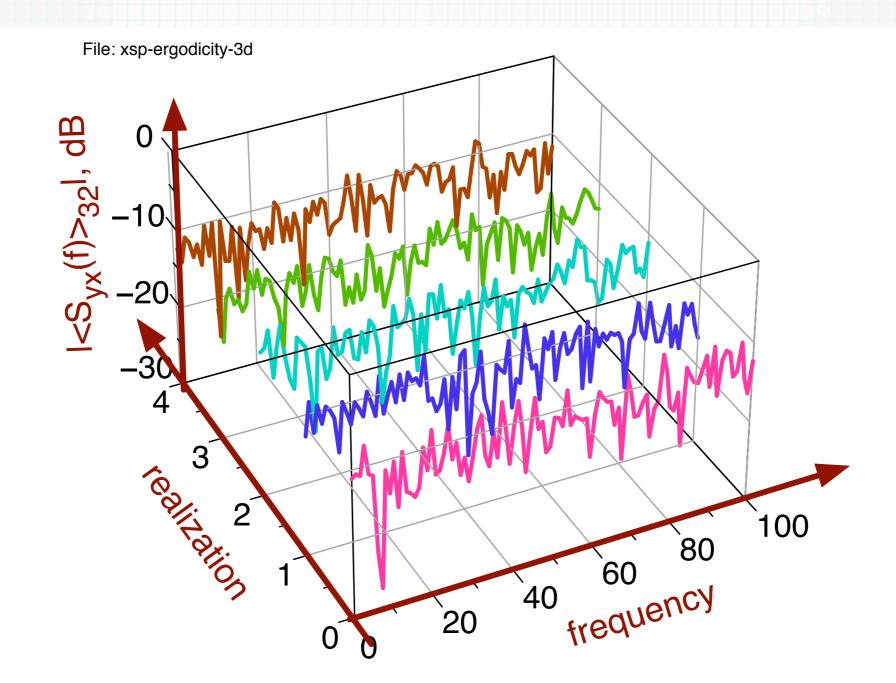
> $\mathscr{C} = C'^2 + C''^2 \bullet \cdots \bullet \text{ white, } \chi^2, 2 \text{ DF}$ avg = κ^2 , var = κ^4

After averaging, the Bessel K_0 distribution turns into a Gaussian distribution (central limit theorem)

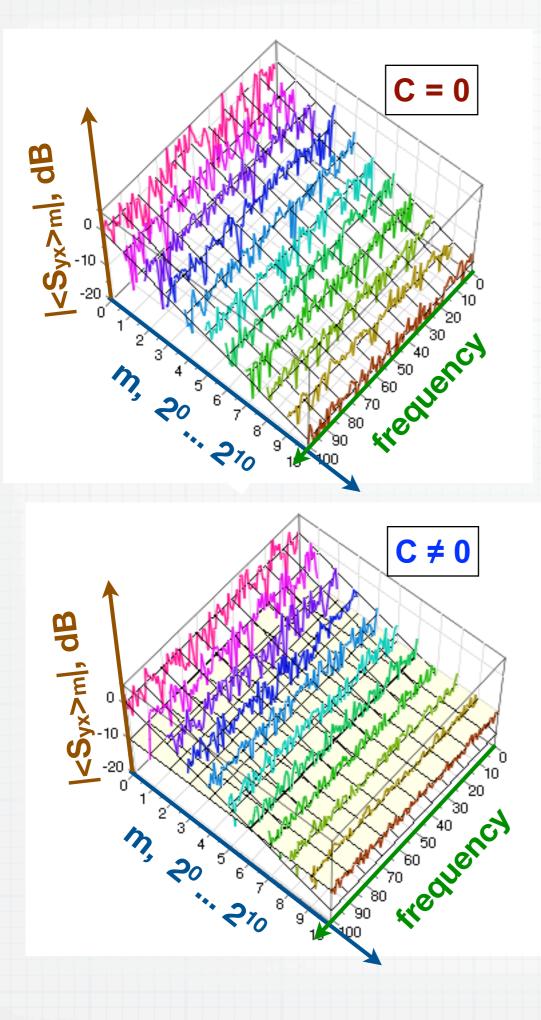
term	E	V	PDF	comment
$\langle \mathscr{A} \rangle_m$	0	$\frac{1+2\kappa^2}{2m}$	Gauss	average (sum) of zero-mean
$\langle \mathscr{B} \rangle_m$	0	$\frac{1+2\kappa^2}{2m}$	Gauss	Gaussian processes
$\langle \mathscr{C} \rangle_m$	κ^2	κ^4/m	$\begin{array}{c} \chi^2 \\ \nu = 2m \end{array}$	average (sum) of chi-square processes
$\left\langle \tilde{\mathscr{C}} ight angle_m$	κ^2	κ^4/m	Gauss	approximates $\left< \mathscr{C} \right>_m$ for large m

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

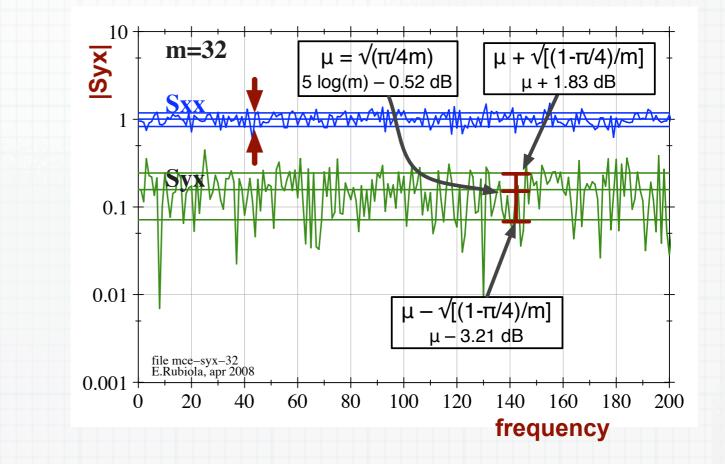
The concept of ergodicity



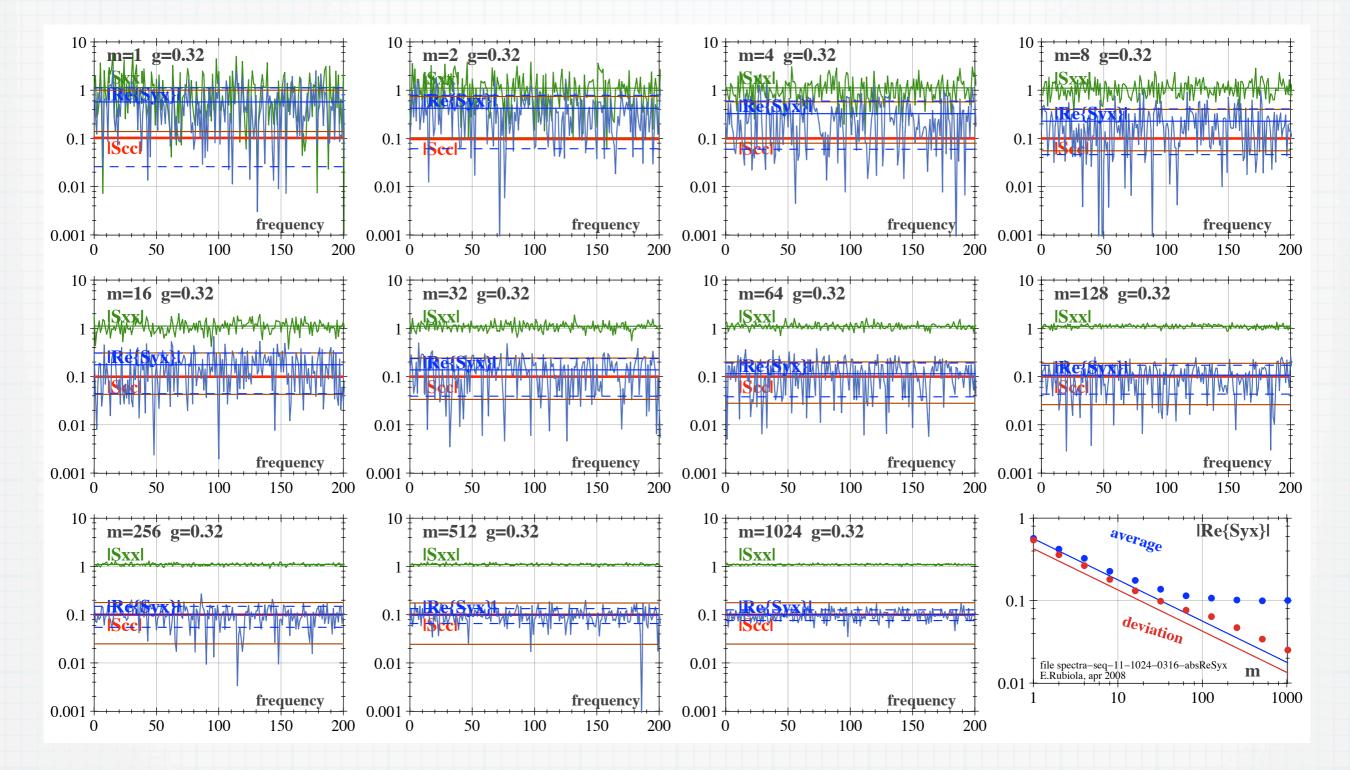
Ergodicity allows to interchange time statistics and ensemble statistics, thus the running index i of the sequence and the frequency f. The average and the deviation calculated on the frequency axis are the same as the average and the deviation of the time series.



Example: Measurement of |Syx|



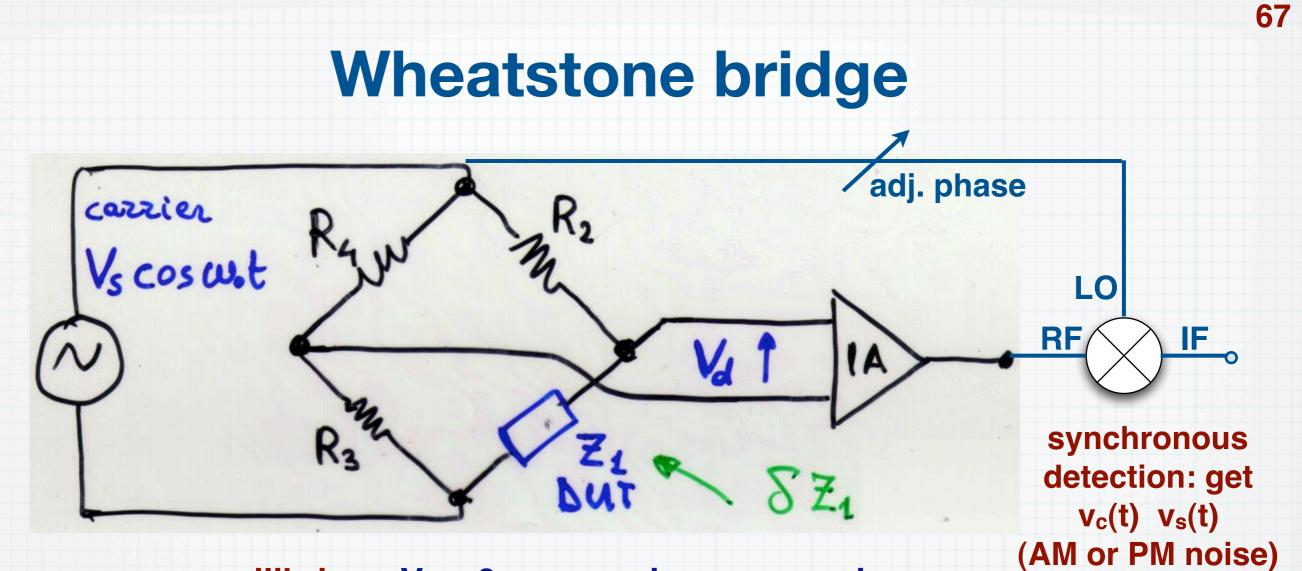
Measurement (C≠0), |Re{Syx}|



Running the measurement, m increases S_{xx} shrinks => better confidence level S_{yx} decreases => higher single-channel noise rejection

Bridge method

real $\delta Z_1 \implies$ AM noise $v_c(t) \cos(\omega_0 t)$ imaginary $\delta Z_1 \implies$ PM noise $-v_s(t) \sin(\omega_0 t)$

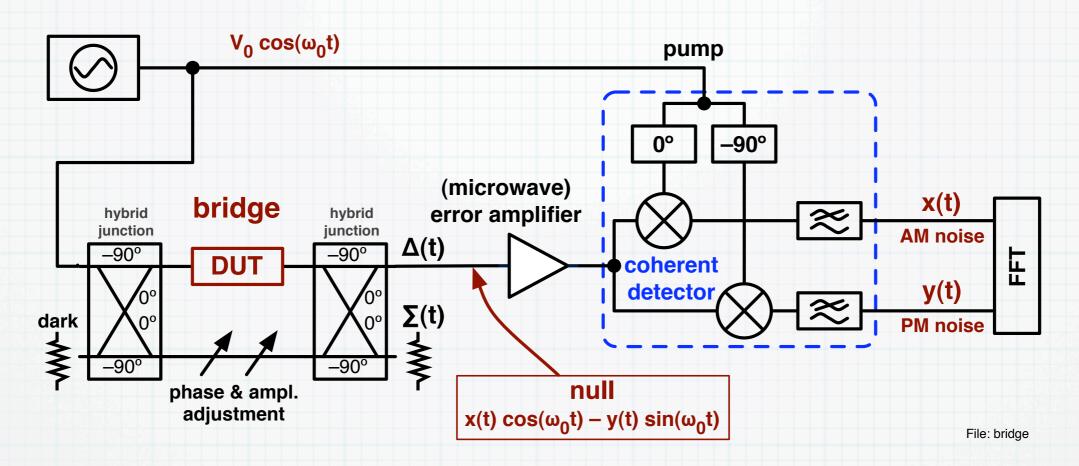


equilibrium: $V_d = 0$ -> carrier suppression

static error $\delta Z_1 \rightarrow \text{some residual carrier}$ real $\delta Z_1 \Rightarrow \text{in-phase residual carrier } V_{re} \cos(\omega_0 t)$ imaginary $\delta Z_1 \Rightarrow \text{quadrature residual carrier } V_{im} \sin(\omega_0 t)$

> fluctuating error $\delta Z_1 =>$ noise sidebands real $\delta Z_1 =>$ AM noise $v_c(t) \cos(\omega_0 t)$ imaginary $\delta Z_1 =>$ PM noise $-v_s(t) \sin(\omega_0 t)$

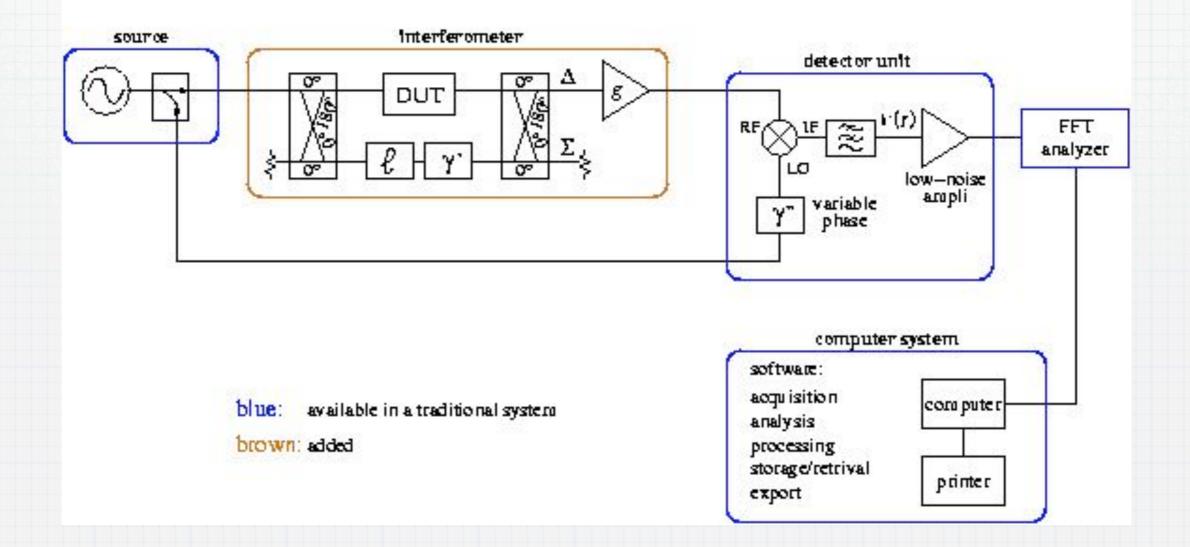
Bridge PM and AM noise measurement



- Bridge => high rejection of the master-oscillator noise
- Amplification and synchronous detection of the noise sidebands
- No carrier => the amplifier can't flicker (no up-conversion of near-dc 1/f)
- High microwave gain before detection => low background
- Low 50-60 Hz residuals because microwave circuits are insensitive to magnetic fields

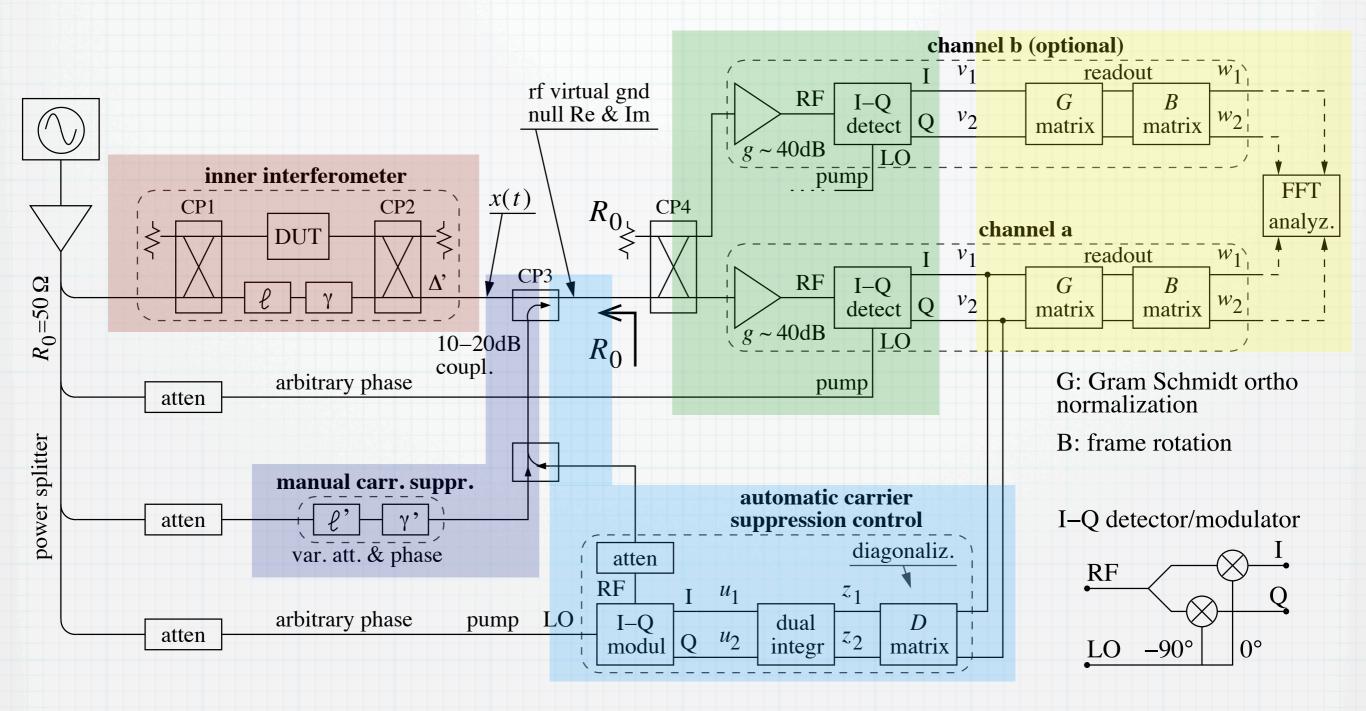
A bridge (interferometric) instrument can be built around a commercial instrument

How to build an interferometer around a commercial instrument



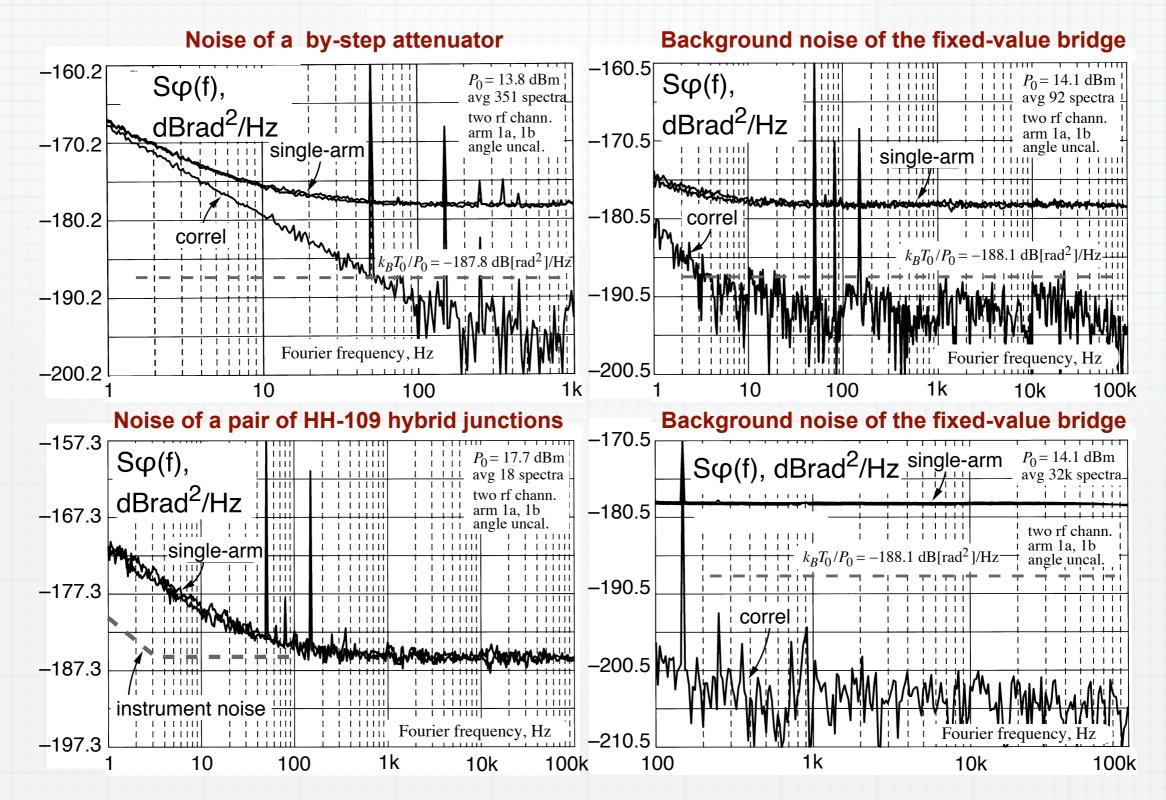
You will appreciate the computer interface and the software ready for use

Flicker reduction, correlation, and closedloop carrier suppression can be combined



E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, June 2002

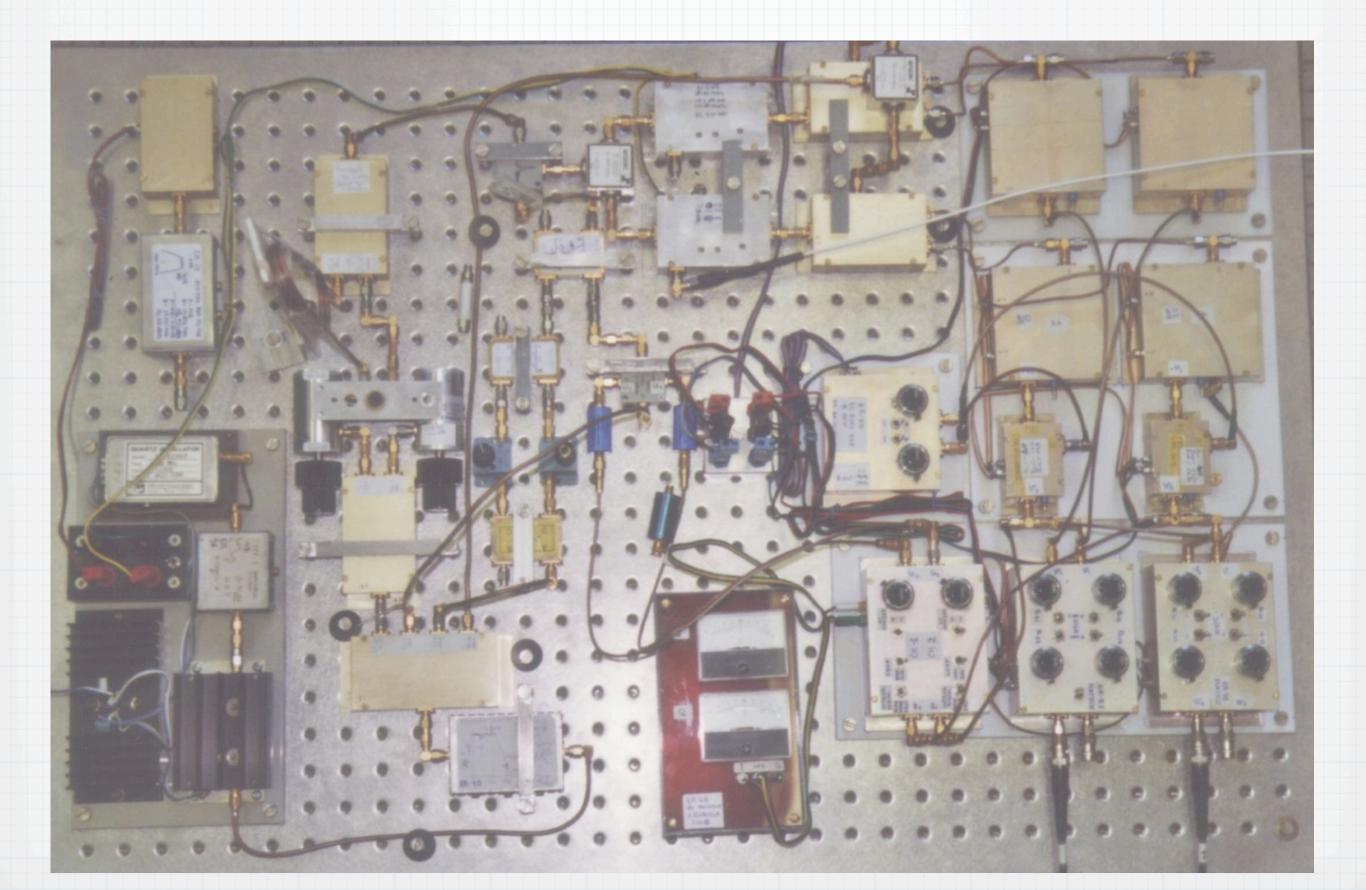
Example of results



Averaged spectra must be smooth

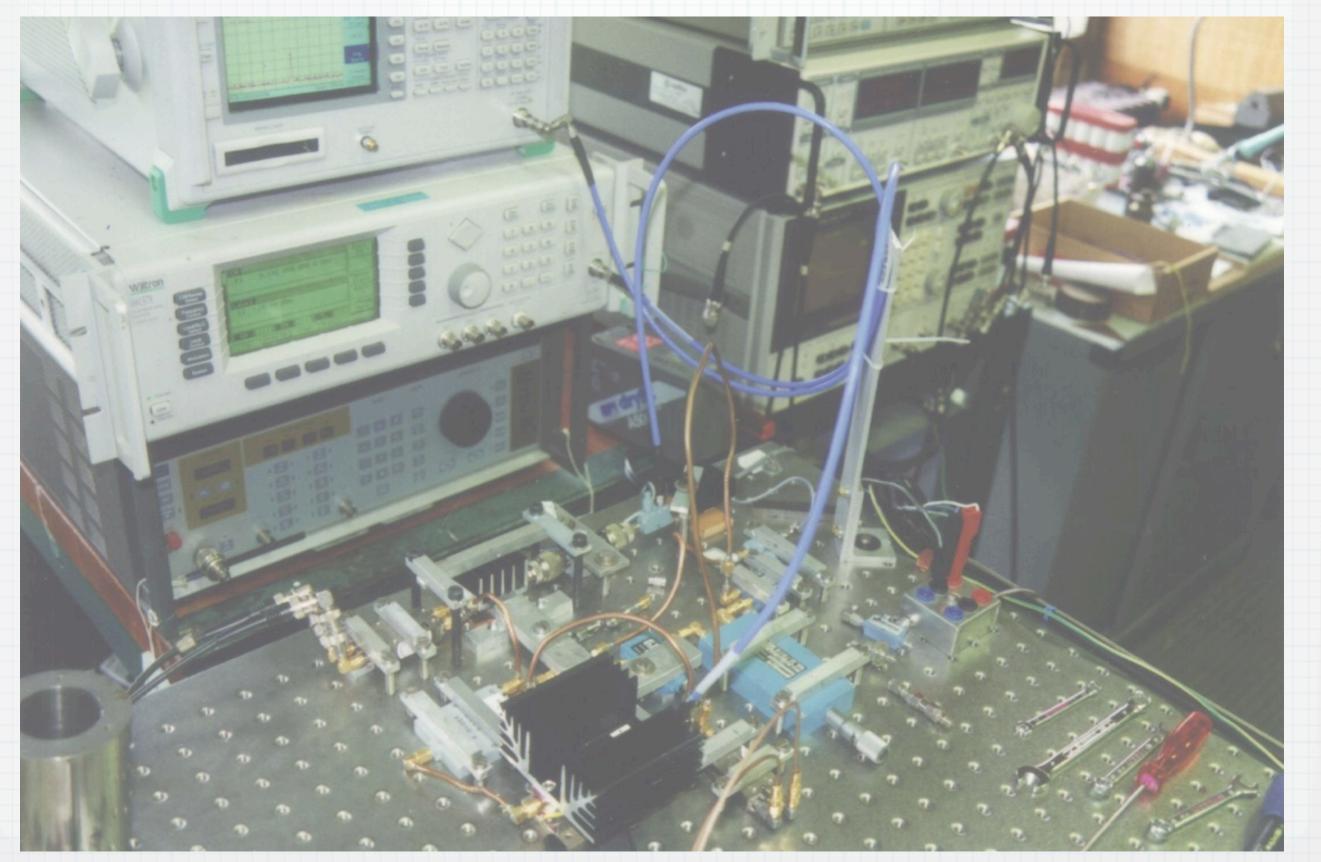
Average on m spectra: confidence of a point improves by O(1/m^{1/2}) interchange ensemble with frequency: smoothness O(1/m^{1/2})

The complete machine (100 MHz)

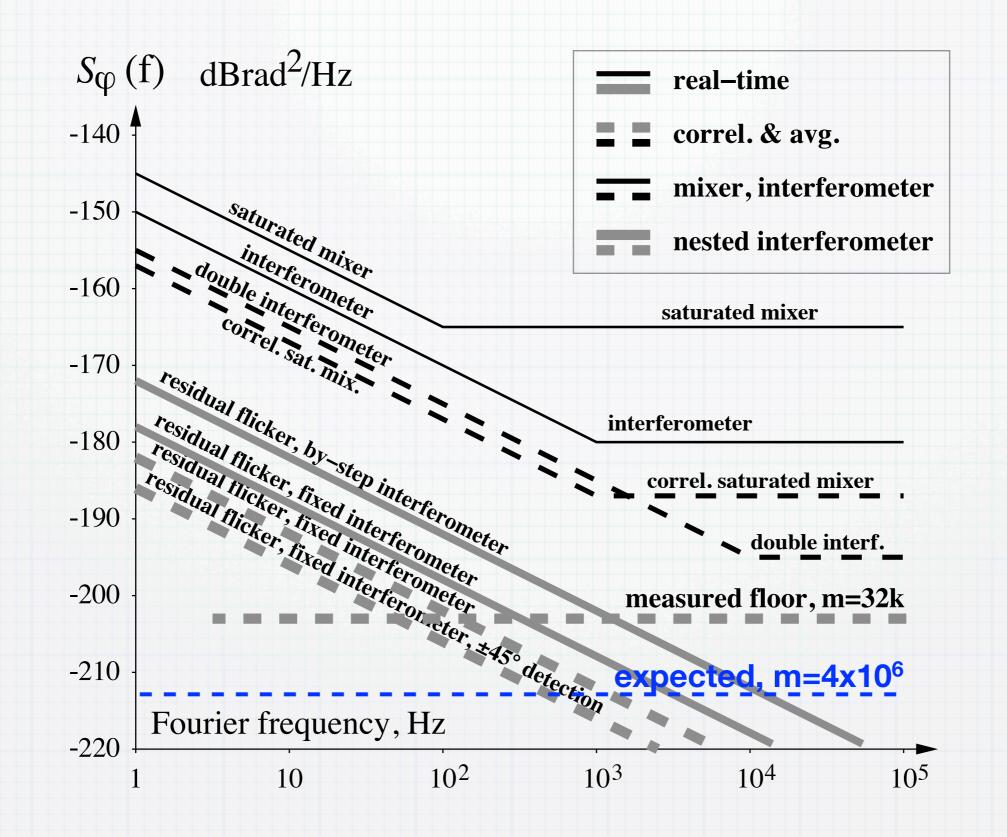


A 9 GHz experiment

(dc circuits not shown)



Comparison of the background noise



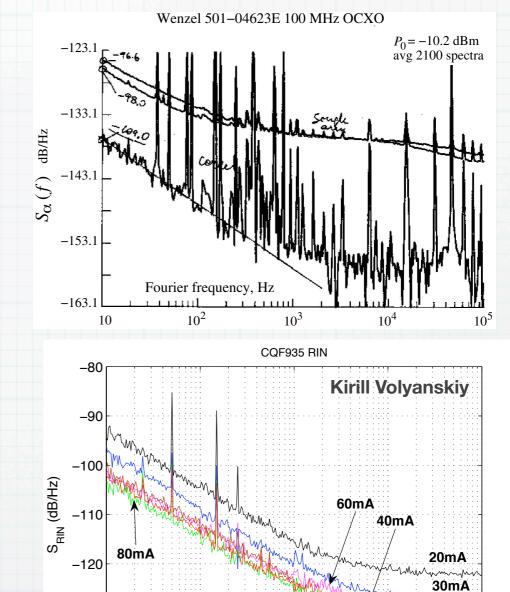
AM noise & RIN

E. Rubiola, arXiv:physics/0512082, Dec 2005

Amplitude noise & laser RIN

AM noise of RF/microwave sources

- In PM noise measurements, one can validate the instrument by feeding the same signal into the phase detector
- In AM noise this is not possible without a lower-noise reference
- Provided the crosstalk was measured otherwise, correlation enables to validate the instrument



100mA

 10^{4}

10⁵

10³

Frequency (Hz)

 10^{2}

-130

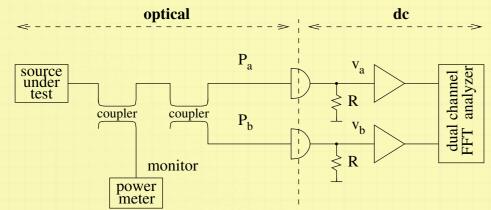
-140

10

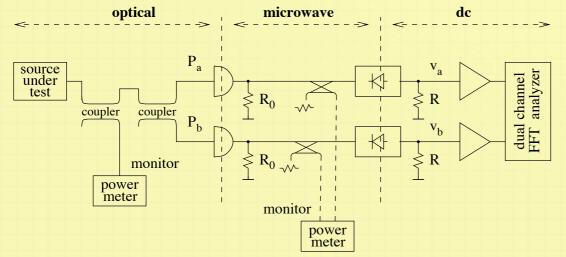
Laser RIN

power

meter



AM noise of photonic RF/microwave sources



E. Rubiola, the measurement of AM noise, dec 2005 arXiv:physics/0512082v1 [physics.ins-det]

AM noise of some sources

source	h_{-1} (f	$(\sigma_{lpha})_{\mathrm{floor}}$	
Anritsu MG3690A synthesizer (10 GHz)	2.5×10^{-11}	-106.0 dB	5.9×10^{-6}
Marconi synthesizer (5 GHz)	1.1×10^{-12}	$-119.6 \mathrm{dB}$	1.2×10^{-6}
Macom PLX 32-18 $0.1 \rightarrow 9.9$ GHz multipl.	1.0×10^{-12}	-120.0 dB	1.2×10^{-6}
Omega DRV9R192-105F 9.2 GHz DRO	8.1×10^{-11}	-100.9 dB	1.1×10^{-5}
Narda DBP-0812N733 amplifier (9.9 GHz)	2.9×10^{-11}	$-105.4 \mathrm{~dB}$	6.3×10^{-6}
HP 8662A no. 1 synthesizer (100 MHz)	6.8×10^{-13}	$-121.7 \mathrm{~dB}$	9.7×10^{-7}
HP 8662A no. 2 synthesizer (100 MHz)	1.3×10^{-12}	-118.8 dB	1.4×10^{-6}
Fluke 6160B synthesizer	1.5×10^{-12}	-118.3 dB	1.5×10^{-6}
Racal Dana 9087B synthesizer (100 MHz)	8.4×10^{-12}	-110.8 dB	3.4×10^{-6}
Wenzel 500-02789D 100 MHz OCXO	4.7×10^{-12}	-113.3 dB	2.6×10^{-6}
Wenzel 501-04623E no. 1 100 MHz OCXO	2.0×10^{-13}	$-127.1 \mathrm{~dB}$	5.2×10^{-7}
Wenzel 501-04623E no. 2 100 MHz OCXO	1.5×10^{-13}	-128.2 dB	4.6×10^{-7}

worst

best

The Leeson effect

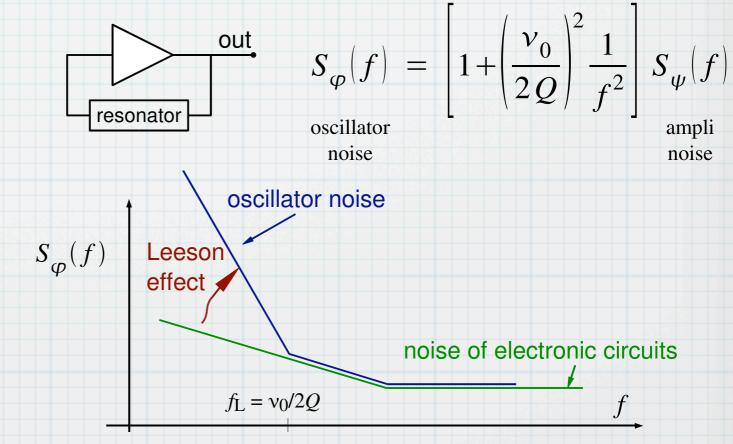
Phase noise and frequency stability in oscillators

Enrico Rubiola

FEMTO-ST Institute, CNRS and UFC, Besancon, France

D. B. Leeson, A simple model for feed back oscillator noise, Proc. IEEE 54(2):329 (Feb 1966)

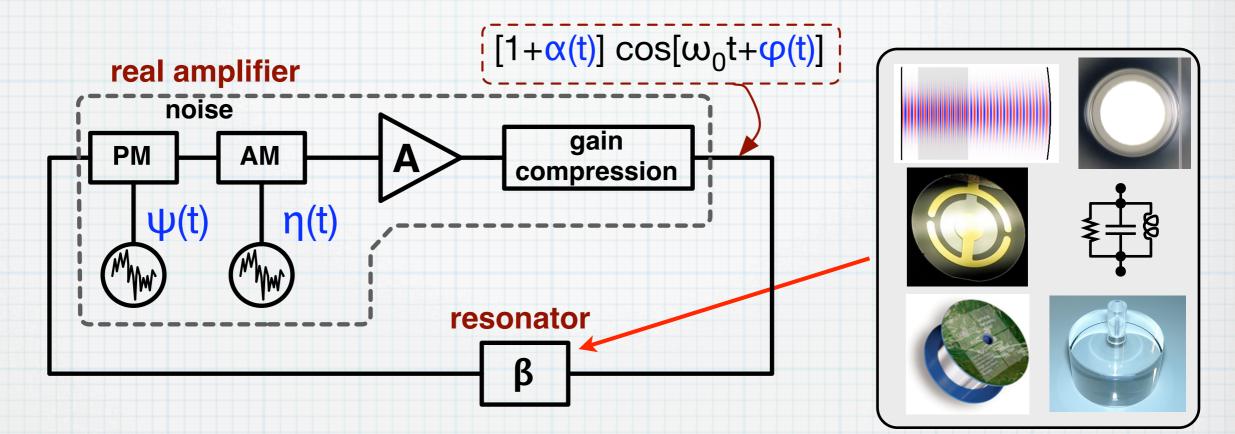
- Oscillator fundamentals
- Heuristic approach
- Oscillator hacking
- Resonator theory
- The Leeson effect
- Advanced topics
- Delay-line oscillator
- Cryogenic oscillator



home page http://rubiola.org

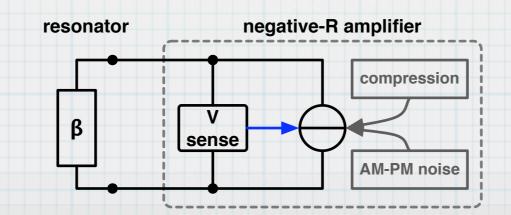
Oscillator fundamentals

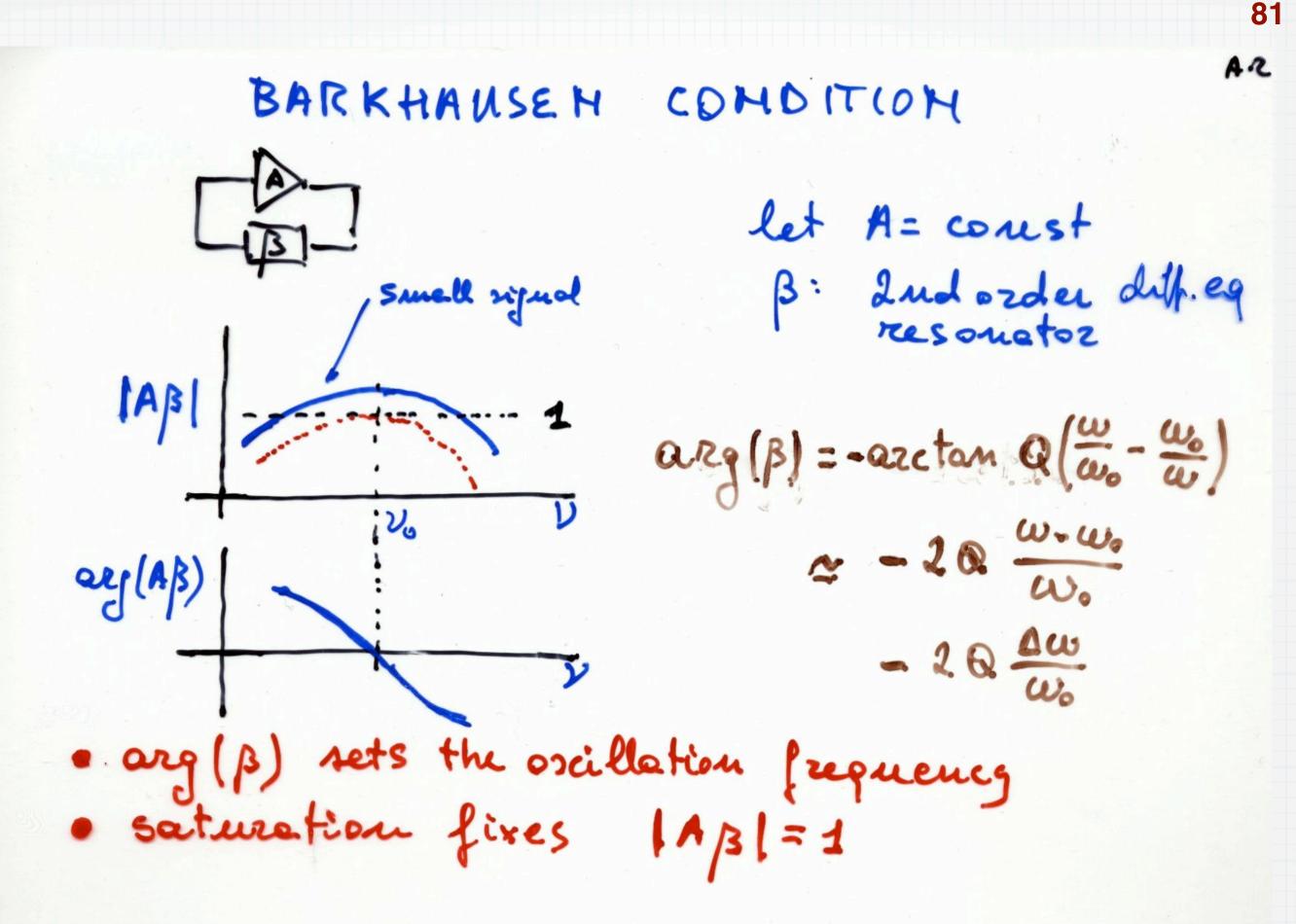
General oscillator model



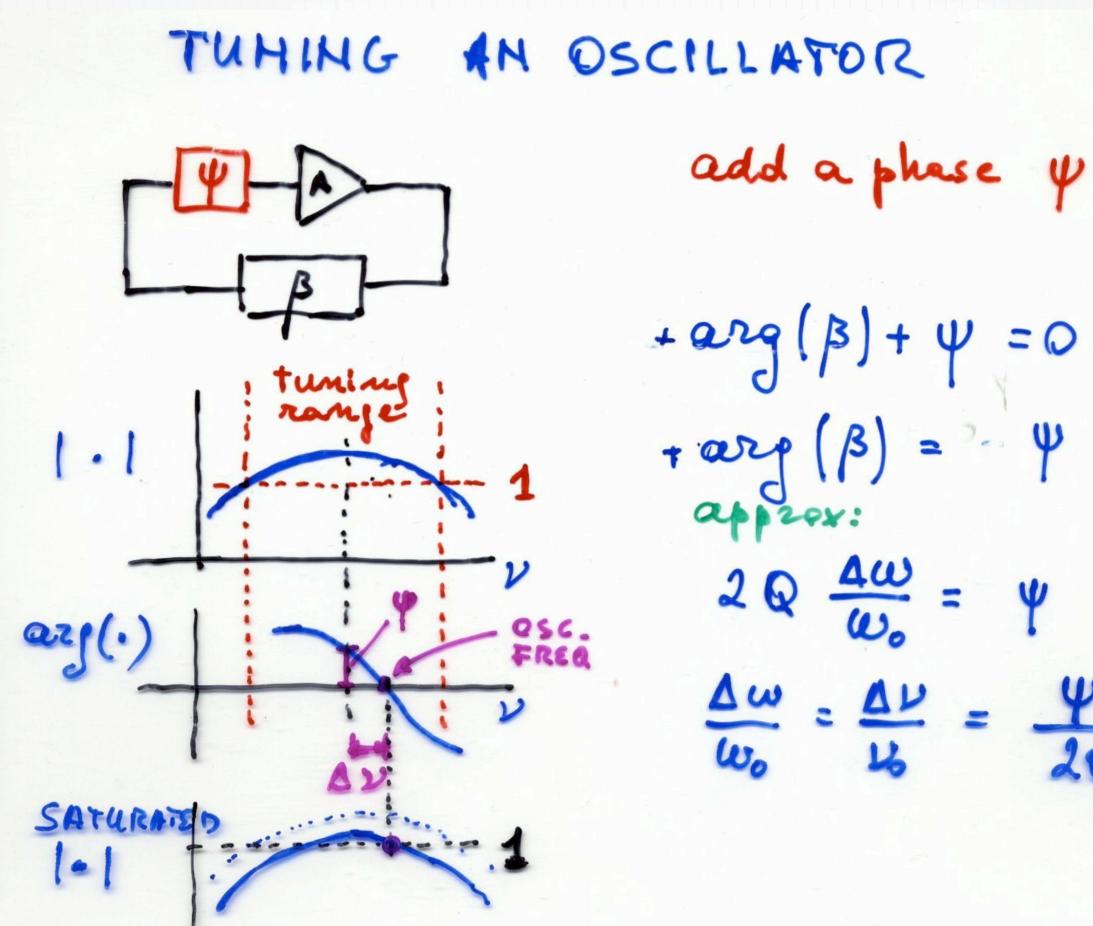
Barkhausen condition $A\beta = 1$ at ω_0 (phase matching)

The model also describes the negative-R oscillator





.



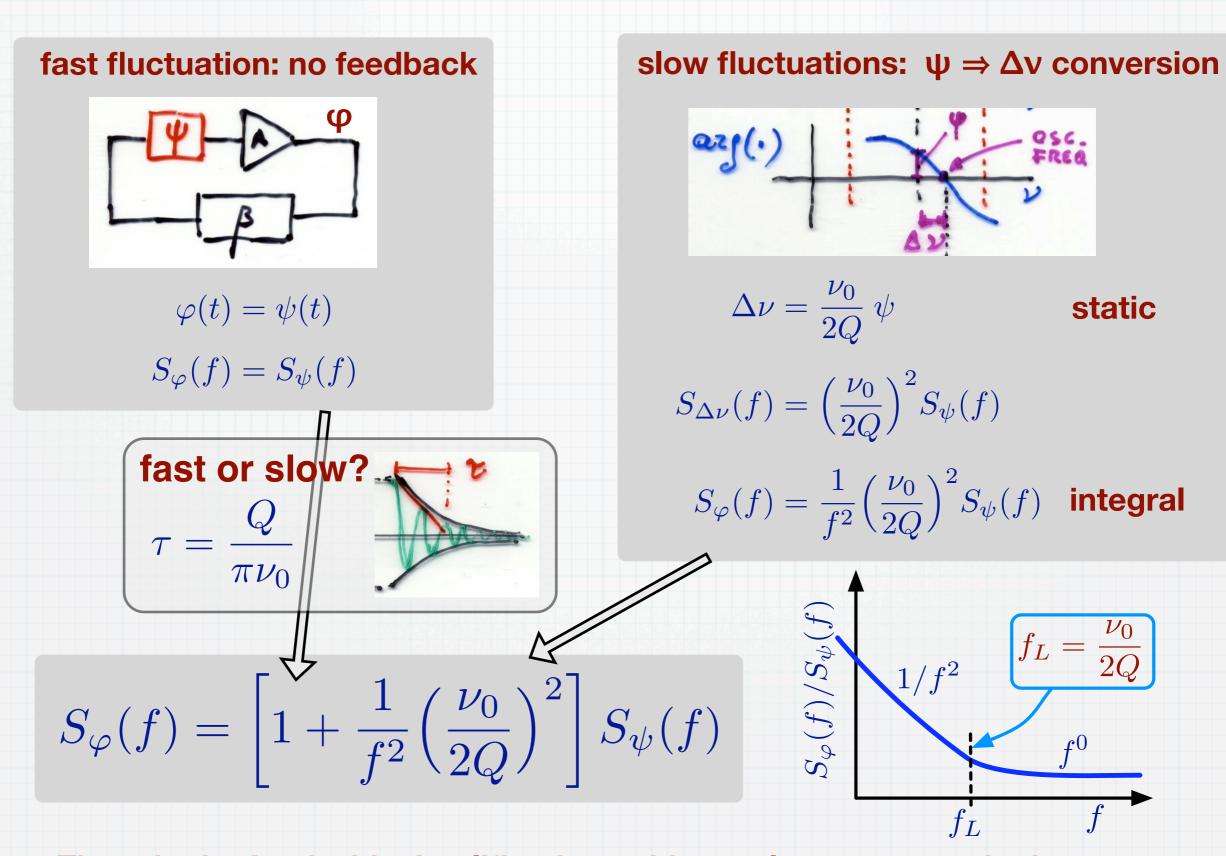
 $+arg(\beta)+\psi=0$ = ~ Y ψ

82

A02b

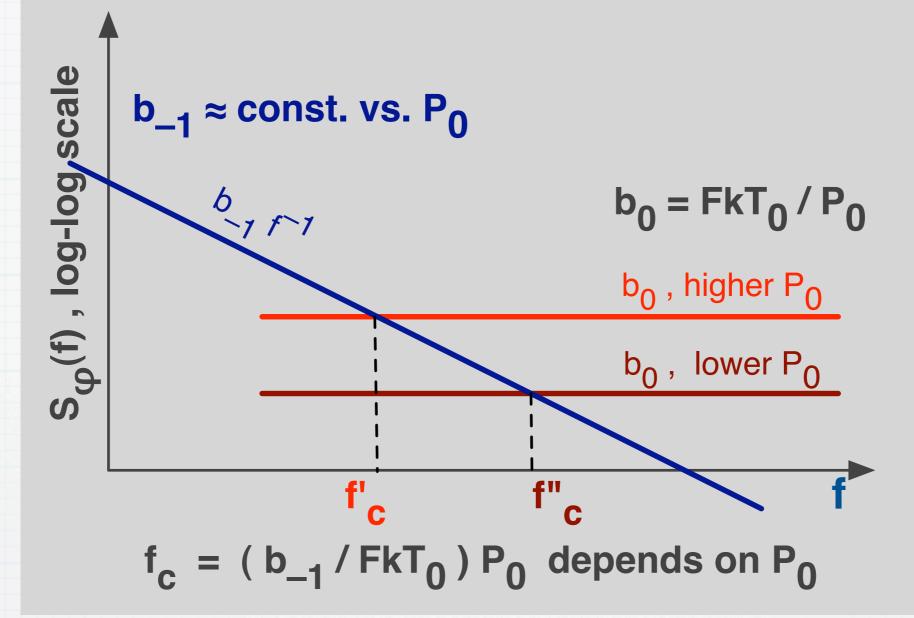
Heuristic approach

Heuristic derivation of the Leeson formula



Though obtained with simplifications, this result turns out to be is exact

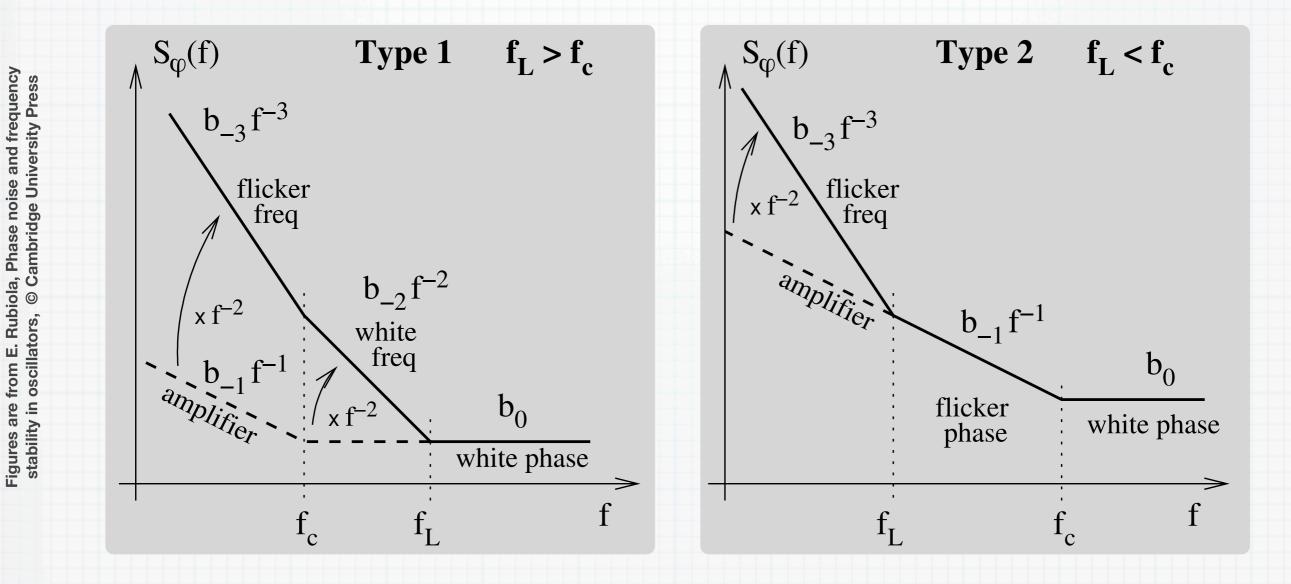
Amplifier white and flicker noise



photodetector $b_{-1} \approx -120 \text{ dBrad}^2/\text{Hz}$ Rubiola & al. IEEE Trans. MTT (& JLT) 54 (2) p.816–820 (2006)

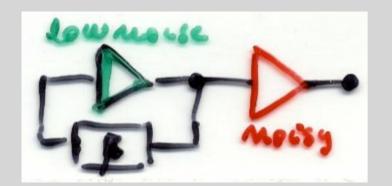
typical amplifier phase noise						
RATE	GaAs HBT	SiGe HBT	Si bipolar			
	microwave	microwave	HF/UHF			
fair	-100		-120			
good best	-110	-120	-130			
best	-120	-130	-150			
	un	it $dBrad^2/Hz$	Z			

Including the sustaining-amplifier noise

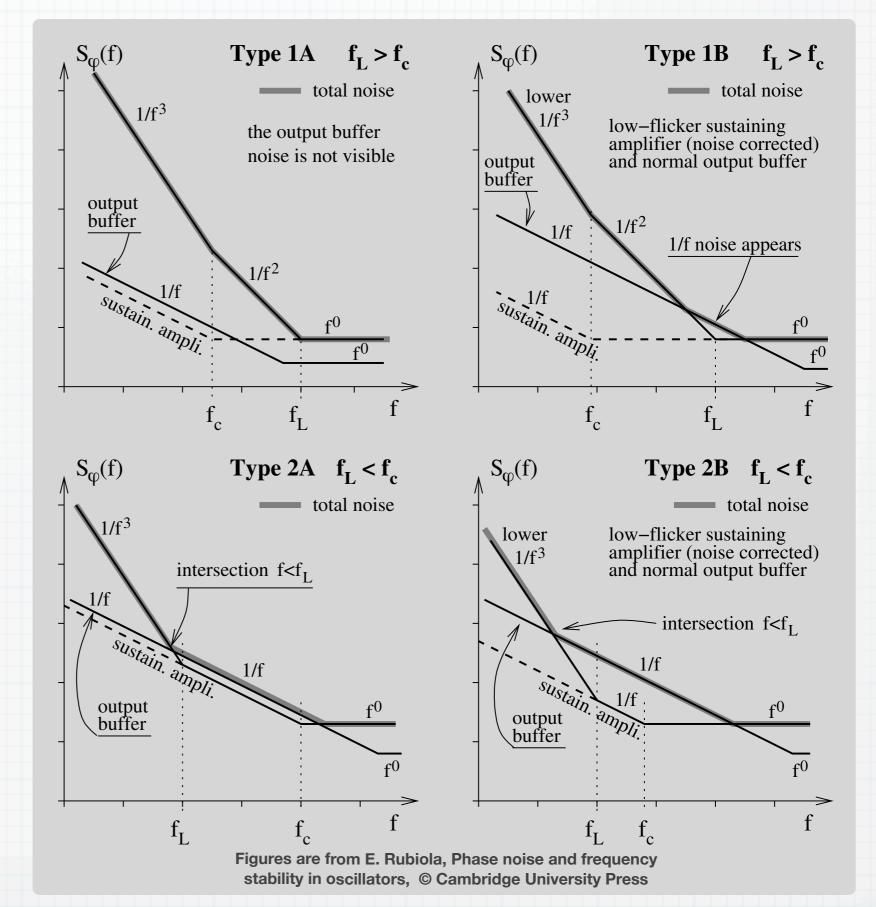


The sustaining-amplifier noise is $S_{\varphi}(f) = b_0 + b_{-1}/f$ (white and flicker)

The effect of the output buffer

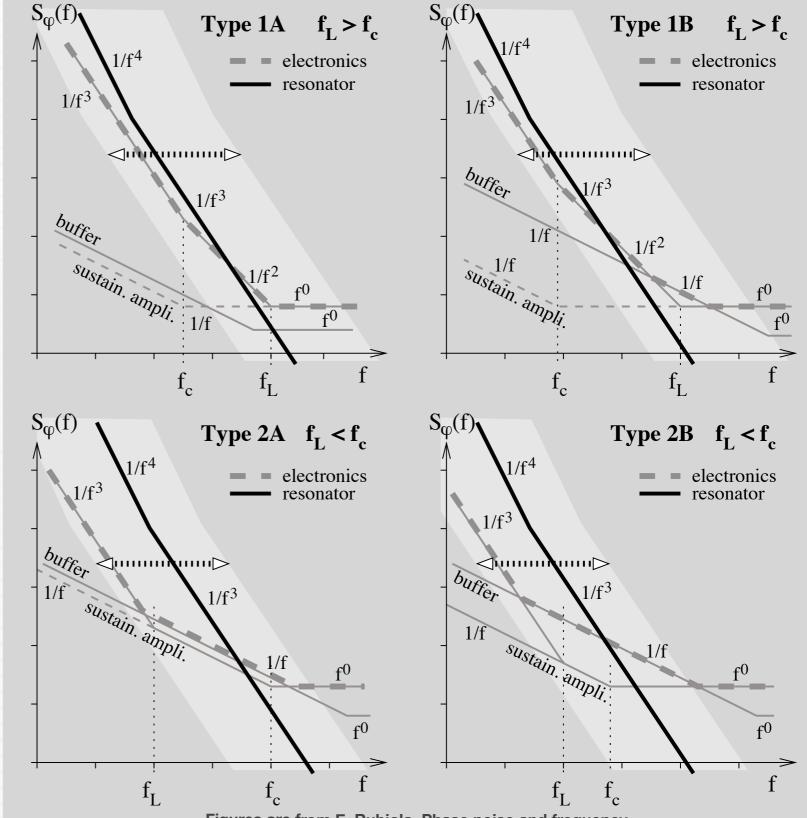


Cascading two amplifiers, flicker noise adds as $S_{\phi}(f) = [S_{\phi}(f)]_1 + [S_{\phi}(f)]_2$



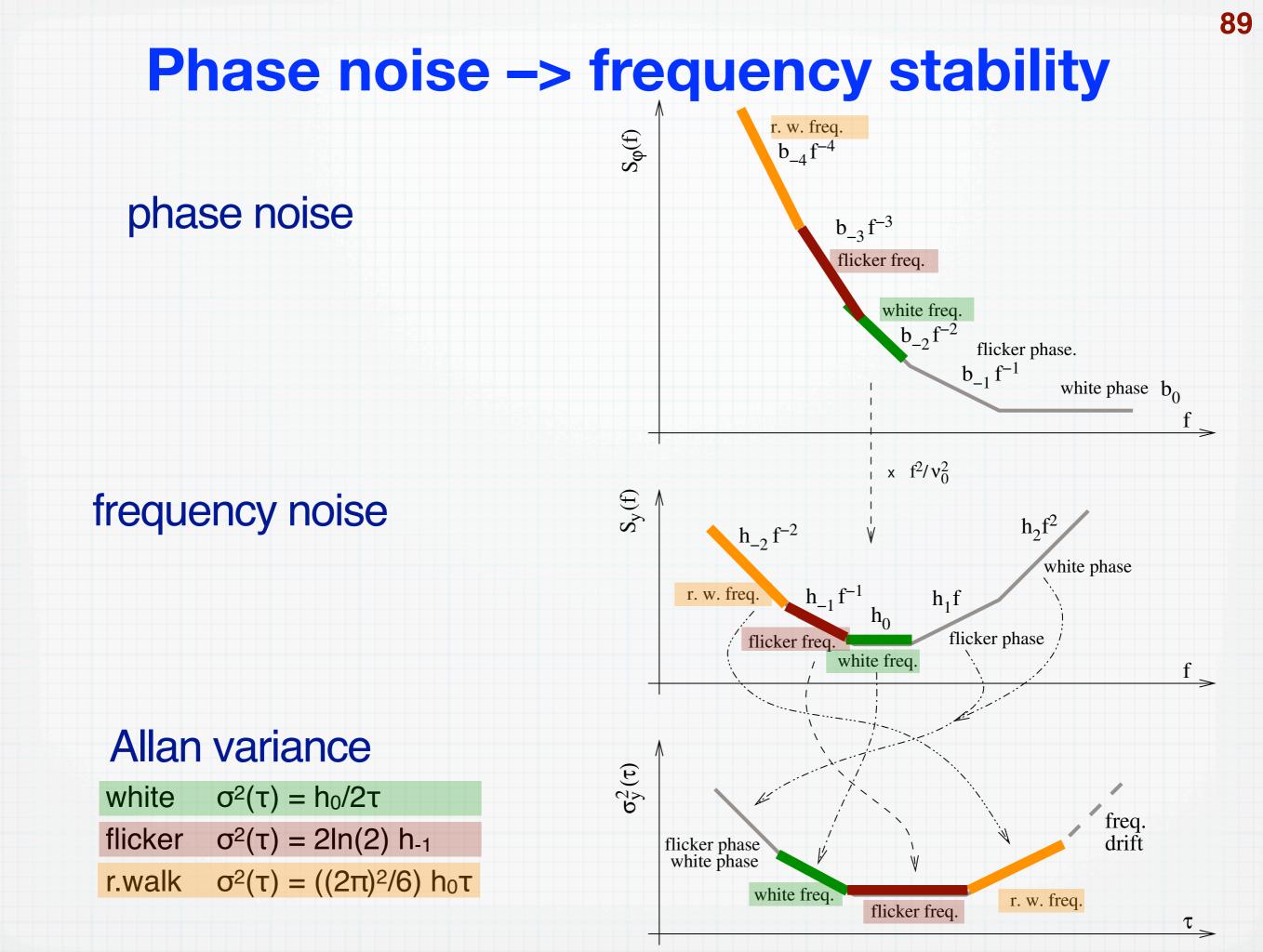
The resonator natural frequency fluctuates

- The oscillator tracks the resonator natural frequency, hence its fluctuations
- The fluctuations of the resonator natural frequency contain 1/f and 1/f² (frequency flicker and random walk), thus 1/f³ and 1/f⁴ of the oscillator phase
- The resonator bandwidth does not apply to the natural-frequency fluctuation.
 (Tip: an oscillator can be frequency modulated ar a rate >> fL)



88

Figures are from E. Rubiola, Phase noise and frequency stability in oscillators, © Cambridge University Press



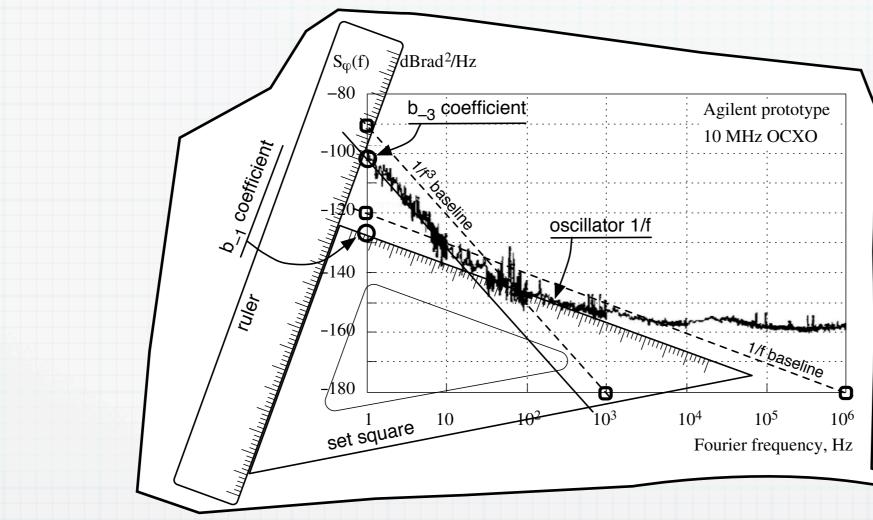
Oscillator Hacking

Analysis of commercial oscillators

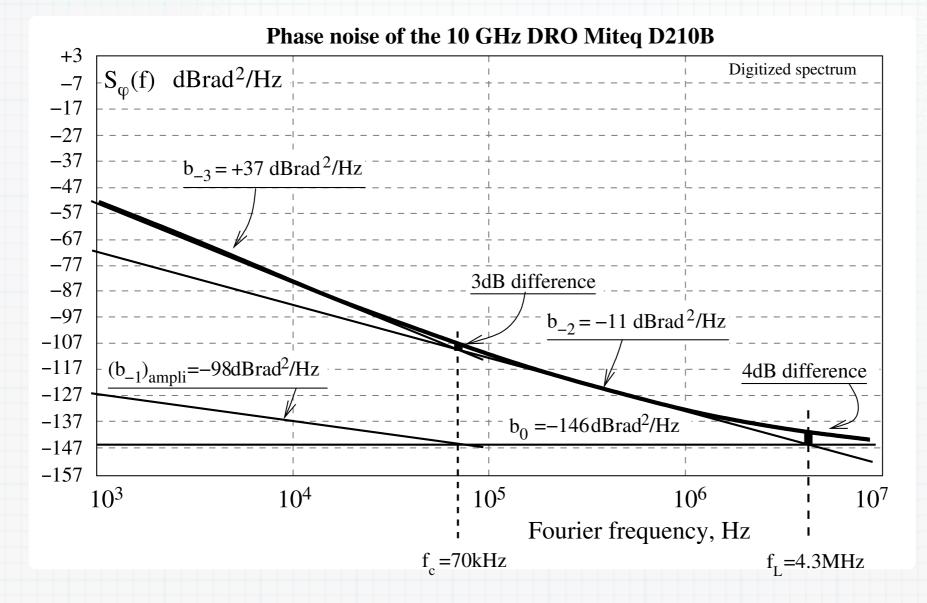
The purpose of this section is to help to understand the oscillator inside from the phase noise spectra, plus some technical information. I have chosen some commercial oscillators as an example.

The conclusions about each oscillator represent only my understanding based on experience and on the data sheets published on the manufacturer web site.

You should be aware that this process of interpretation is not free from errors. My conclusions were not submitted to manufacturers before writing, for their comments could not be included.



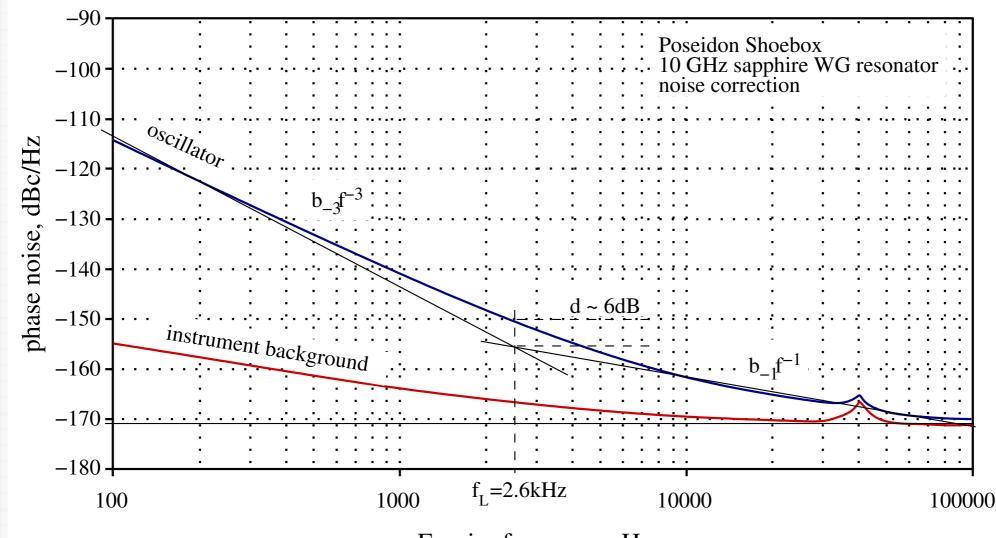
Miteq D210B, 10 GHz DRO



tables $\sigma^2_y = h_0/2\tau + 2\ln(2)h_{-1}$ $h_0 = b_{-2}/v_0^2$ $h_{-1} = b_{-3}/v_0^2$

- $kT_0 = 4 \times 10^{-21} \text{ W/Hz} (-174 \text{ dBm/Hz})$
- floor –146 dBrad²/Hz, guess F = 1.25 (1 dB) => $P_0 = 2 \mu W$ (–27 dBm)
- $f_L = 4.3 \text{ MHz}, f_L = v0/2Q \implies Q = 1160$
- $f_c = 70 \text{ kHz}$, $b_{-1}/f = b_0 \implies b_{-1} = 1.8 \times 10^{-10} (-98 \text{ dBrad}^2/\text{Hz})$ [sust.ampli]
- $h_0 = 7.9 \times 10^{-22}$ and $h_{-1} = 5 \times 10^{-17} => \sigma_y = 2 \times 10^{-11} / \sqrt{\tau} + 8.3 \times 10^{-9}$

Poseidon Scientific Instruments – Shoebox³ 10 GHz sapphire whispering-gallery (1)



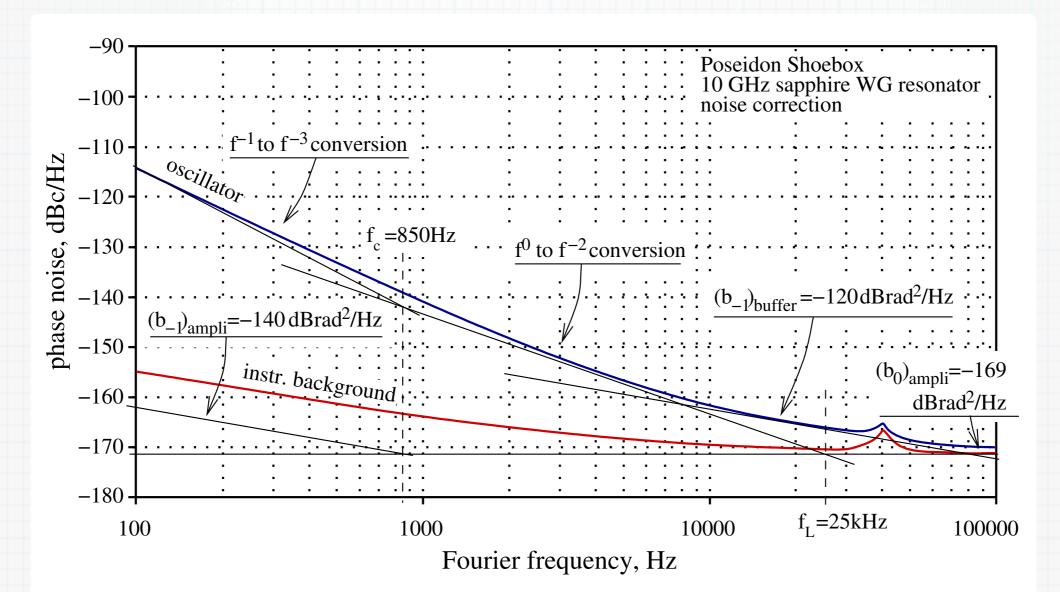
Fourier frequency, Hz

$f_L = v_0/2Q = 2.6 \text{ kHz} \Rightarrow Q = 1.8 \times 10^6$

This incompatible with the resonator technology. Typical Q of a sapphire whispering gallery resonator: 2×10⁵ @ 295K (room temp), 3×10⁷ @ 77K (liquid N), 4×10⁹ @ 4K (liquid He). In addition, d ~ 6 dB does not fit the power-law.

The interpretation shown is wrong, and the Leeson frequency is somewhere else

Poseidon Scientific Instruments – Shoebox⁴ 10 GHz sapphire whispering-gallery (2)

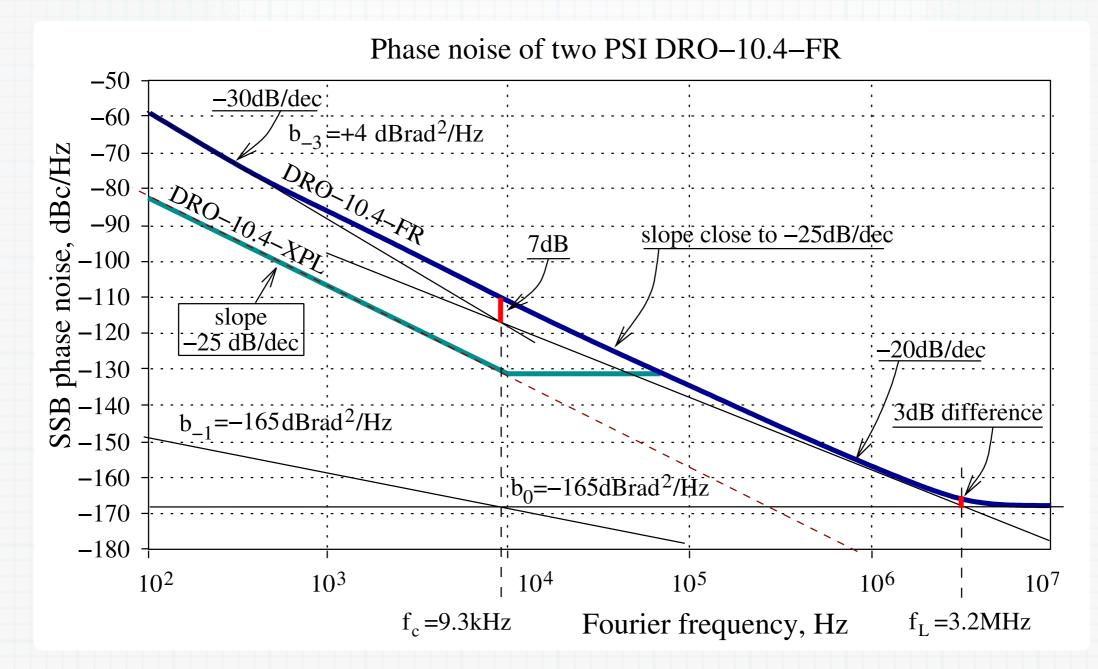


The 1/f noise of the output buffer is higher than that of the sustaining amplifier (a compex amplifier with interferometric noise reduction)

In this case both 1/f and 1/f² are present

white noise –169 dBrad²/Hz, guess F = 5 dB (interferometer) => P₀ = 0 dBm buffer flicker –120 dBrad²/Hz @ 1 Hz => good microwave amplifier $f_L = v_0/2Q = 25$ kHz => $Q = 2 \times 10^5$ (quite reasonable) $f_c = 850$ Hz => flicker of the interferometric amplifier –139 dBrad²/Hz @ 1 Hz

⁹⁵ 10 GHz dielectric resonator oscillator (DRO)



- floor –165 dBrad²/Hz, guess F = 1.25 (1 dB) => $P_0 = 160 \mu W$ (–8 dBm)
- $f_L = 3.2 \text{ MHz}, f_L = v0/2Q \implies Q = 625$

Phase noise

E. Rubiola,

from

<u>.</u>

The figure

Poseidon.

0

The spectrum is

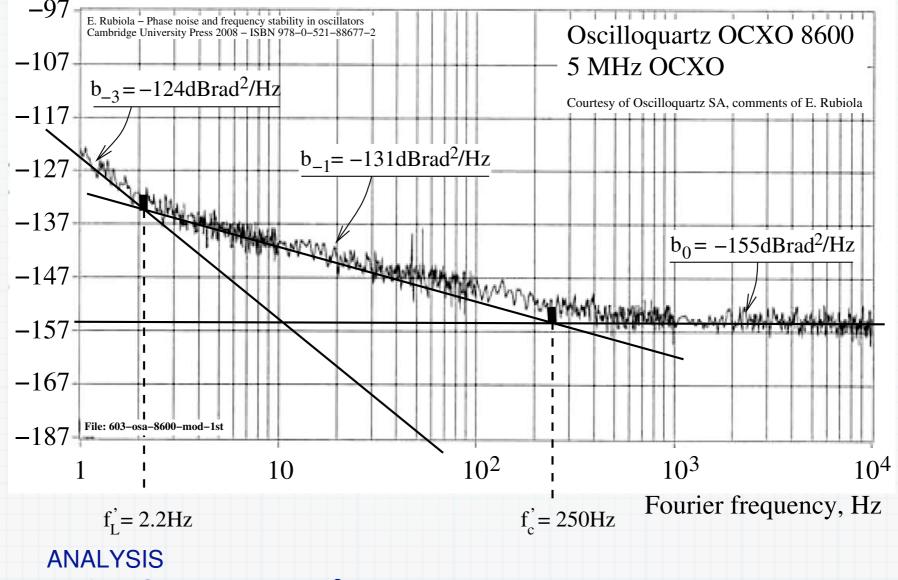
and frequency stability in oscillators,

© Cambridge University Press

• $f_c = 9.3 \text{ kHz}$, $b_{-1}/f = b_{0} => b_{-1} = 2.9 \times 10^{-13} (-125 \text{ dBrad}^2/\text{Hz})$ [sust.ampli, too low]

Slopes are not in agreement with the theory

Example – Oscilloquartz 8600 (wrong)



1 − floor $S_{\phi 0} = -155 \text{ dBrad}^2/\text{Hz}$, guess F = 1 dB \rightarrow P₀ = −18 dBm

2 – ampli flicker $S_{\phi} = -132 \text{ dBrad}^2/\text{Hz} @ 1 \text{ Hz} \rightarrow \text{good RF amplifier}$

 $3 - \text{merit factor } Q = v_0/2f_L = 5 \cdot 10^6/5 = 10^6$ (seems too low)

4 - take away some flicker for the output buffer:

* flicker in the oscillator core is lower than -132 dBrad²/Hz @ 1 Hz

* fL is higher than 2.5 Hz

* the resonator Q is lower than 10⁶

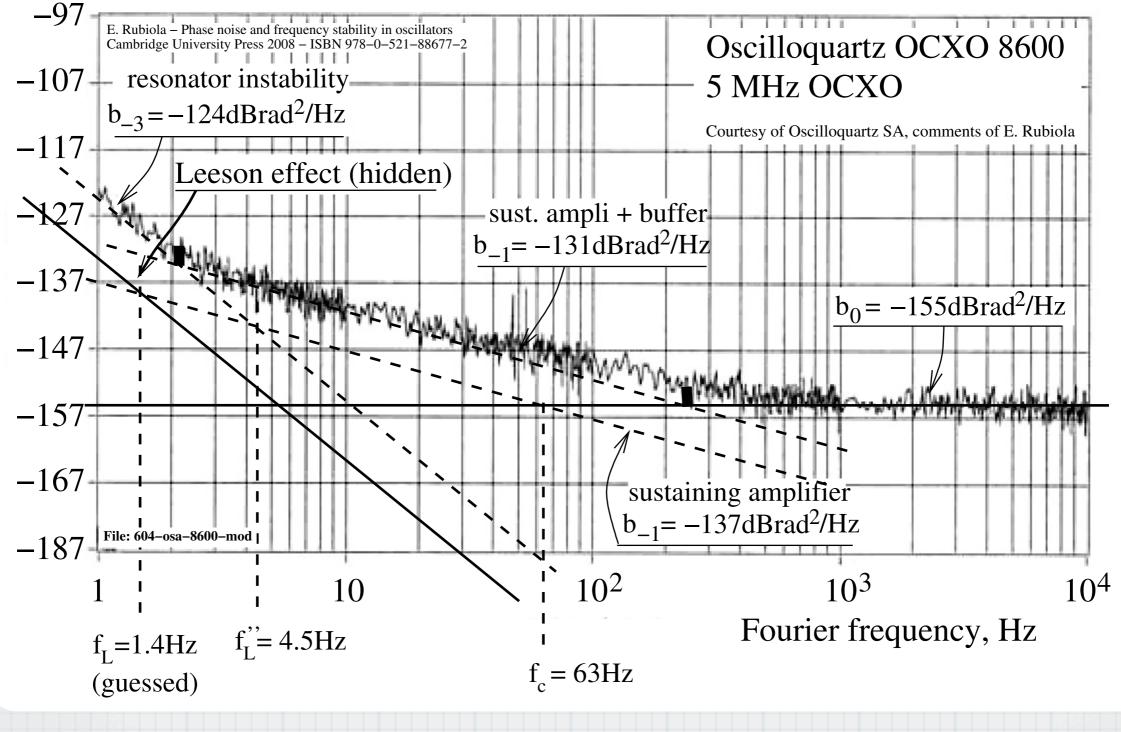
This is inconsistent with the resonator technology (expect $Q > 10^6$).

The true Leeson frequency is lower than the frequency labeled as $f_{\mbox{\scriptsize L}}$

The 1/f³ noise is attributed to the fluctuation of the quartz resonant frequency

Example – Oscilloquartz 8600 (right)

 $S_{\phi}(f) dBrad^2/Hz$



© Cambridge University Press

The figure is from E. Rubiola, Phase

Oscilloquartz.

0

F=1dB b₀ => P₀=-18 dBm

 $(b_{-3})_{osc} \implies \sigma_y = 1.5 \times 10^{-13}, Q = 5.6 \times 10^5 (too low)$ $Q^{2}=1.8 \times 10^{6} \Rightarrow \sigma_{y}=4.6 \times 10^{-14}$ Leeson (too low)

Example – Oscilloquartz 8607

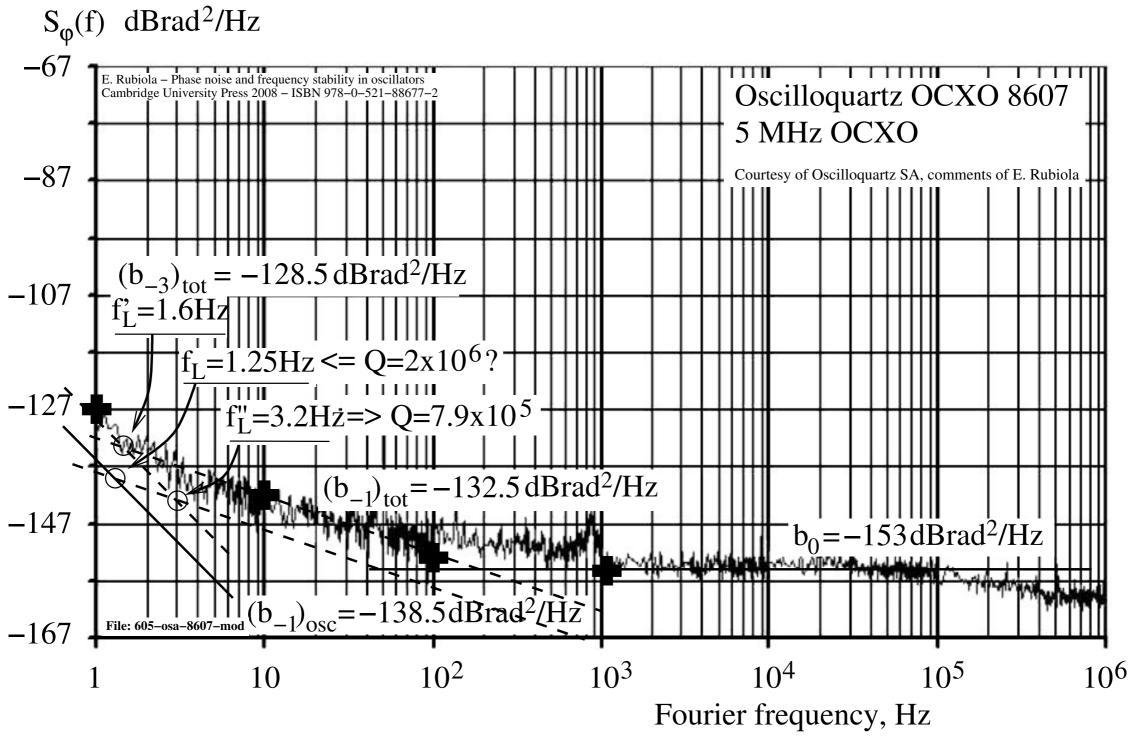
noise and frequency stability in oscillators, © Cambridge University Press

Oscilloquartz.

0

The spectrum is

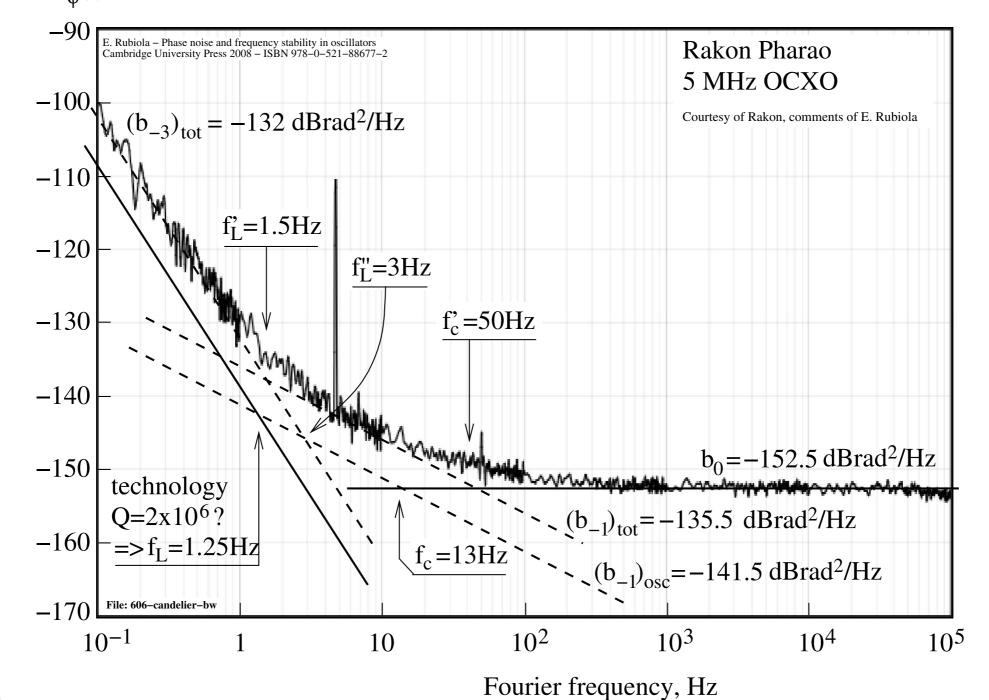
The figure is from E. Rubiola, Phase



F=1dB b₀ => P₀=-20 dBm

Example – CMAC Pharao

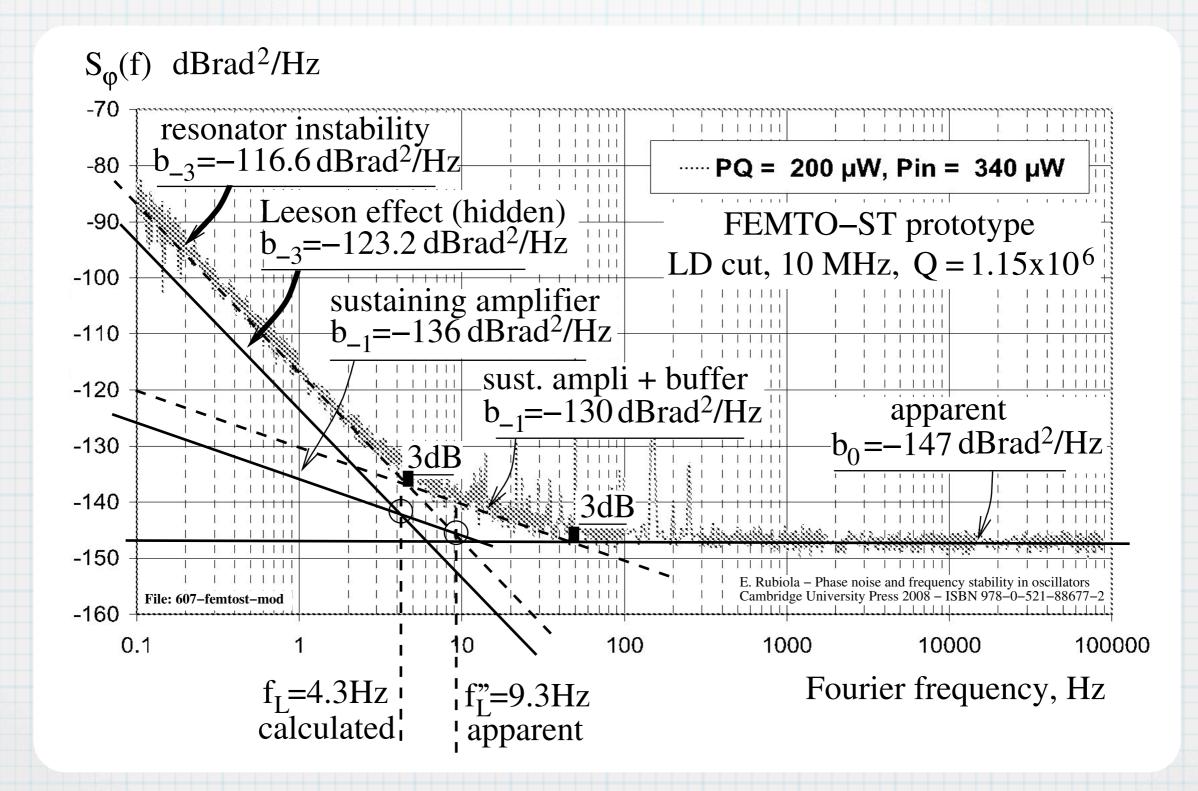
 $S_{\phi}(f) dBrad^2/Hz$



F=1dB b₀ => P₀=-20.5 dBm

E. Rubiola, Phase noise © Cambridge University Press is from The figure and frequency stability in oscillators, © Poseidon. The spectrum is

Example – FEMTO-ST prototype



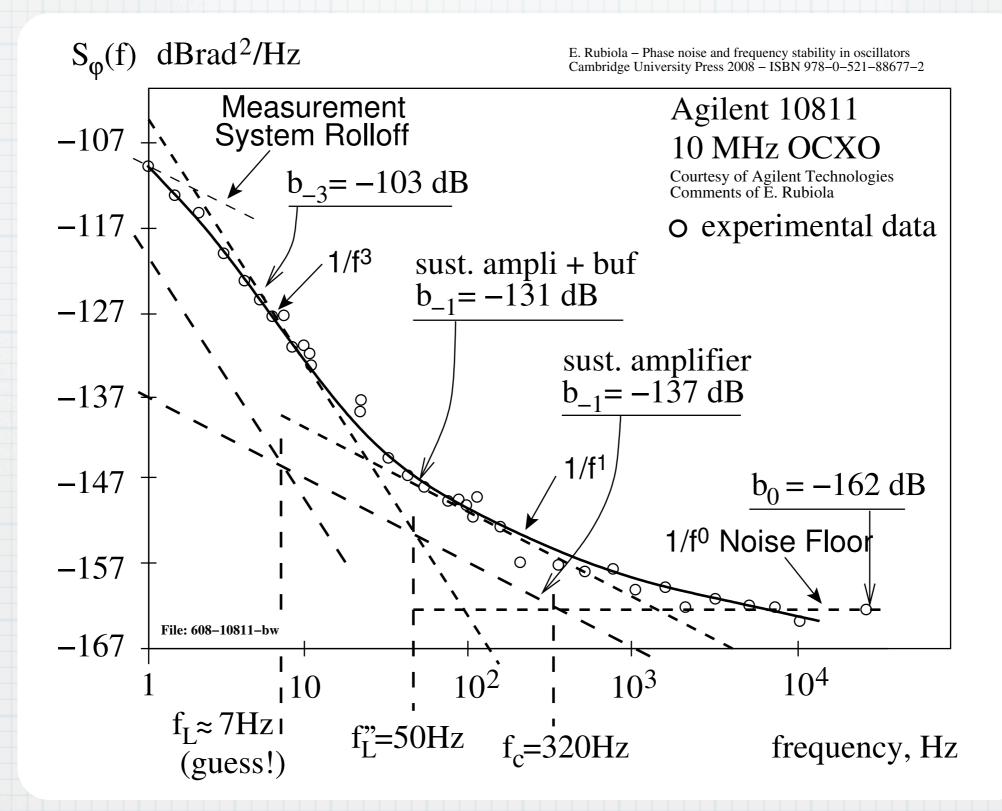
 $F=1dB b_0 => P_0 = -26 dBm$

(there is a problem)

 $(b_{-3})_{osc} \implies \sigma_y = 1.7 \times 10^{-13}, Q = 5.4 \times 10^5 \text{ (too low)}$ Q=1.15x10⁶ => $\sigma_y = 8.1 \times 10^{-14}$ Leeson (too low)

100

Example – Agilent 10811

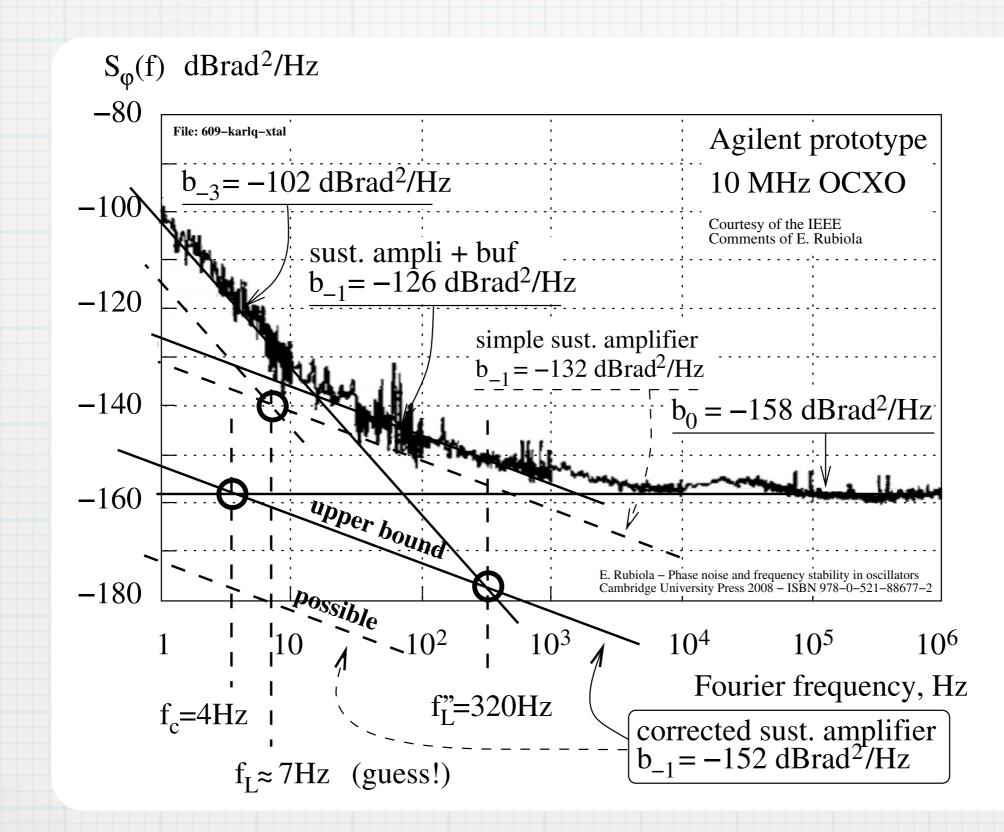


 $F=1dB \ b_0 => P_0 = -11 \ dBm$

101

The figure is from E. Rubiola, Phase noise © Cambridge University Press and frequency stability in oscillators, © Agilent. The spectrum is

Example – Agilent prototype



F=1dB b₀ => P₀=-12 dBm

102

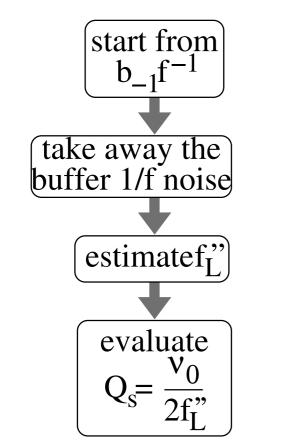
The figure is from E. Rubiola, Phase noise and © Cambridge University Press frequency stability in oscillators, © IEEE. <u>.</u> The spectrum

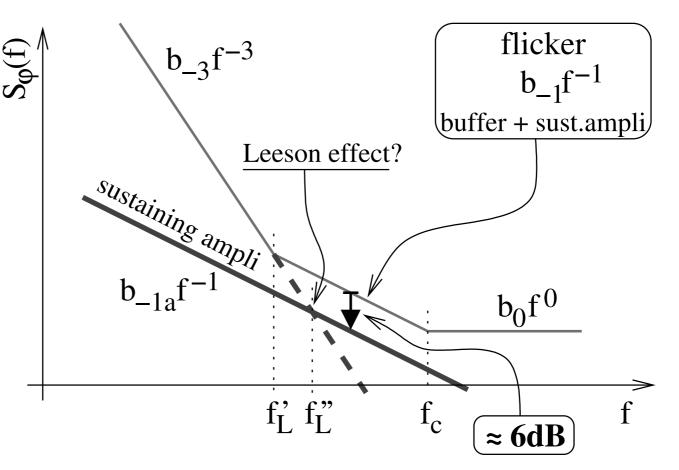
Interpretation of S_{\varphi}(f)

Only quartz-crystal oscillators

E. Rubiola – Phase noise and frequency stability in oscillators Cambridge University Press 2008 – ISBN 978–0–521–88677–2

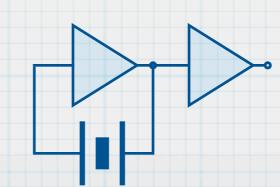
³-2 after parametric estimation





File: 602a-xtal-interpretation

Sanity check: – power P₀ at amplifier input – Allan deviation σ_v (floor)



2–3 buffer stages => the sustaining amplifier contributes ≤ 25% of the total 1/f noise

[1]

-150

real phase-noise spectrum

Frequency [Hz

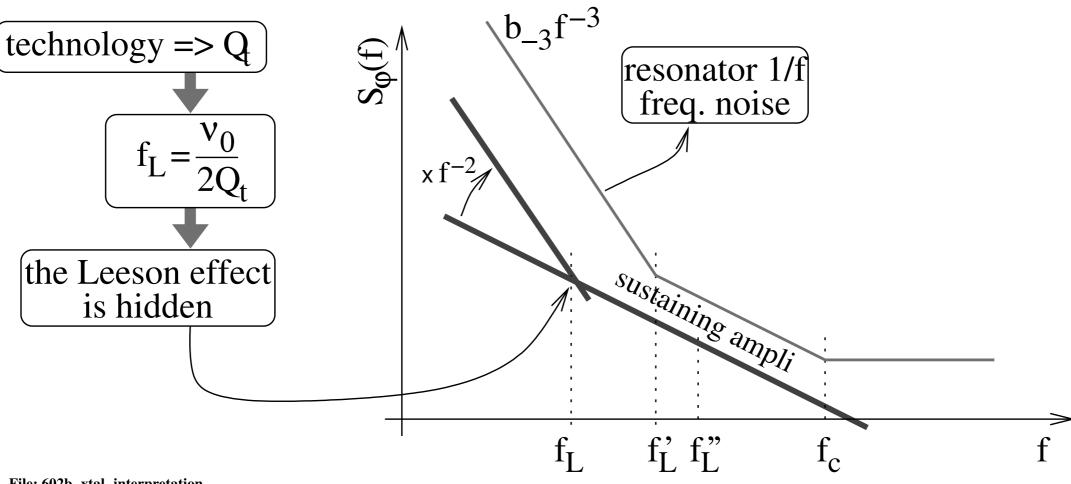
103

Interpretation of S_{\varphi}(f) [2]

104

Only quartz-crystal oscillators

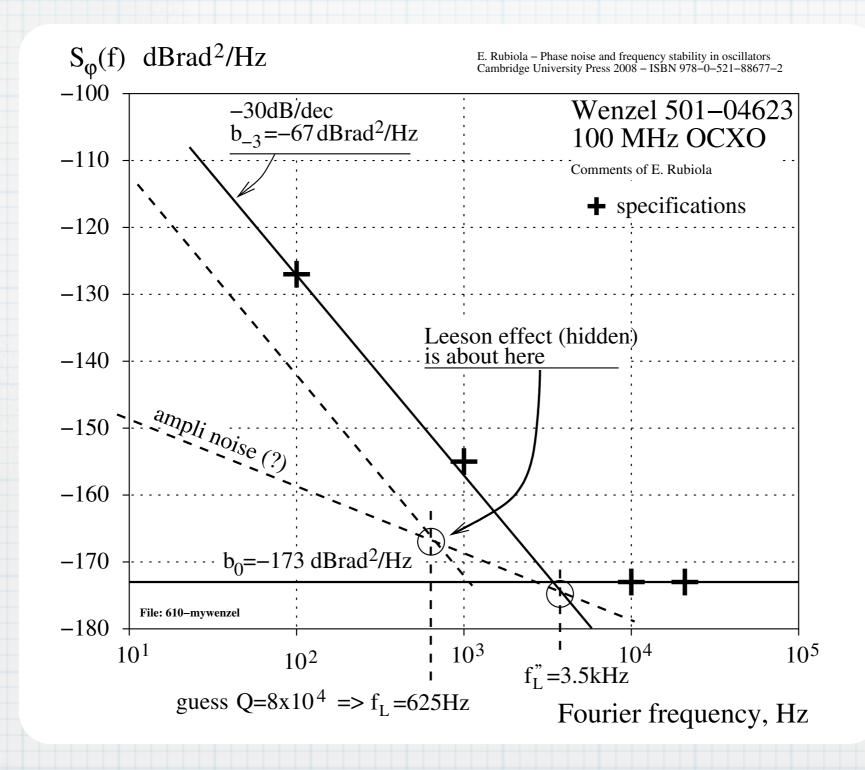
E. Rubiola – Phase noise and frequency stability in oscillators Cambridge University Press 2008 – ISBN 978–0–521–88677–2



File: 602b-xtal-interpretation

Technology suggests a merit factor Q_t . In all xtal oscillators we find $Q_t \gg Q_s$

Example – Wenzel 501-04623



Data are from the manufacturer web site. Interpretation and mistakes are of the authors.

Estimating (b₋₁)_{ampli} is difficult because there is no visible 1/f region

F=1dB b₀ => P₀=0 dBm

105

Quartz-oscillator summary

106

Oscillator	$ u_0$	$(b_{-3})_{ m tot}$	$(b_{-1})_{\rm tot}$	$(b_{-1})_{\mathrm{amp}}$	f_L'	f_L''	Q_s	Q_t	f_L	$(b_{-3})_{ m L}$	R	Note
Oscilloquart 8600	-	-124.0	-131.0	-137.0	2.24	4.5	5.6×10^{5}	1.8×10^{6}	1.4	-134.1	10.1	(1)
Oscilloquart 8607	^{zz} 5	-128.5	-132.5	-138.5	1.6	3.2	7.9×10^{5}	2×10^{6}	1.25	-136.5	8.1	(1)
Rakon Pharao	5	-132.0	-135.5	-141.1	1.5	3	8.4×10^{5}	2×10^{6}	1.25	-139.6	7.6	(2)
FEMTO-ST LD prot.	10	-116.6	-130.0	-136.0	4.7	9.3	5.4×10^{5}	1.15×10^{6}	4.3	-123.2	6.6	(3)
Agilent 10811	10	-103.0	-131.0	-137.0	25	50	1×10^{5}	$7{\times}10^5$	7.1	-119.9	16.9	(4)
Agilent prototype	10	-102.0	-126.0	-132.0	16	32	1.6×10^{5}	7×10^5	7.1	-114.9	12.9	(5)
Wenzel 501-04623	100	-67.0	-132?	-138?	1800	3500	1.4×10^{4}	8×10^{4}	625	-79.1	15.1	(6)
unit	MHz	$dB \\ rad^2/Hz$	$dB m rad^2/Hz$	$dB \\ rad^2/Hz$	Hz	Hz	(none)	(none)	Hz	dB rad^2/Hz	dB	

Notes

(1) Data are from specifications, full options about low noise and high stability.

(2) Measured by Rakon on a sample. Rakon confirmed that $2 \times 10^6 < Q < 2.2 \times 10^6$ in actual conditions.

(3) LD cut, built and measured in our laboratory, yet by a different team. Q_t is known.

(4) Measured by Hewlett Packard (now Agilent) on a sample.

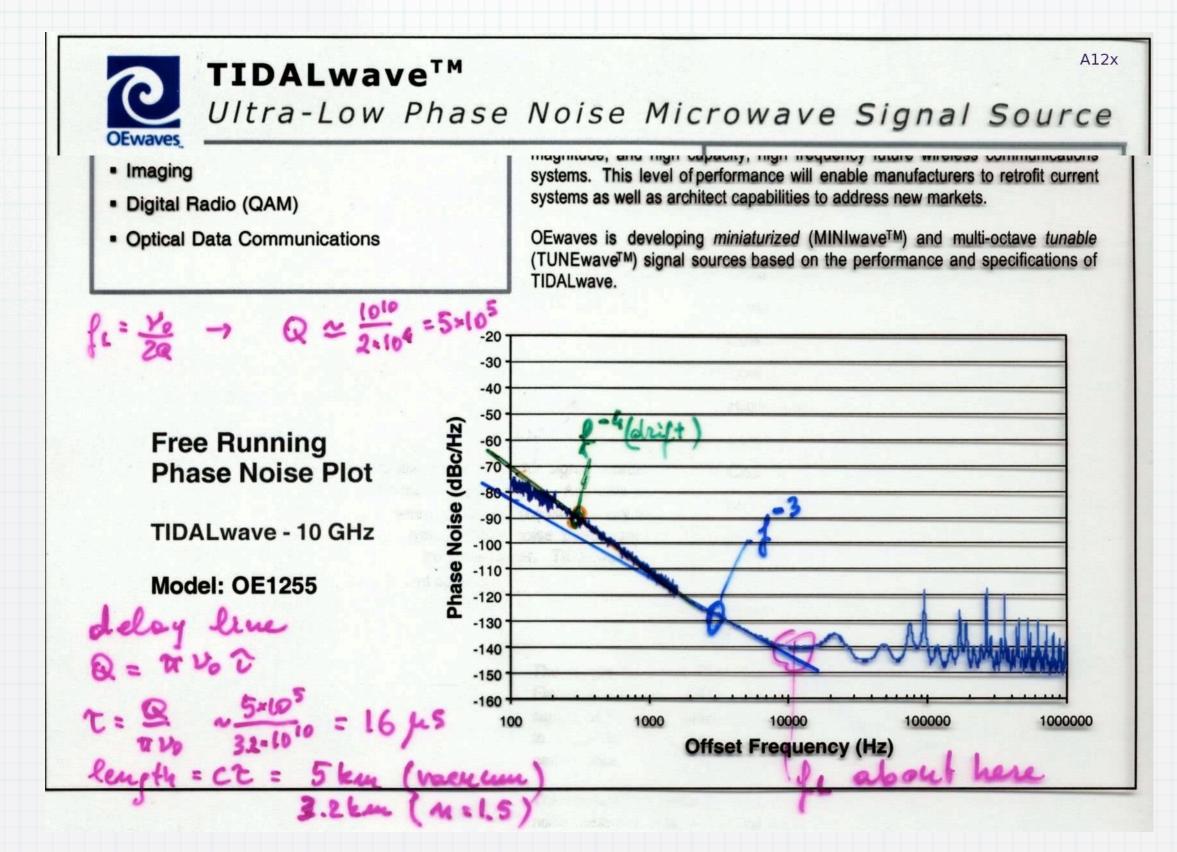
(5) Implements a bridge scheme for the degeneration of the amplifier noise. Same resonator of the Agilent 10811.

(6) Data are from specifications.

$$R = \frac{(\sigma_y)_{\text{oscill}}}{(\sigma_y)_{\text{Leeson}}}\Big|_{\text{floor}} = \sqrt{\frac{(b_{-3})_{\text{tot}}}{(b_{-3})_L}} = \frac{Q_t}{Q_s} = \frac{f_L''}{f_L}$$

The Table is from E. Rubiola, Phase noise and frequency stability in oscillators, © Cambridge University Press

Opto-electronic oscillator



Courtesy of OEwaves (handwritten notes are mine). Cut from the oscillator specifications available at the URL http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf

107

Resonator theory

108

Resonator – time domain

 ω_n

Q

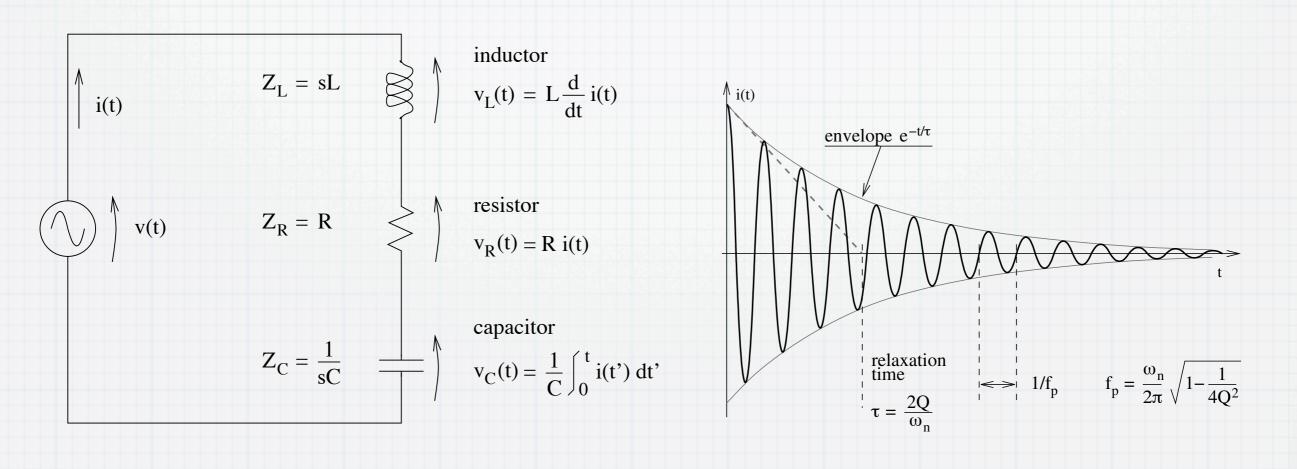
au

$$\ddot{x} + \frac{\omega_n}{Q}\dot{x} + \omega_n^2 x = \frac{\omega_n}{Q}\dot{v}(t)$$

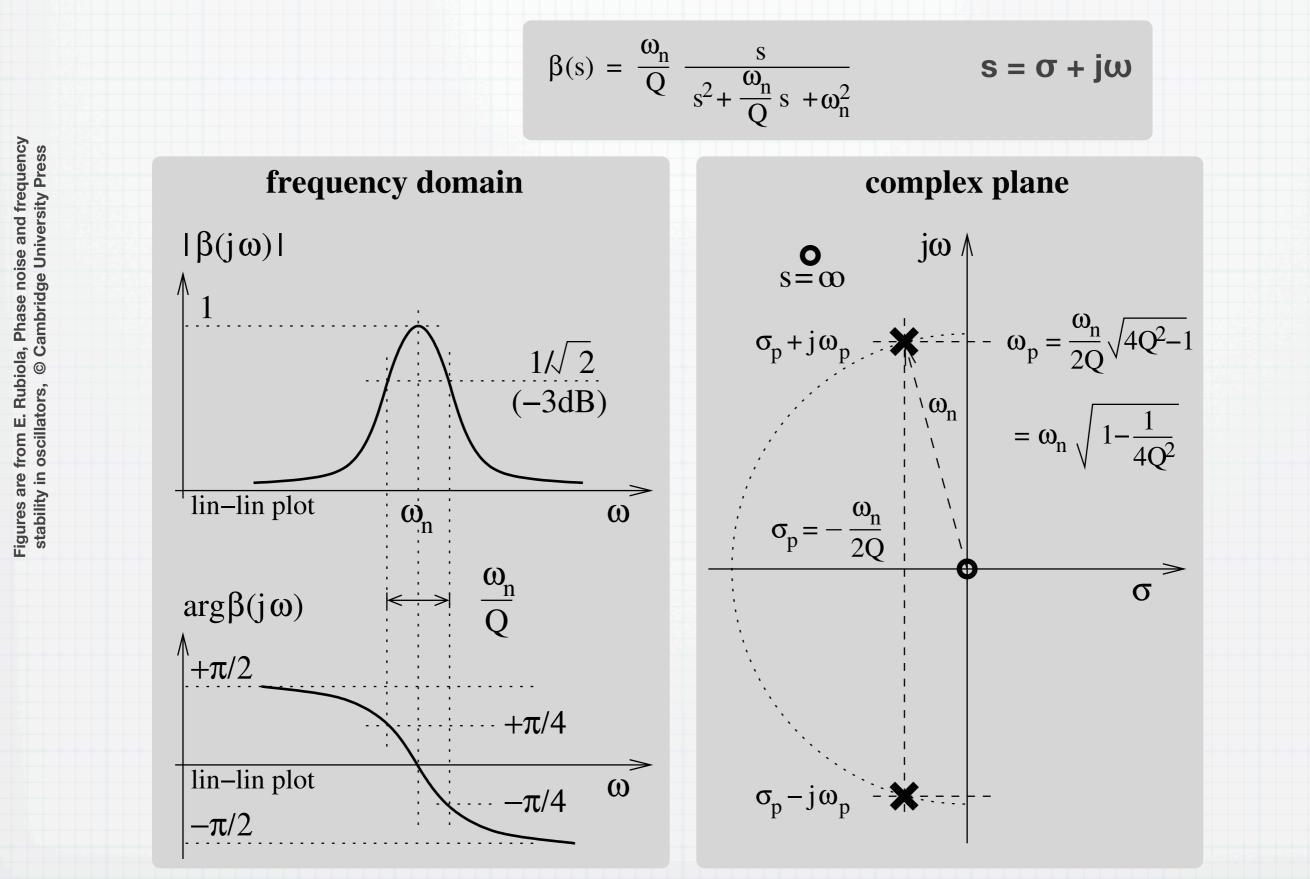
shorthand: $f = \omega/2\pi$

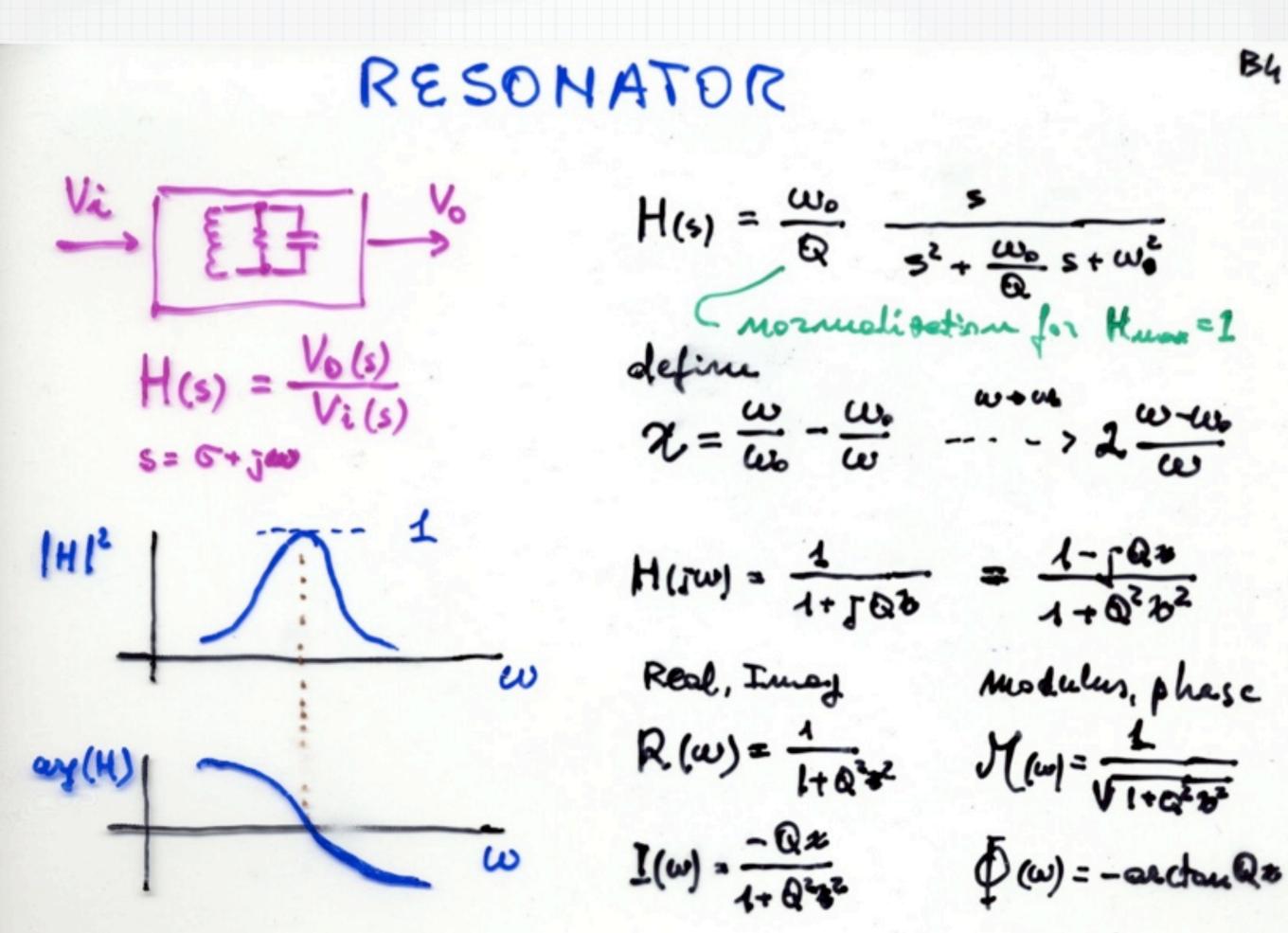
Figures are from E. Rubiola, Phase noise and frequency stability in oscillators, © Cambridge University Press

natural frequency quality factor relaxation time $\tau = \frac{2Q}{\omega_n}$ free-decay pseudofrequency ω_p $\omega_p = \omega_n \sqrt{1 - 1/4Q^2}$

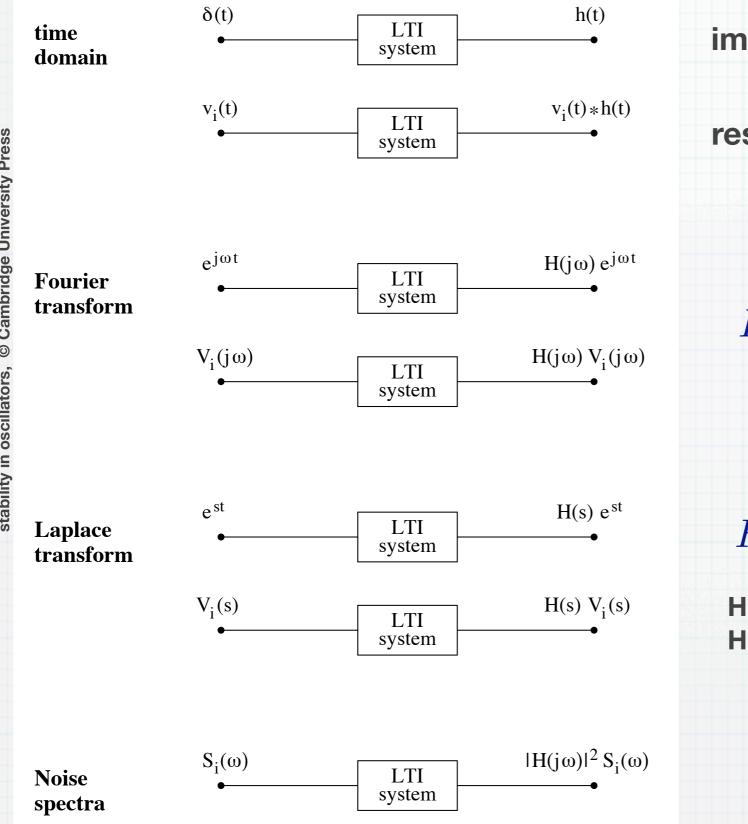


Resonator – frequency domain



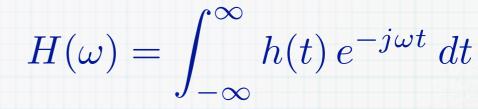


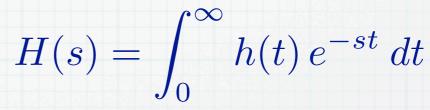
Linear time-invariant (LTI) systems



impulse response

response to the generic signal v_i(t)

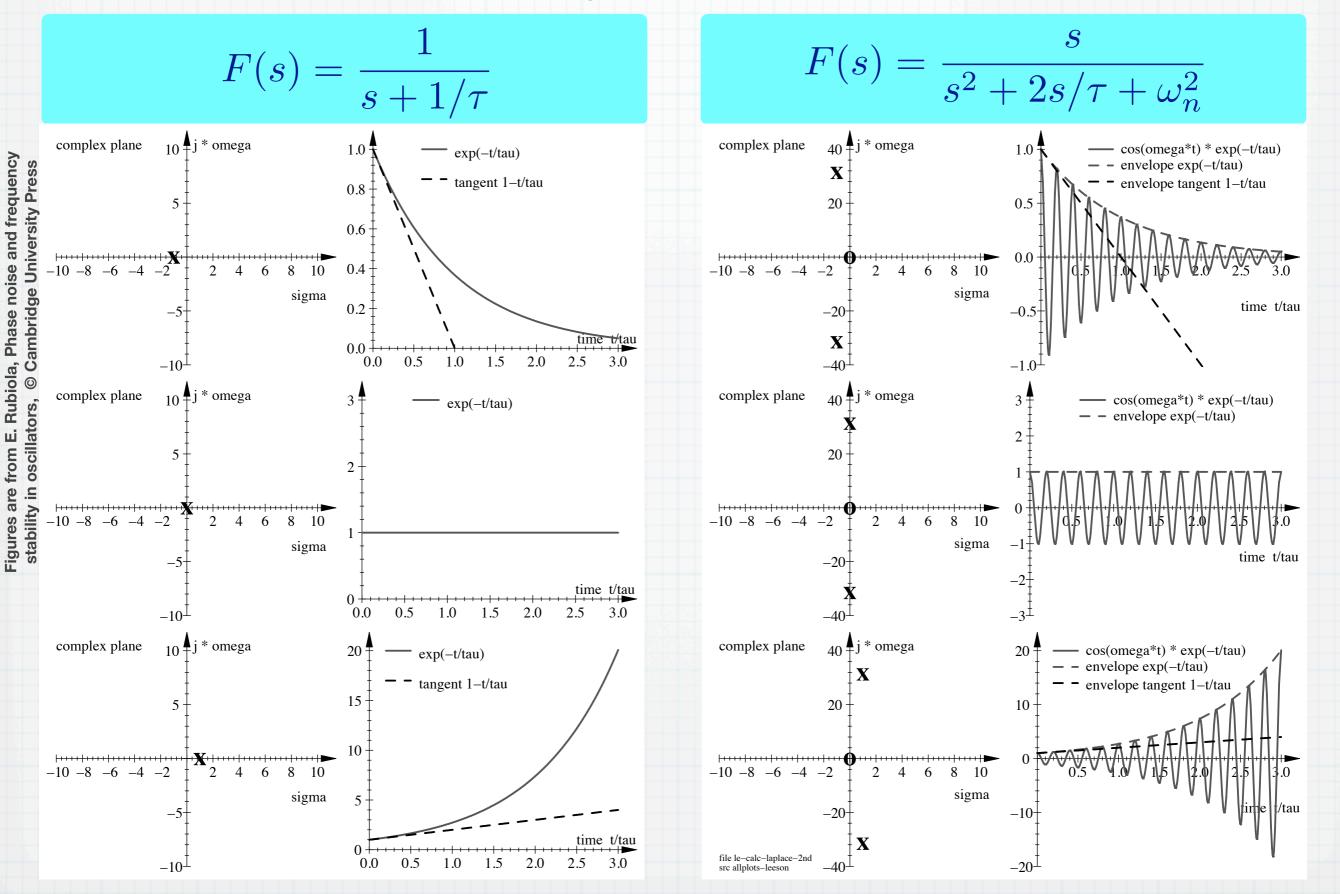




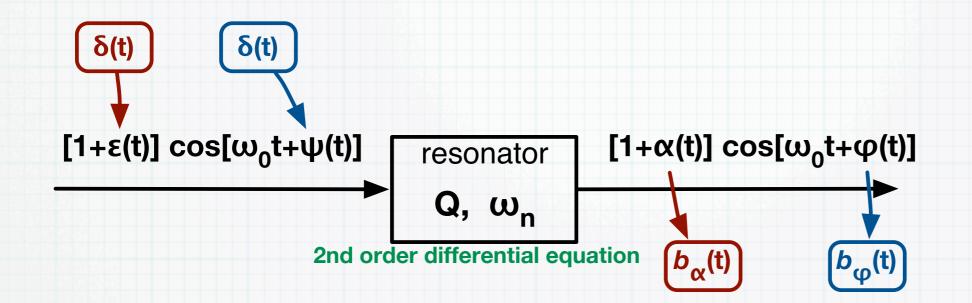
H(s), $s=\sigma+j\omega$, is the analytic continuation of H(ω) for causal system, where h(t)=0 for t<0

Laplace-transform patterns

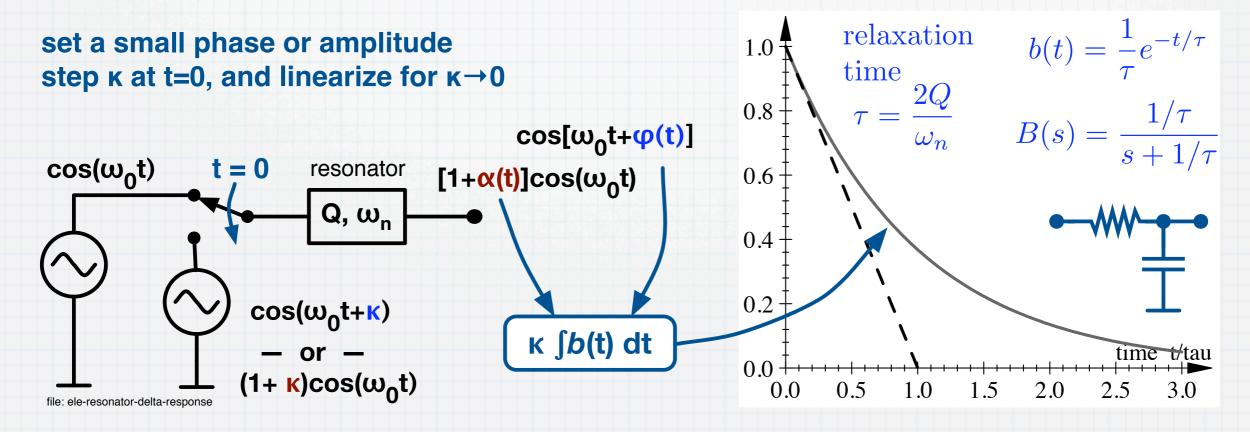
Fundamental theorem of complex algebra: F(s) is completely determined by its roots



Resonator impulse response

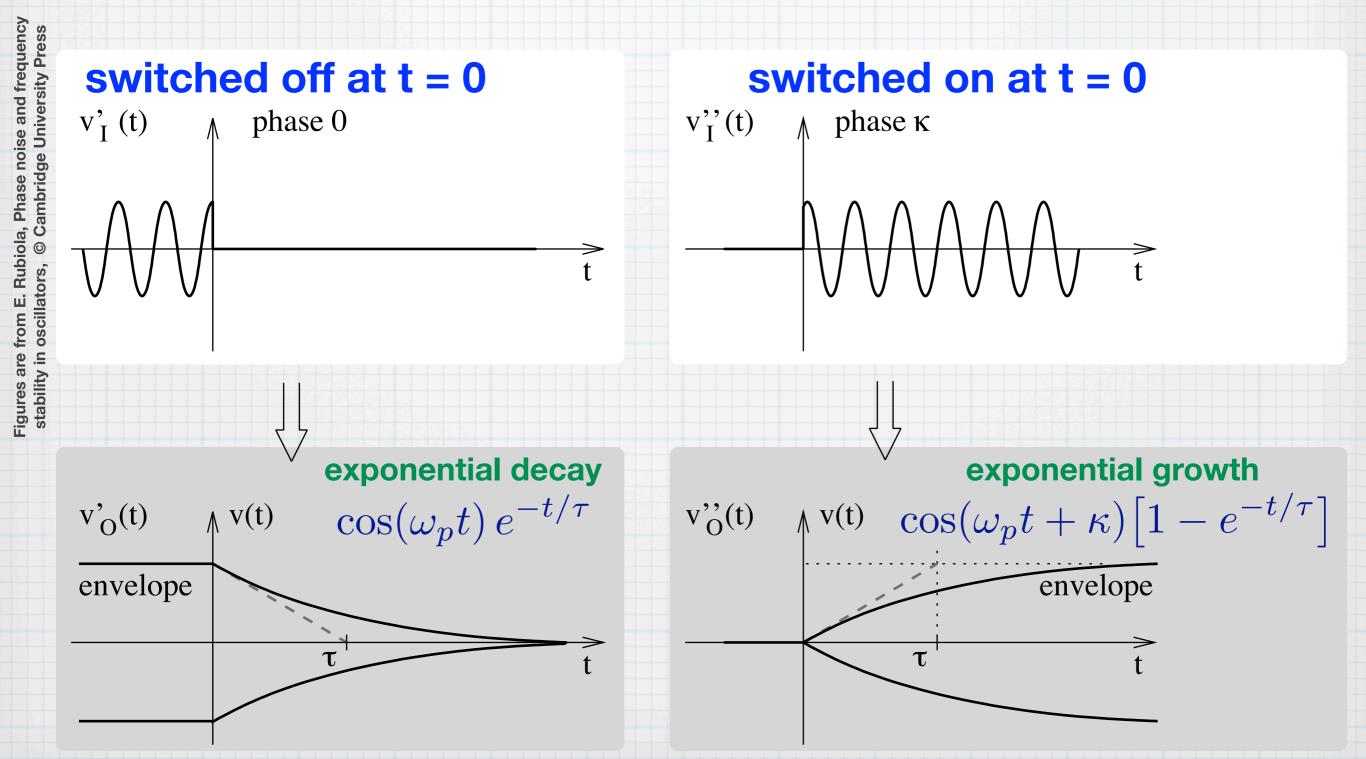


Cannot figure out a $\delta(t)$ of phase or amplitude? Use a step and differentiate



Response to a phase step к

A phase step is equivalent to switching a sinusoid off at t = 0, and switching a shifted sinusoid on at t=0



Resonator impulse response ($\omega_0 = \omega_n$ **)**

$$\begin{aligned} v_i(t) &= \underbrace{\cos(\omega_0 t) \mathfrak{u}(-t)}_{\text{switched off at } t = 0} + \underbrace{\cos(\omega_0 t + \kappa) \mathfrak{u}(t)}_{\text{switched on at } t = 0} & \text{phase step } \kappa \text{ at } t = 0 \end{aligned}$$

$$\begin{aligned} v_o(t) &= \cos(\omega_p t) e^{-t/\tau} + \cos(\omega_p t + \kappa) \left[1 - e^{-t/\tau}\right] & t > 0 & \text{output} \end{aligned}$$

$$\begin{aligned} v_o(t) &= \cos(\omega_p t) - \kappa \sin(\omega_p t) \left[1 - e^{-t/\tau}\right] & \kappa \to 0 & \text{linearize} \end{aligned}$$

$$\begin{aligned} v_o(t) &= \cos(\omega_0 t) - \kappa \sin(\omega_0 t) \left[1 - e^{-t/\tau}\right] & \omega_p \to \omega_0 & \text{high } \mathbf{Q} \end{aligned}$$

$$\begin{aligned} \mathbf{V}_{\mathbf{o}}(t) &= \frac{1}{\sqrt{2}} \left\{ 1 + j\kappa \left[1 - e^{-t/\tau}\right] \right\} & \text{slow-varying phase vector} \end{aligned}$$

$$\begin{aligned} \text{arctan} \left(\frac{\Im\{\mathbf{V}_{\mathbf{o}}(t)\}}{\Re\{\mathbf{V}_{\mathbf{o}}(t)\}} \right) \simeq \kappa \left[1 - e^{-t/\tau}\right] & \text{phasor angle} \end{aligned}$$

$$\begin{aligned} \text{delete } \kappa \text{ and differentiate} \end{aligned}$$

$$\begin{aligned} \text{b}(t) &= \frac{1}{\tau} e^{-s\tau} & \leftrightarrow & \mathbf{B}(s) = \frac{1/\tau}{s+1/\tau} \end{aligned}$$

Detuned resonator (1)

117

 $\begin{array}{ll} \text{amplitude} \\ \text{phase} \end{array} \begin{bmatrix} \alpha \\ \varphi \end{bmatrix} = \begin{bmatrix} b_{\alpha\alpha} & b_{\alpha\varphi} \\ b_{\varphi\alpha} & b_{\varphi\varphi} \end{bmatrix} * \begin{bmatrix} \varepsilon \\ \psi \end{bmatrix} \quad \leftrightarrow \quad \begin{bmatrix} \mathcal{A} \\ \Phi \end{bmatrix} = \begin{bmatrix} B_{\alpha\alpha} & B_{\alpha\varphi} \\ B_{\varphi\alpha} & B_{\varphi\varphi} \end{bmatrix} \begin{bmatrix} \mathcal{E} \\ \Psi \end{bmatrix}$

$$\begin{split} \Omega &= \omega_0 - \omega_n & \text{detuning} \\ \beta_0 &= |\beta(j\omega_0)| & \text{mudulus} \\ \theta &= \arg(\beta(j\omega_0)) & \text{phase} \end{split}$$

$$v_{i}(t) = \underbrace{\frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta)\,\mathfrak{u}(-t)}_{\text{switched off at }t = 0} + \underbrace{\frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta + \kappa)\,\mathfrak{u}(t)}_{\text{switched on at }t = 0} \text{ phase step }\kappa \text{ at }t=0$$

$$= \frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta)\,\mathfrak{u}(-t) + \frac{1}{\beta_{0}}\left[\cos(\omega_{0}t - \theta)\cos\kappa - \sin(\omega_{0}t - \theta)\sin\kappa\right]\,\mathfrak{u}(t)$$

$$\simeq \frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta)\,\mathfrak{u}(-t) + \frac{1}{\beta_{0}}\left[\cos(\omega_{0}t - \theta) - \kappa\sin(\omega_{0}t - \theta)\right]\,\mathfrak{u}(t) \quad \kappa \ll 1.$$

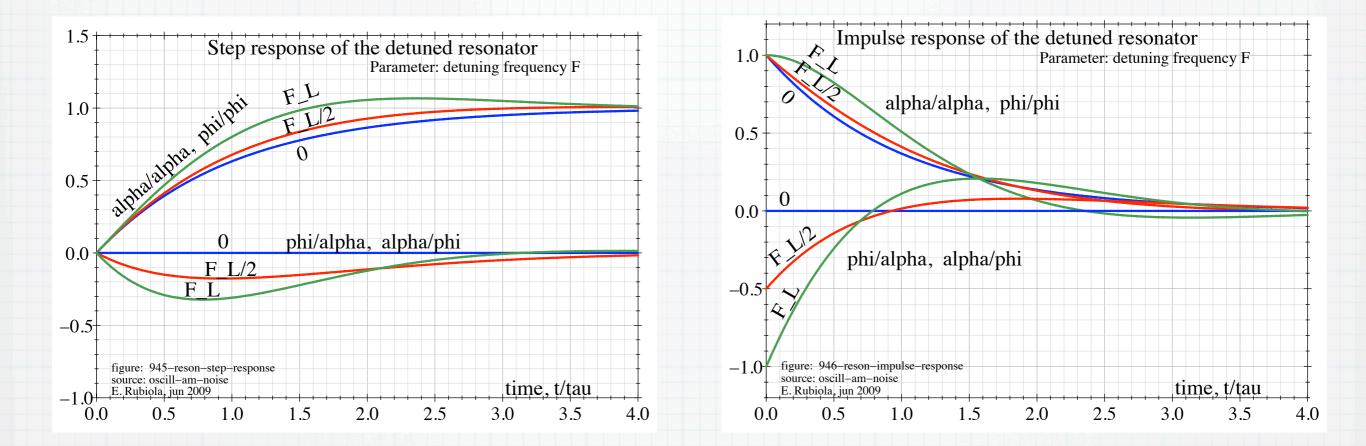
Detuned resonator (2)

$$\begin{aligned} v_{o}(t) &= \cos(\omega_{0}t) - \kappa \sin(\omega_{0}t) + \kappa \sin(\omega_{n}t) e^{-t/\tau} \text{ output, large Q } (\omega_{p}=\omega_{n}) \\ \text{use } \Omega &= \omega_{0} - \omega_{n} \\ v_{o}(t) &= \cos(\omega_{0}t) \left[1 - \kappa \sin(\Omega t) e^{-t/\tau} \right] - \kappa \sin(\omega_{0}t) \left[1 - \cos(\Omega t) e^{-t/\tau} \right] \\ \text{slow-varying phase vector} \\ \mathbf{V}_{o}(t) &= \frac{1}{\sqrt{2}} \left\{ 1 - \kappa \sin(\Omega t) e^{-t/\tau} + j\kappa \left[1 - \cos(\Omega t) e^{-t/\tau} \right] \right\} \quad \kappa \ll 1 \\ \arctan \frac{\Im\{\mathbf{V}_{o}(t)\}}{\Re\{\mathbf{V}_{o}(t)\}} &= \kappa \left[1 - \cos(\Omega t) e^{-t/\tau} \right] \quad \text{angle} \\ |\mathbf{V}_{o}(t)| &= |\mathbf{V}_{o}(0)| - \kappa \sin(\Omega t) e^{-t/\tau} \quad \text{amplitude} \end{aligned}$$

$$\begin{aligned} \text{delete } \kappa \text{ and differentiate} \\ \text{impulse response} \\ \mathbf{b}_{\varphi\varphi}(t) &= \left[\Omega \sin(\Omega t) + \frac{1}{\tau} \cos(\Omega t) \right] e^{-t/\tau} \quad \text{phase} \\ \mathbf{b}_{\alpha\varphi}(t) &= \left[-\Omega \cos(\Omega t) + \frac{1}{\tau} \sin(\Omega t) \right] e^{-t/\tau} \quad \text{amplitude} \end{aligned}$$

au

Resonator step and impulse response



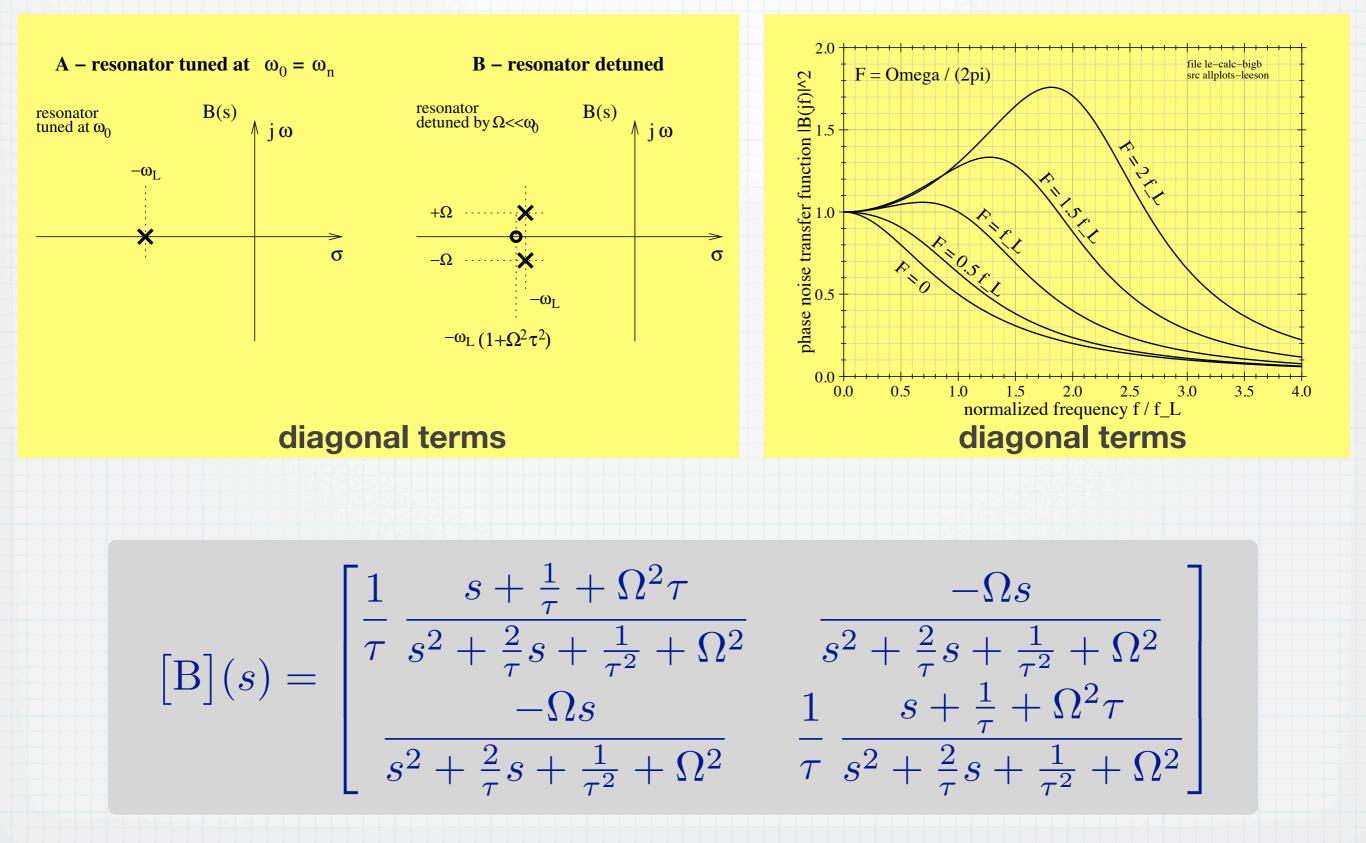
 $\begin{bmatrix} b \end{bmatrix}(t) = \begin{bmatrix} \left(\Omega \sin \Omega t + \frac{1}{\tau} \cos \Omega t\right) e^{-t/\tau} & \left(-\Omega \cos \Omega t + \frac{1}{\tau} \sin \Omega t\right) e^{-t/\tau} \\ \left(-\Omega \cos \Omega t + \frac{1}{\tau} \sin \Omega t\right) e^{-t/\tau} & \left(\Omega \sin \Omega t + \frac{1}{\tau} \cos \Omega t\right) e^{-t/\tau} \end{bmatrix}$

DETUNED RESOMATOR CONTROLS) B(\$) people use b(+) 2nd order than e tort Voltage transfer function arg (B) has a lower slope at w, \$ up. and Brees The local behavior (w,) is that of a lower a reservedor. - arctan 20 -

120

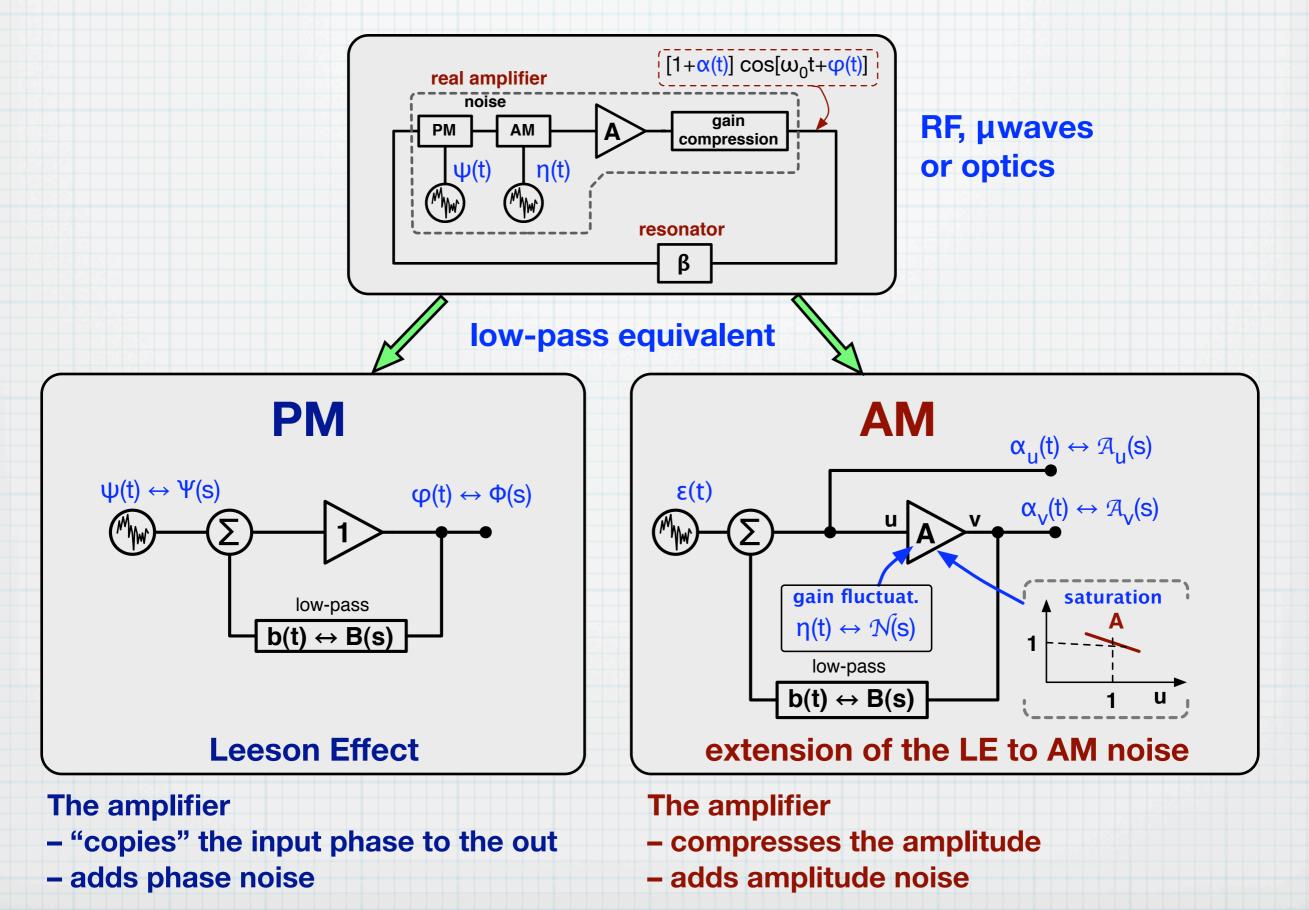
<4

Frequency response



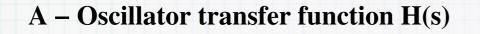
Leeson effect

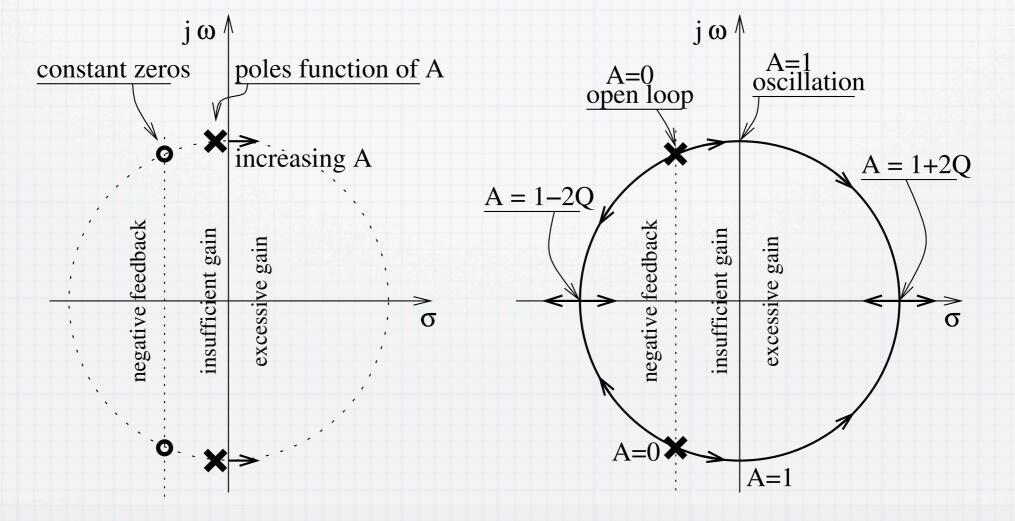
Low-pass representation of AM-PM noise



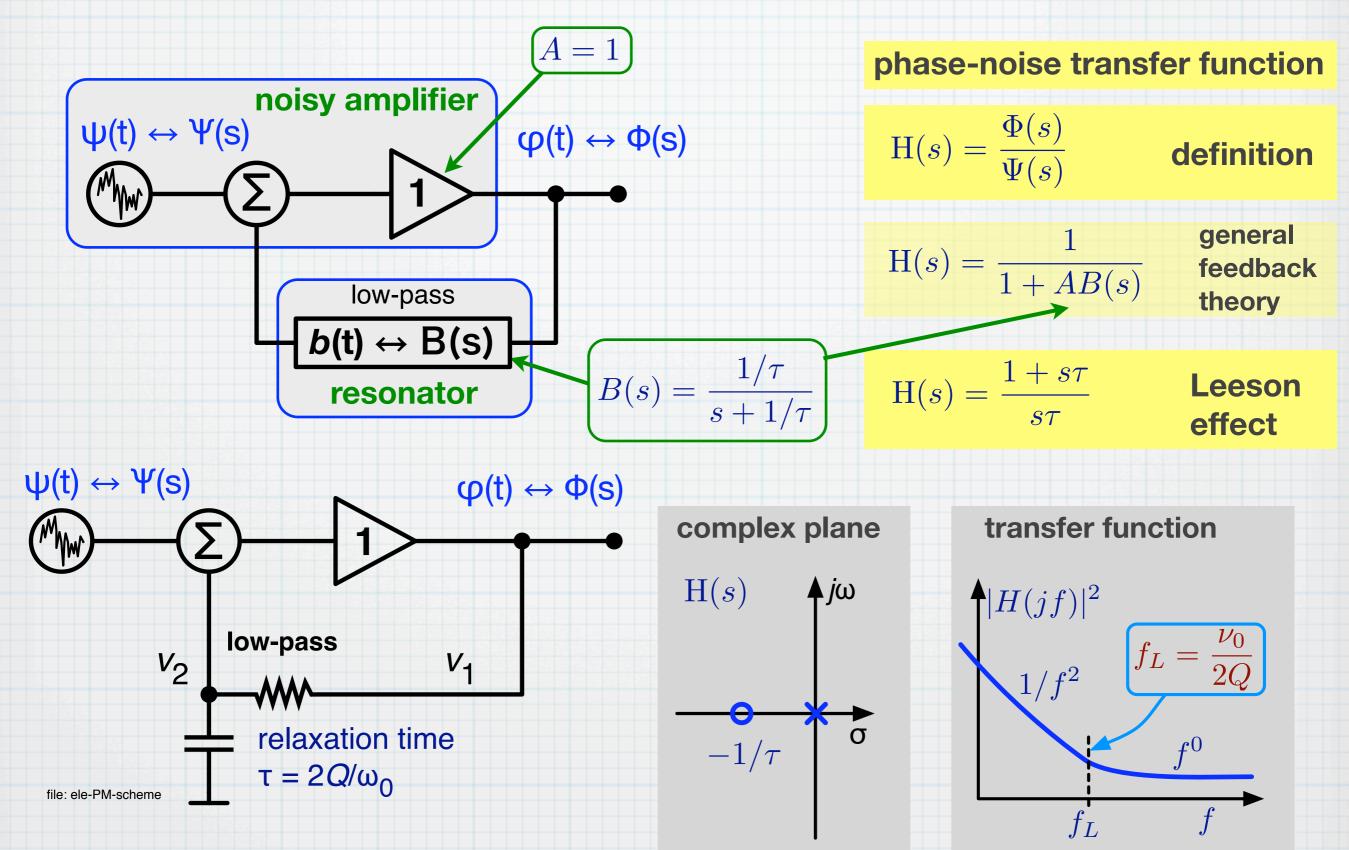
Effect of feedback

Oscillator transfer function (RF)

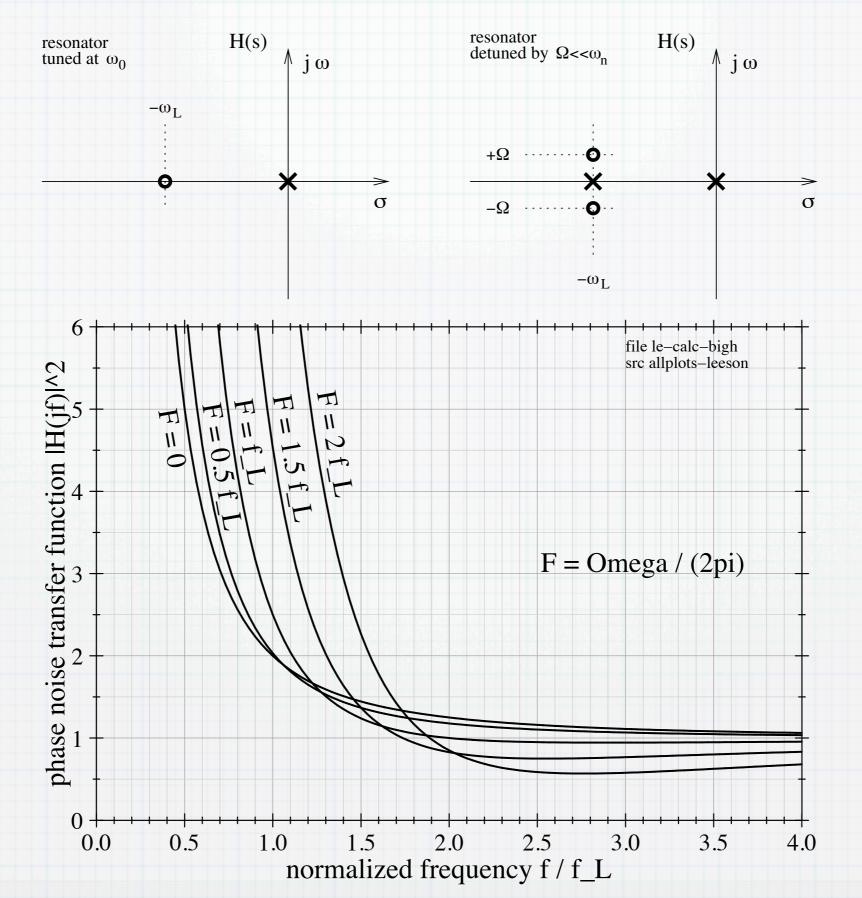




Leeson effect

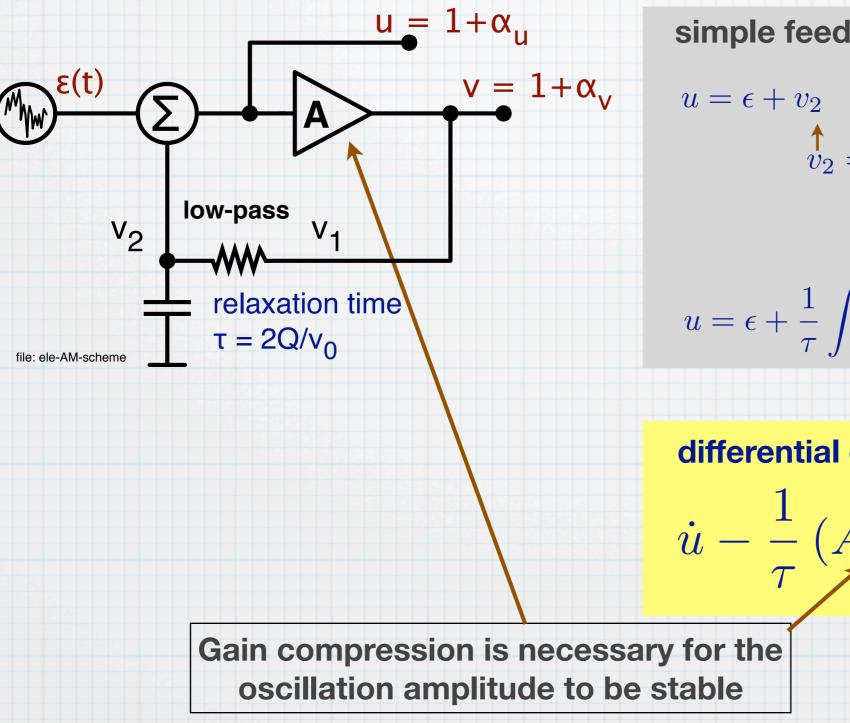


Detuned resonator



Low-pass model of amplitude (1)

First we need to relate the system restoring time τ_r to the relaxation time τ



simple feedback theory

$$u = \epsilon + v_2$$

$$v_2 = \frac{1}{\tau} \int (v_1 - v_2) dt$$

$$v_2 = u - \epsilon$$

$$v_1 = v = Au$$

$$u = \epsilon + \frac{1}{\tau} \int (A - 1)u + \epsilon dt$$

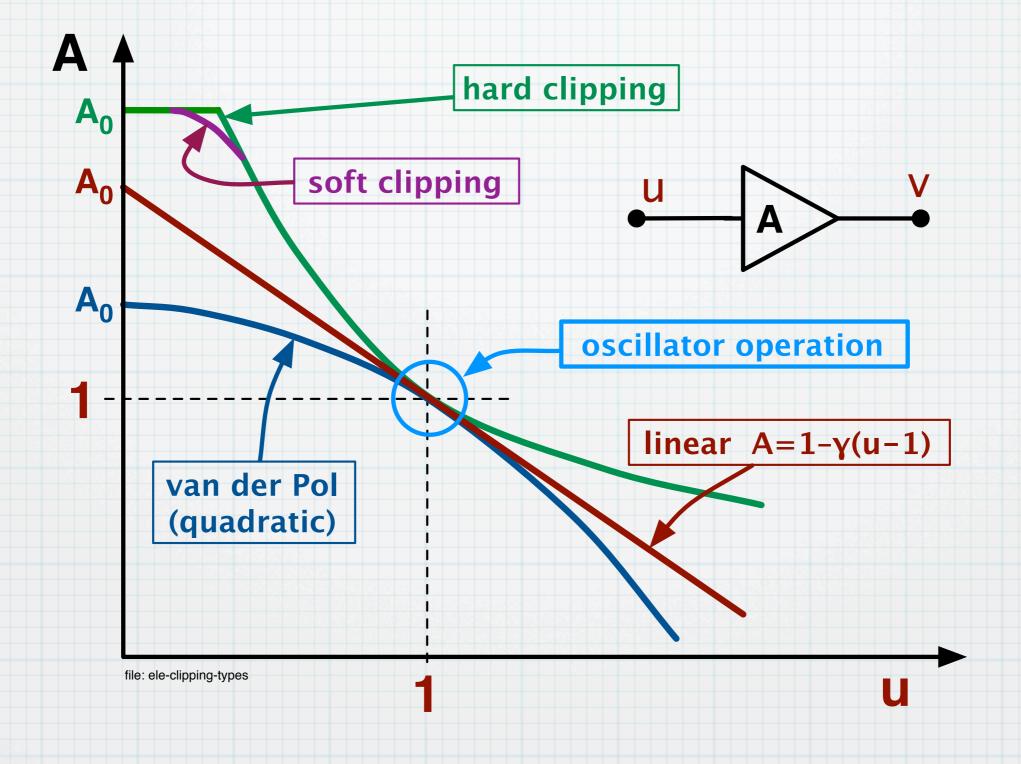
127

differential equation

 $\dot{u} - \frac{1}{\tau} \left(A - 1 \right) u = \frac{1}{\tau} \epsilon + \dot{\epsilon}$

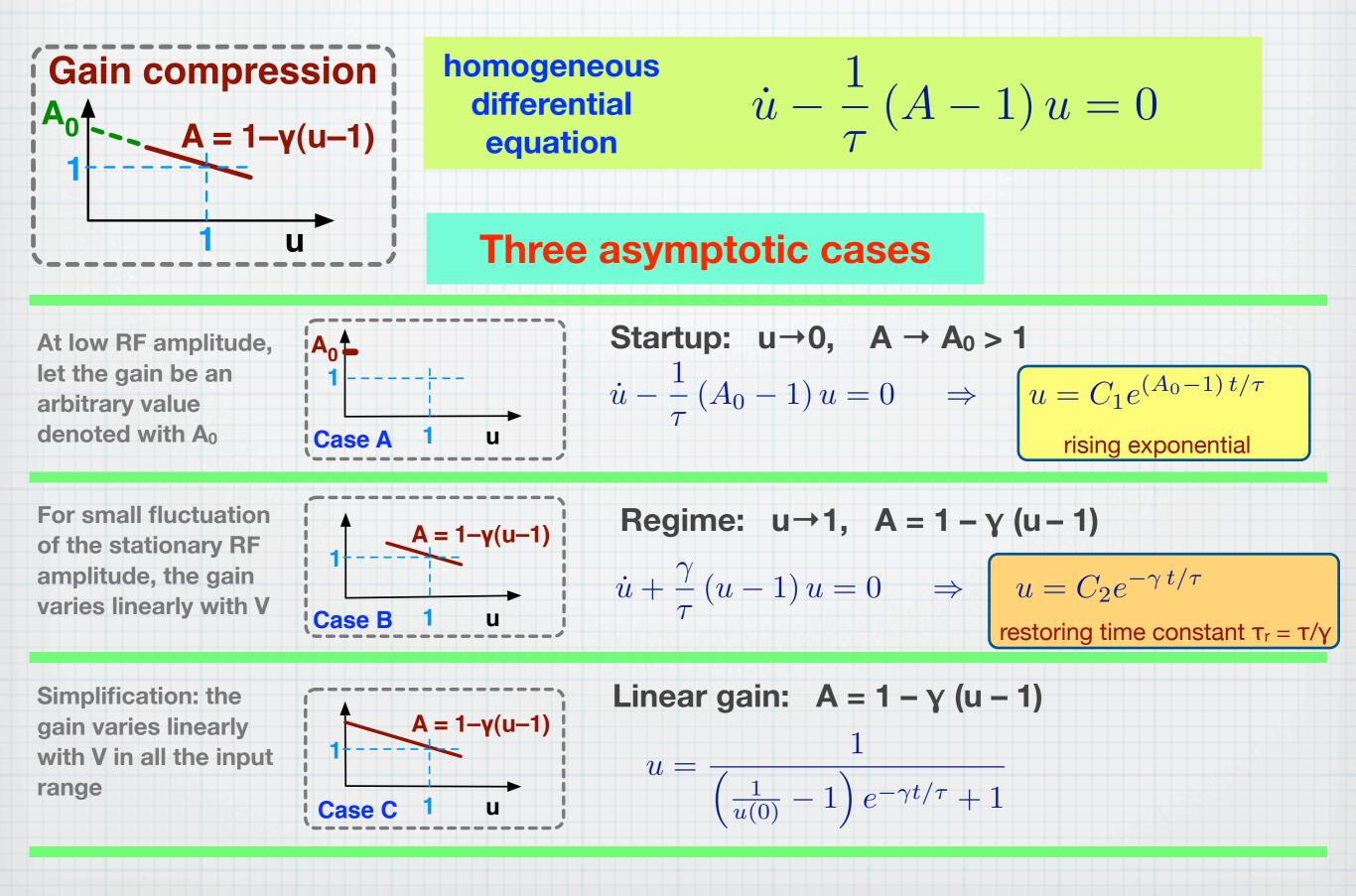
The Laplace / Heaviside formalism cannot be used because the amplifier is non-linear

Common types of gain saturation

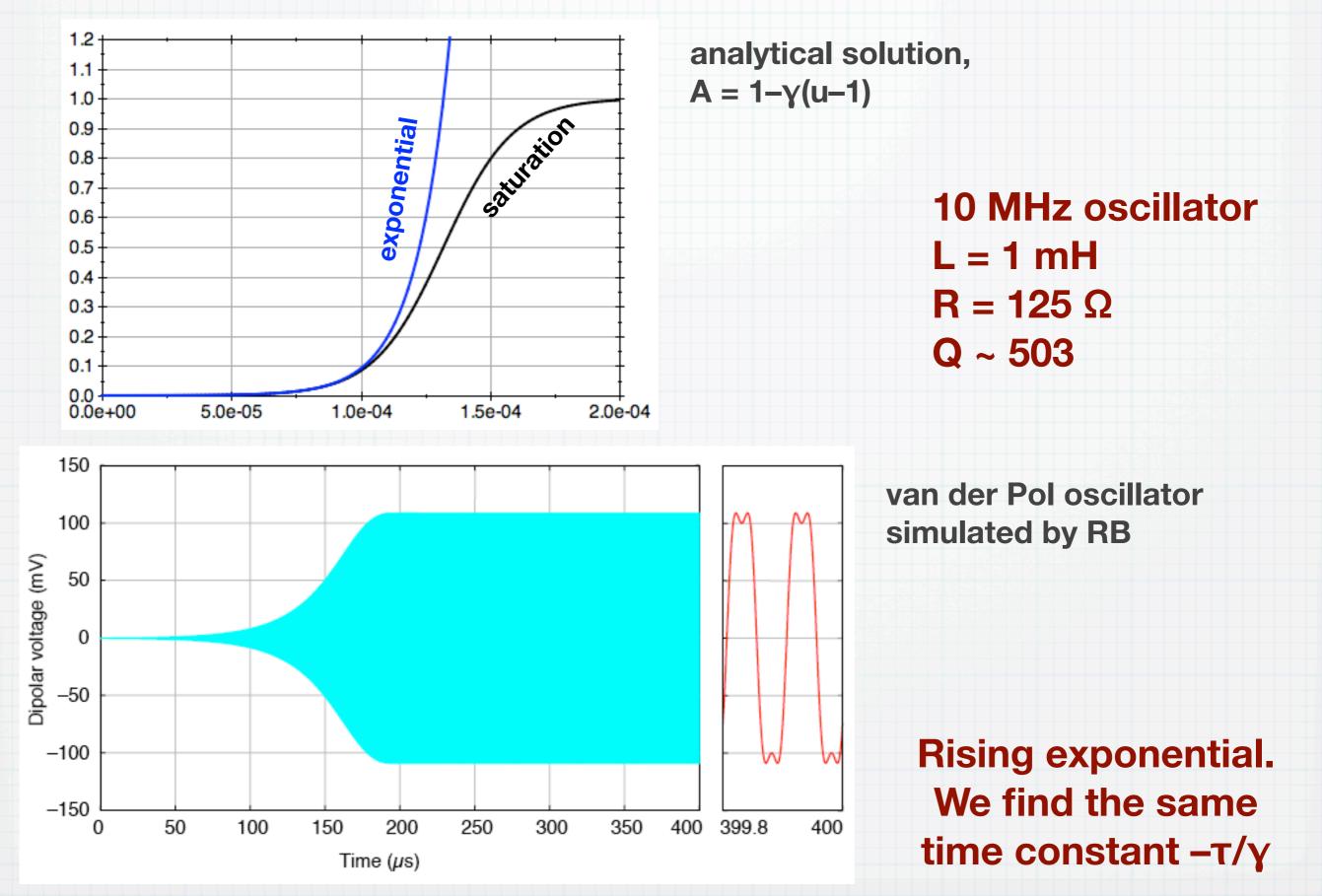


Gain compression is necessary for the oscillation amplitude to be stable

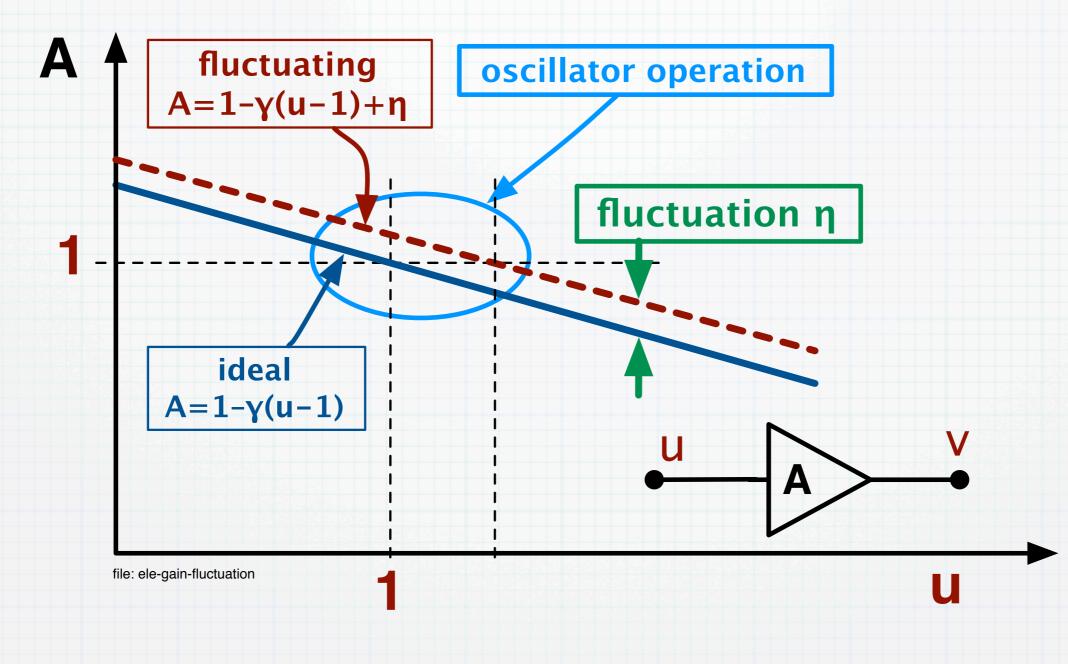
Low-pass model of amplitude (2)



Startup – analysis vs. simulation

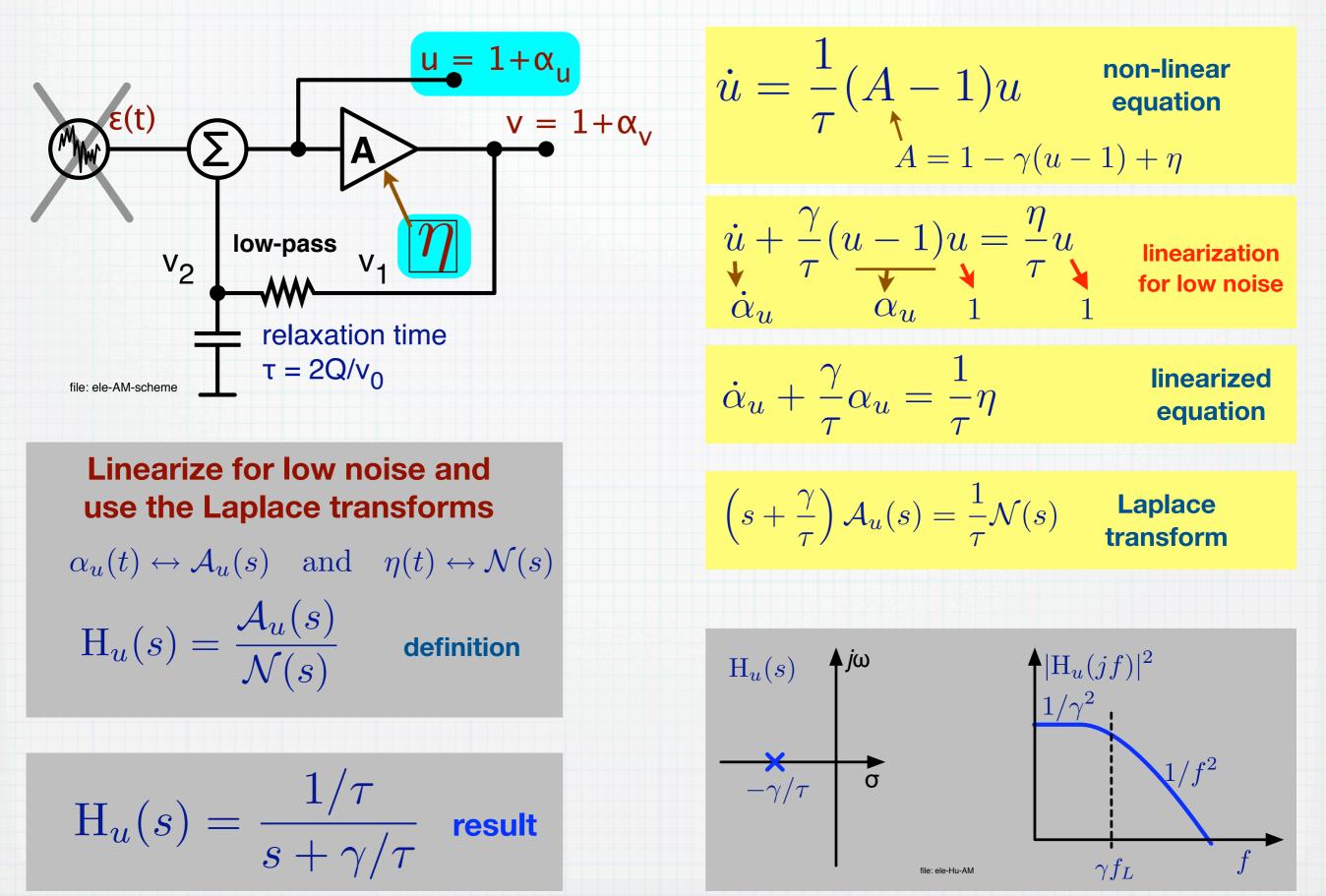


Gain fluctuations – definition

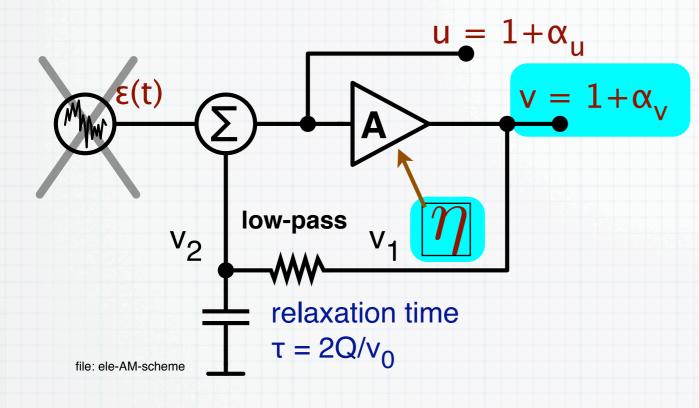


Gain compression is necessary for the oscillation amplitude to be stable

Gain fluctuations – output is u



Gain fluctuations – output is v



boring algebra relates α_v to α_u

$$v = Au$$

$$A = -\gamma(u-1) + 1 + \eta$$

$$v = [-\gamma(u-1) + 1 + \eta] u$$

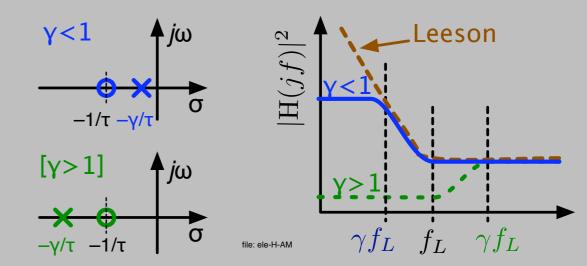
$$v = [-\gamma\alpha_u + 1 + \eta] [1 + \alpha_u]$$

$$\chi + \alpha_v = \chi + \eta - \gamma\alpha_u + \alpha_u - \alpha_u \eta - \gamma \alpha_u^2$$

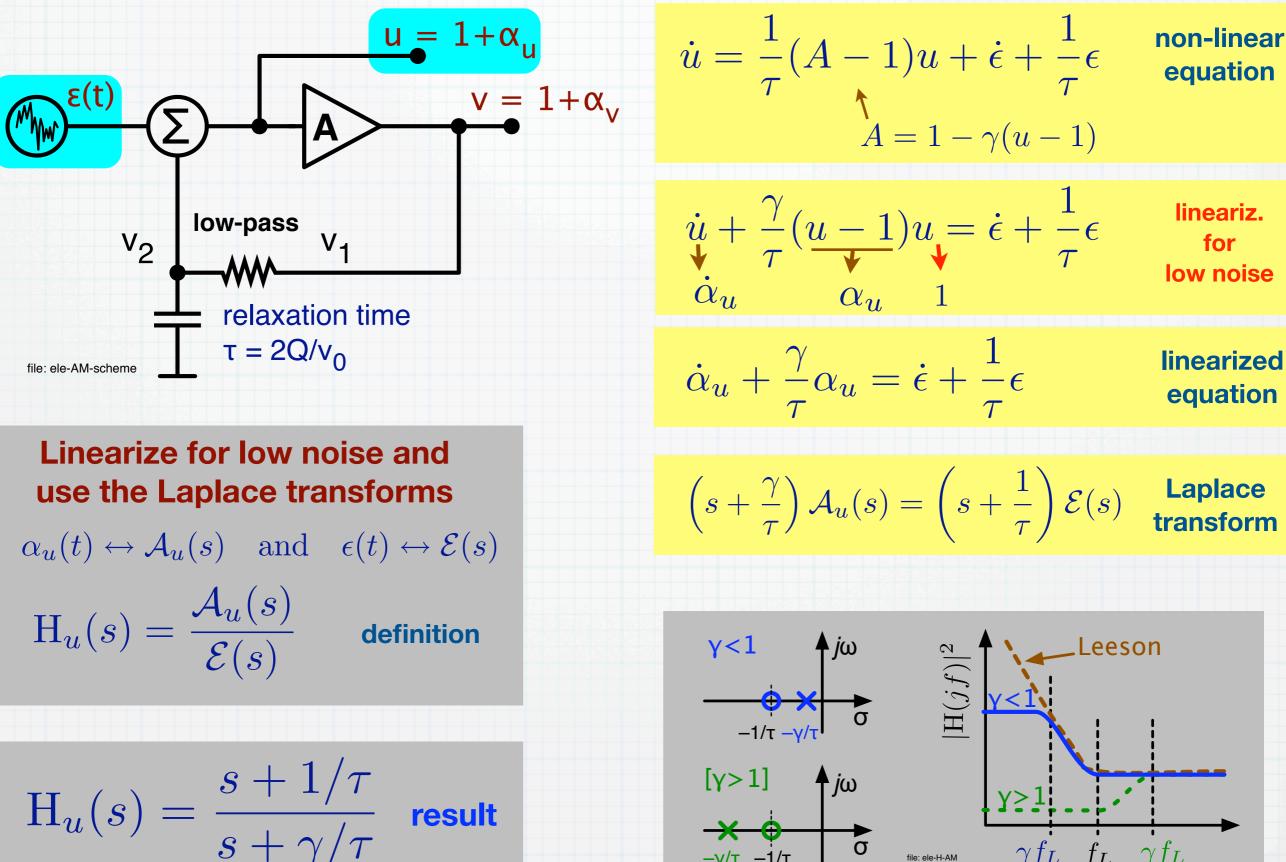
$$\alpha_v = (1 - \gamma)\alpha_u + \eta$$

$$\alpha_u = \frac{\alpha_v - \eta}{1 - \gamma}$$
linearization for low noise

$$\begin{pmatrix} s + \frac{\gamma}{\tau} \end{pmatrix} \mathcal{A}_{u}(s) = \frac{1}{\tau} \mathcal{N}(s) \quad \begin{array}{l} \begin{array}{l} \mbox{starting equation} \\ \mbox{equation} \\ \mathcal{A}_{u}(s) = \frac{\mathcal{A}_{v}(s) - \mathcal{N}(s)}{1 - \gamma} \\ \\ \begin{pmatrix} s + \frac{\gamma}{\tau} \end{pmatrix} \mathcal{A}_{v}(s) = \left(s + \frac{1}{\tau}\right) \mathcal{N}(s) \\ \\ H(s) = \frac{\mathcal{A}_{v}(s)}{\mathcal{N}(s)} \quad \begin{array}{l} \mbox{definition} \\ \\ \end{array} \\ H(s) = \frac{s + 1/\tau}{s + \gamma/\tau} \quad \begin{array}{l} \mbox{result} \\ \end{array}$$



Additive noise – output is u



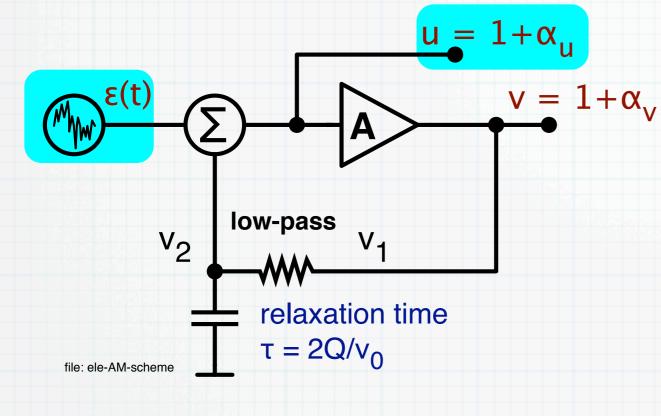
σ

 $\gamma f_L f_L$

 γf_L

Additive noise – output is v

linearized equation



boring algebra relates α ' to α

$$v = Au$$

$$A = 1 - \gamma(u - 1)$$

$$v = [1 - \gamma(u - 1)]u$$

$$1 + \alpha_v = [1 - \gamma\alpha_u] [1 + \alpha_u]$$

$$A + \alpha_v = A + \alpha_u - \gamma\alpha_u - \gamma\alpha_u^2$$

$$\alpha_v = (1 - \gamma)\alpha_u$$
linearization
for low noise
$$\alpha_u = \frac{\alpha_v}{1 - \gamma}$$

$$\frac{1}{1-\gamma} \left(s + \frac{\gamma}{\tau} \right) \mathcal{A}_v(s) = \left(s + \frac{1}{\tau} \right) \mathcal{E}(s) \frac{\text{Laplace}}{\text{transform}}$$

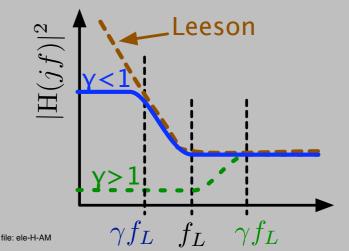
 $\dot{\alpha}_{u} + \frac{\gamma}{\tau} \alpha_{u} = \dot{\epsilon} + \frac{1}{\tau} \epsilon$ $\dot{\alpha}_{u} = \frac{\alpha_{v}}{(1 - \gamma)}$

 $\frac{1}{1-\gamma} \left(\dot{\alpha}_v + \frac{\gamma}{\tau} \alpha_v \right) = \dot{\epsilon} + \frac{1}{\tau} \epsilon$

$$\mathbf{H}(s) = \frac{\mathcal{A}_v(s)}{\mathcal{E}(s)}$$

$$\mathrm{H}(s) = (1-\gamma) \, rac{s+1/ au}{s+\gamma/ au} \quad ext{result}$$

 $\gamma < 1 \qquad j\omega$ $-1/\tau - \gamma/\tau \qquad \sigma$ $[\gamma > 1] \qquad j\omega$ $-\gamma/\tau \quad -1/\tau \qquad \sigma$



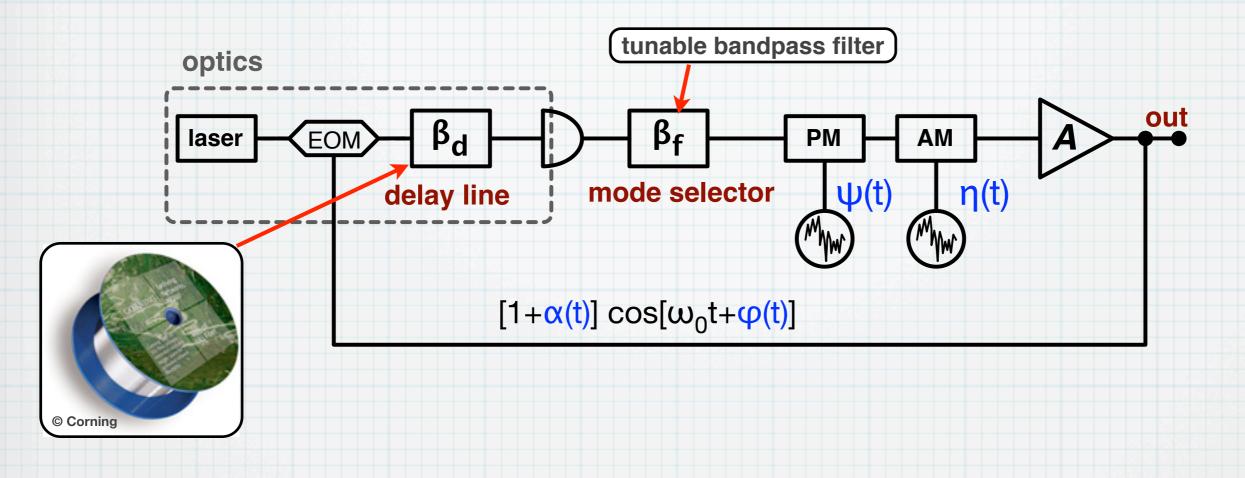
AM-PM noise coupling

136

Will be shown in the case of the delay-line oscillator

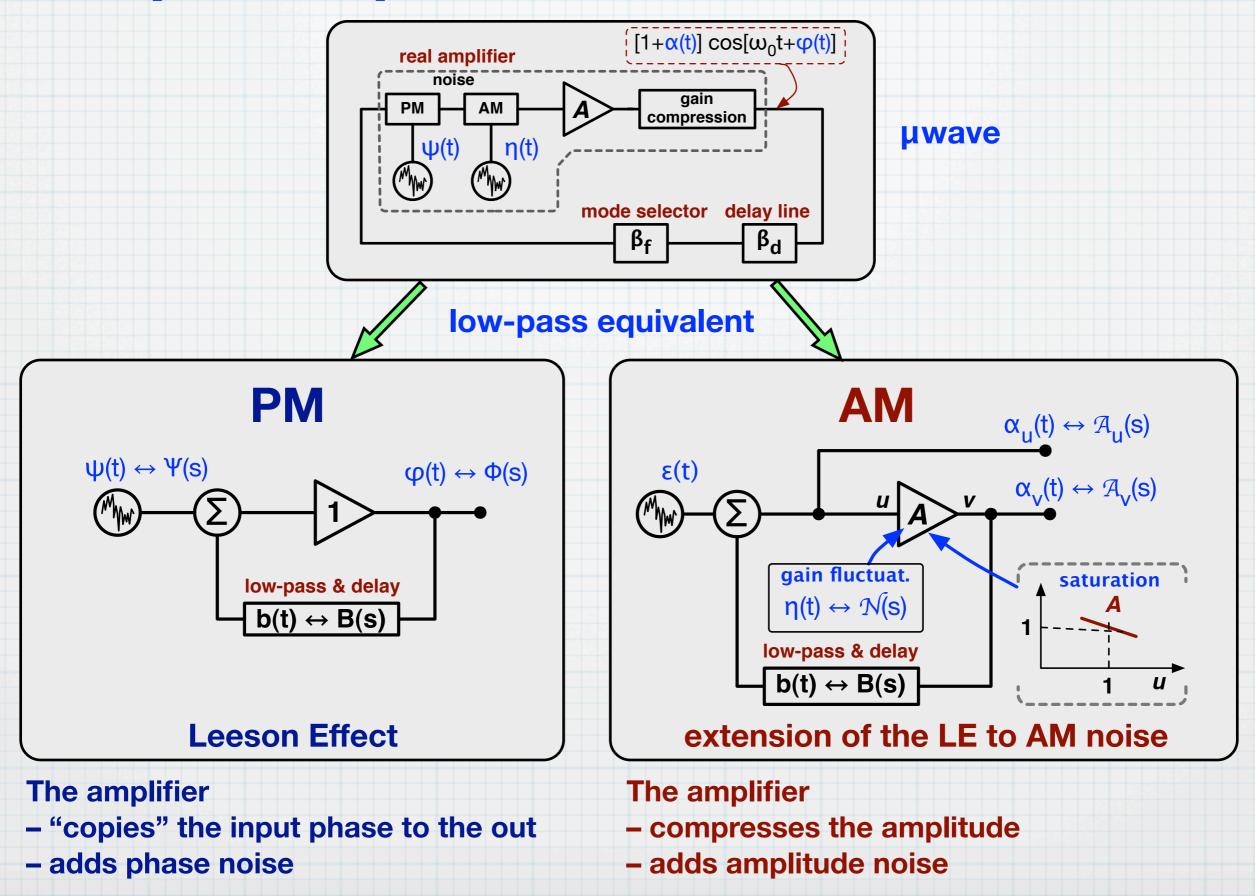
Leeson effect in delay-line oscillators

Motivations

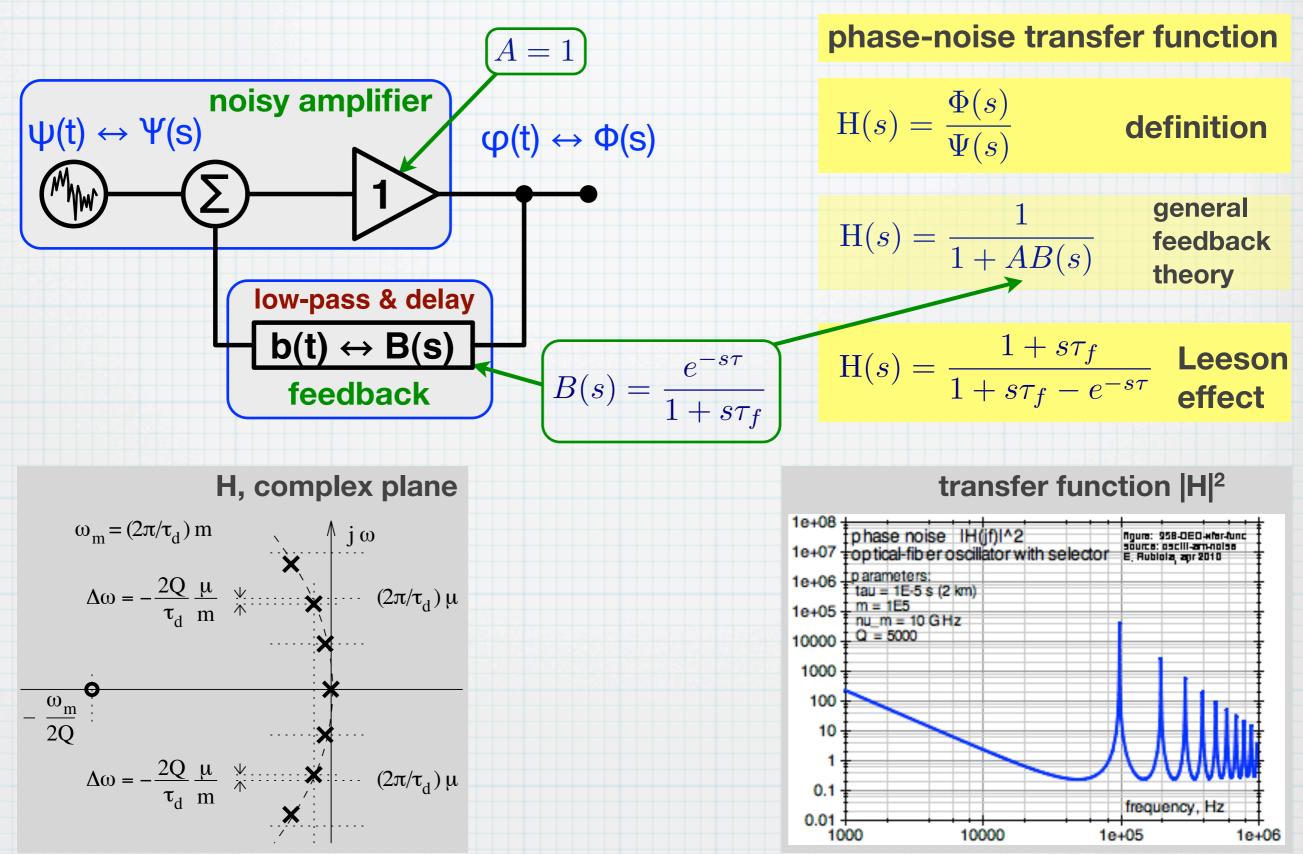


- Potential for very-low phase noise in the 100 Hz 1 MHz range
- Invented at JPL, X. S. Yao & L. Maleki, JOSAB 13(8) 1725–1735, Aug 1996
- Early attempt of noise modeling, S. Römisch & al., IEEE T UFFC 47(5) 1159–1165, Sep 2000
- PM-noise analysis, E. Rubiola, *Phase noise and frequency stability in oscillators*, Cambridge 2008 [Chapter 5]
- Since, no progress in the analysis of noise at system level
- Nobody reported on the consequences of AM noise

Low-pass representation of AM-PM noise

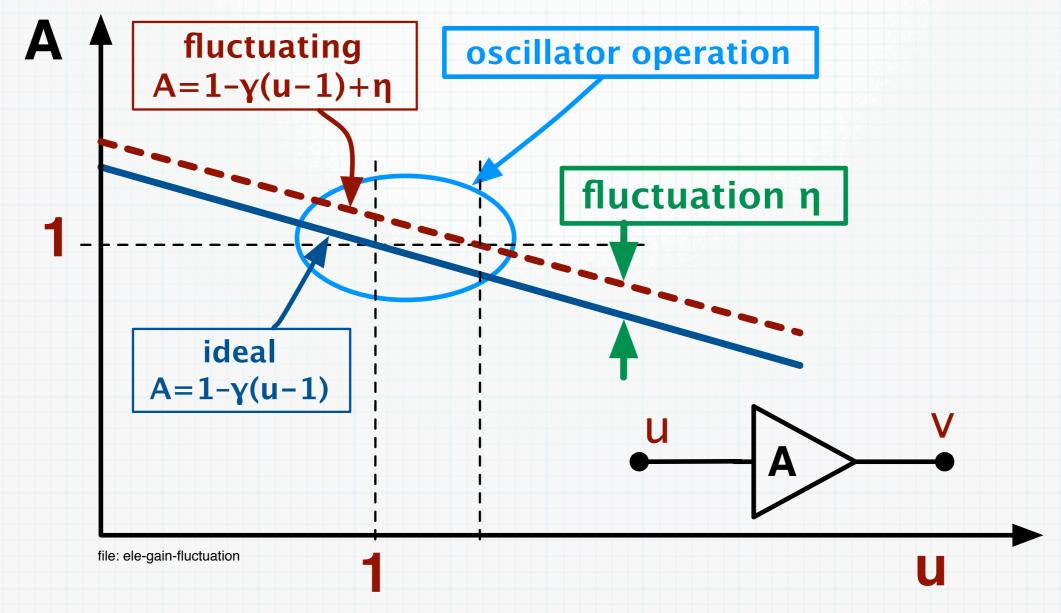


Leeson effect



E. Rubiola, Phase noise and frequency stability in oscillators, Cambridge 2008

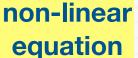
Gain fluctuations – definition



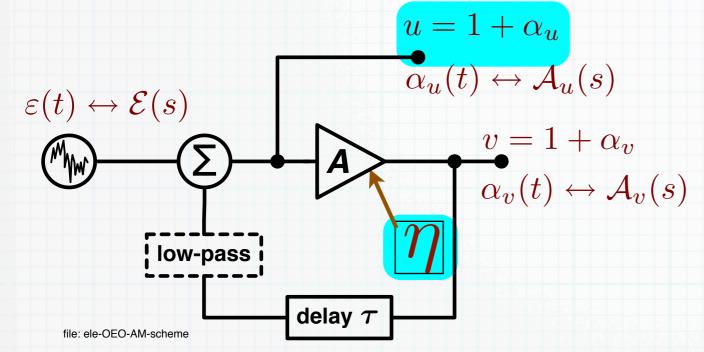
Gain compression is necessary for the oscillation amplitude to be stable

E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

Gain fluctuations – output is u(t)



142



The low-pass has only 2nd order effect on AM

 $u = A(t-\tau) u(t-\tau) \operatorname{equation}_{A = 1 - \gamma(u-1) + \eta} equation$

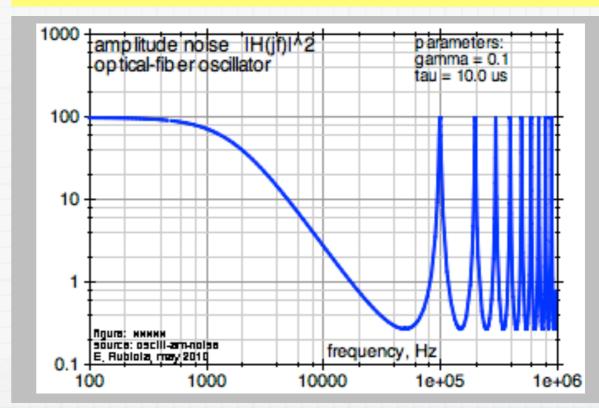
use u= α +1, expand and linearize for low noise $\alpha(t) = (1 - \gamma)\alpha(t - \tau) - \gamma \alpha^2(t - \tau) \rightarrow \mathbf{0}$ $+ \eta(t - \tau) + \eta(t - \tau)\alpha(t - \tau) \rightarrow \mathbf{0}$

linearized equation

$$\alpha(t) = (1 - \gamma)\alpha(t - \tau) + \eta(t - \tau)$$

Laplace transform

$$\mathcal{A}_u(s) = \left[1 - (1 - \gamma)e^{-s\tau}\right] = \mathcal{N}(s)$$



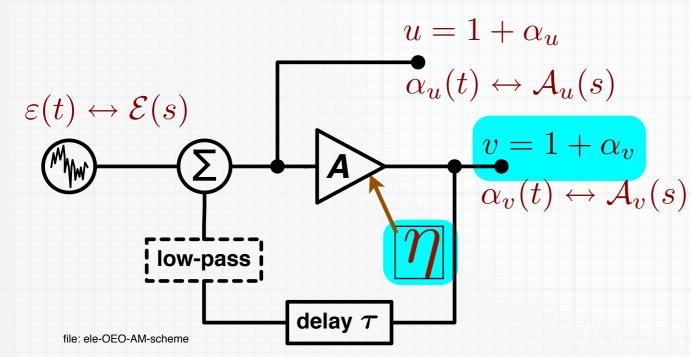
Linearize for low noise and use the Laplace transform

$$\alpha_u(t) \leftrightarrow \mathcal{A}_u(s) \quad \text{and} \quad \eta(t) \leftrightarrow \mathcal{N}(s)$$

$$\mathrm{H}(s) = \frac{\mathcal{A}_u(s)}{\mathcal{N}(s)} \quad \text{definition}$$

$$\mathbf{H}(s) = \frac{1}{1 - (1 - \gamma)e^{-s\tau}}$$

Gain fluctuations – output is v(t)



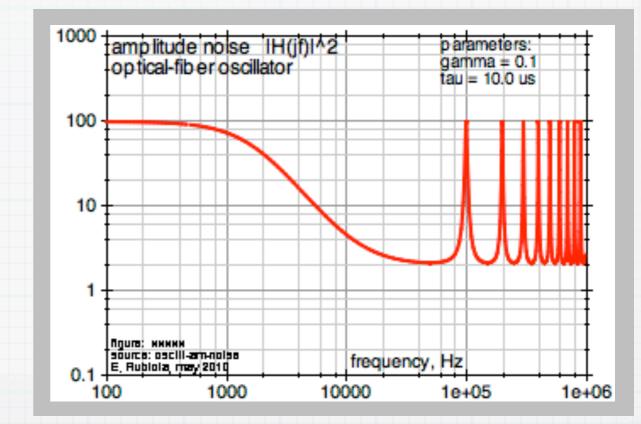
The low-pass has only 2nd order effect on AM

$$\begin{aligned} \mathcal{A}_{u}(s) \left[1 - (1 - \gamma)e^{-i\omega\tau} \right] &= \mathcal{N}(s) \\ \uparrow & \text{starting equation} \\ \mathcal{A}_{u}(s) &= \frac{\mathcal{A}_{v}(s) - \mathcal{N}(s)}{1 - \gamma} \\ 1 + (1 - \gamma)\left(1 - e^{-s\tau}\right) \right] \mathcal{A}_{v}(s) &= \left[1 - (1 - \gamma)e^{-s\tau} \right] \mathcal{N}(s) \\ \mathrm{H}(s) &= \frac{\mathcal{A}_{v}(s)}{\mathcal{N}(s)} & \text{definition} \end{aligned}$$

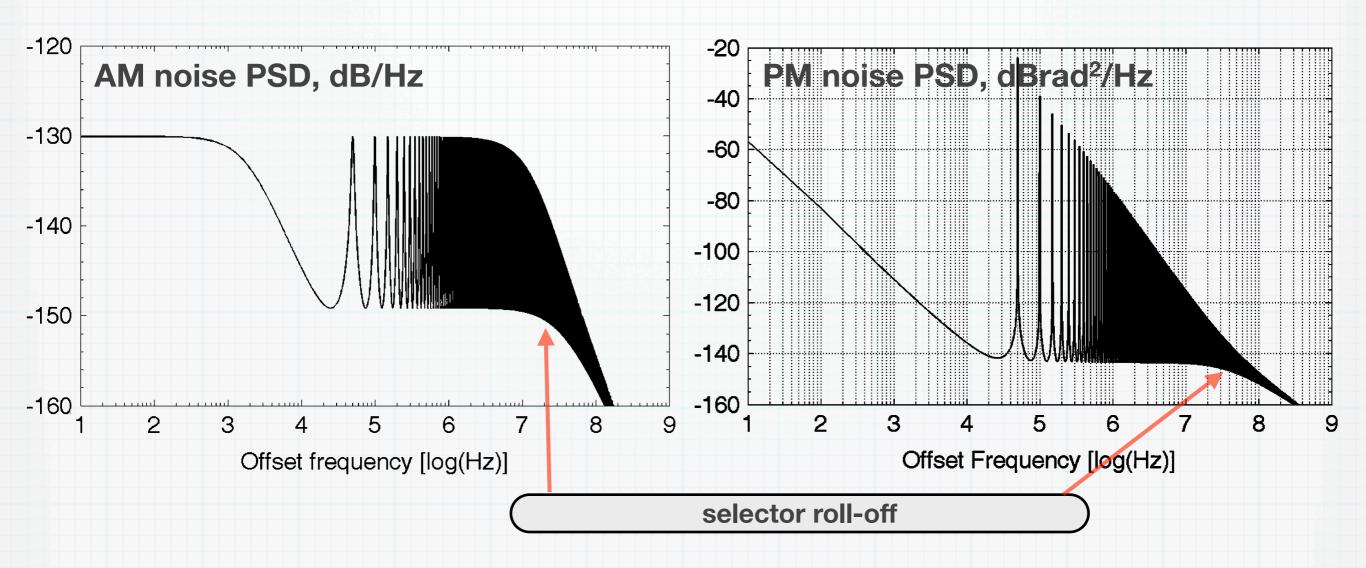
$$\mathbf{H}(s) = \frac{1 + (1 - \gamma) \left(1 - e^{-s\tau}\right)}{1 - (1 - \gamma)e^{-s\tau}} \mathbf{resu}$$

boring algebra relates α_v to α_u

$$\begin{aligned} v &= Au \\ A &= -\gamma(u-1) + 1 + \eta \\ v &= \left[-\gamma(u-1) + 1 + \eta \right] u \quad \text{use u=} \alpha + 1 \\ v &= \left[-\gamma\alpha_u + 1 + \eta \right] \left[1 + \alpha_u \right] \\ \cancel{1} + \alpha_v &= \cancel{1} + \eta - \gamma\alpha_u + \alpha_u - \alpha_u \eta - \gamma\alpha_u^2 \\ \alpha_v &= (1 - \gamma)\alpha_u + \eta \quad \text{linearization} \\ \alpha_u &= \frac{\alpha_v - \eta}{1 - \gamma} \end{aligned}$$



AM & PM spectra were anticipated



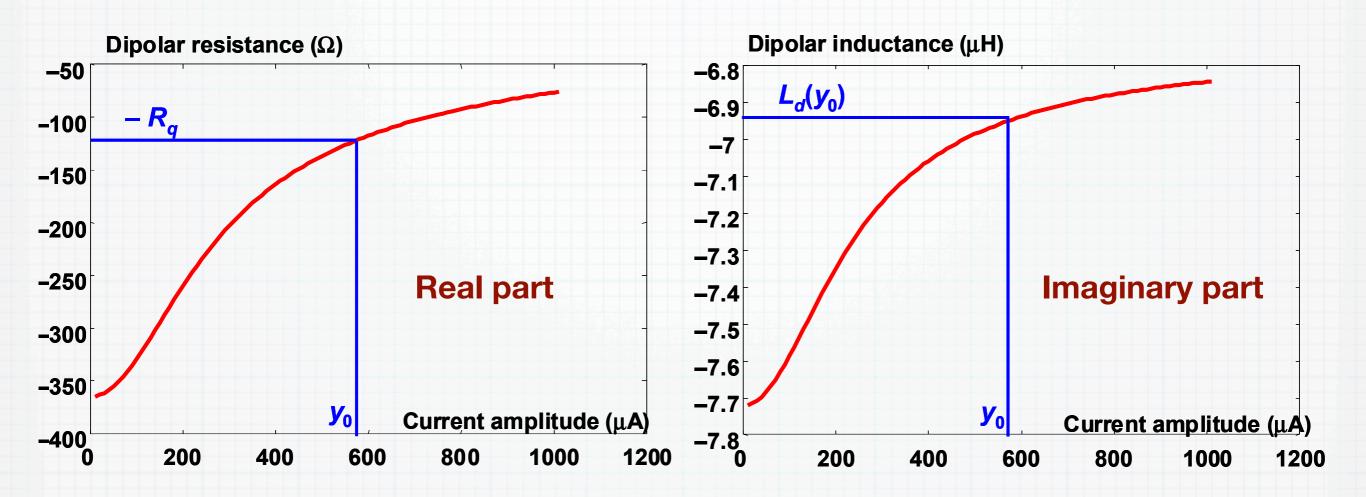
• Prediction is based on the stochastic diffusion (Langevin) theory

However complex, the Langevin theory provides an independent check

Y.K. Chembo & al., IEEE J. Quant. Electron. 45(2) p.178-186, Feb 2009

Amplitude-phase coupling in amplifiers

145



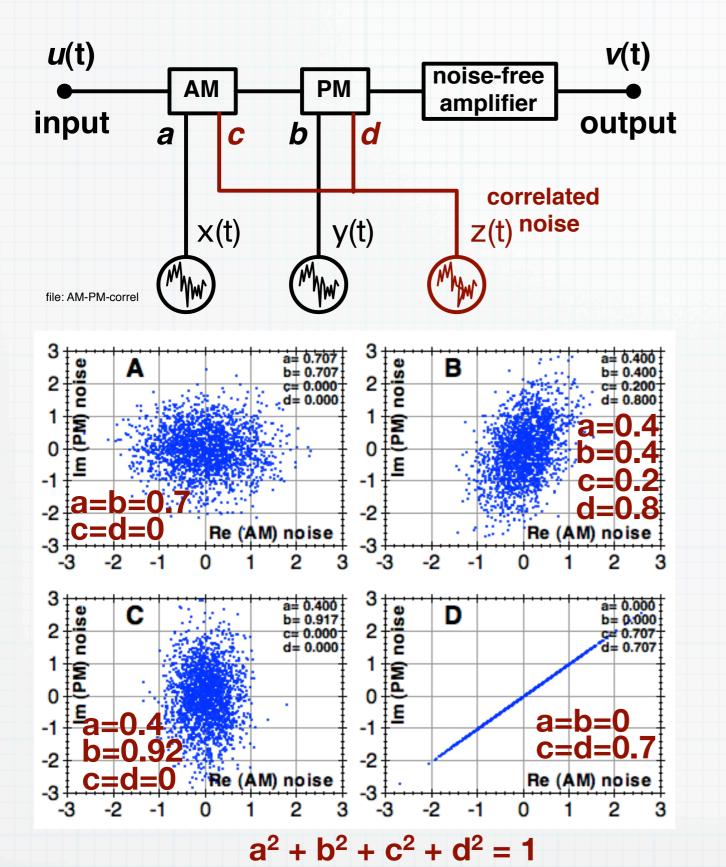
Oscillation amplitude is hidden in the current

- In the gain-compression region, RF amplitude affects the phase
- The consequence is that AM noise turns into PM noise
- Well established fact in quartz oscillators (Colpitts and other schemes)
- Similar phenomenon occurs in other types of (sustaining) amplifier

R. Brendel & E. Rubiola, Proc. 2007 IFCS p.1099-1105, Geneva CH, 28 may - 1 Jun 2007

Correlation between AM and PM noise

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Also IEEE T MTT (submitted)



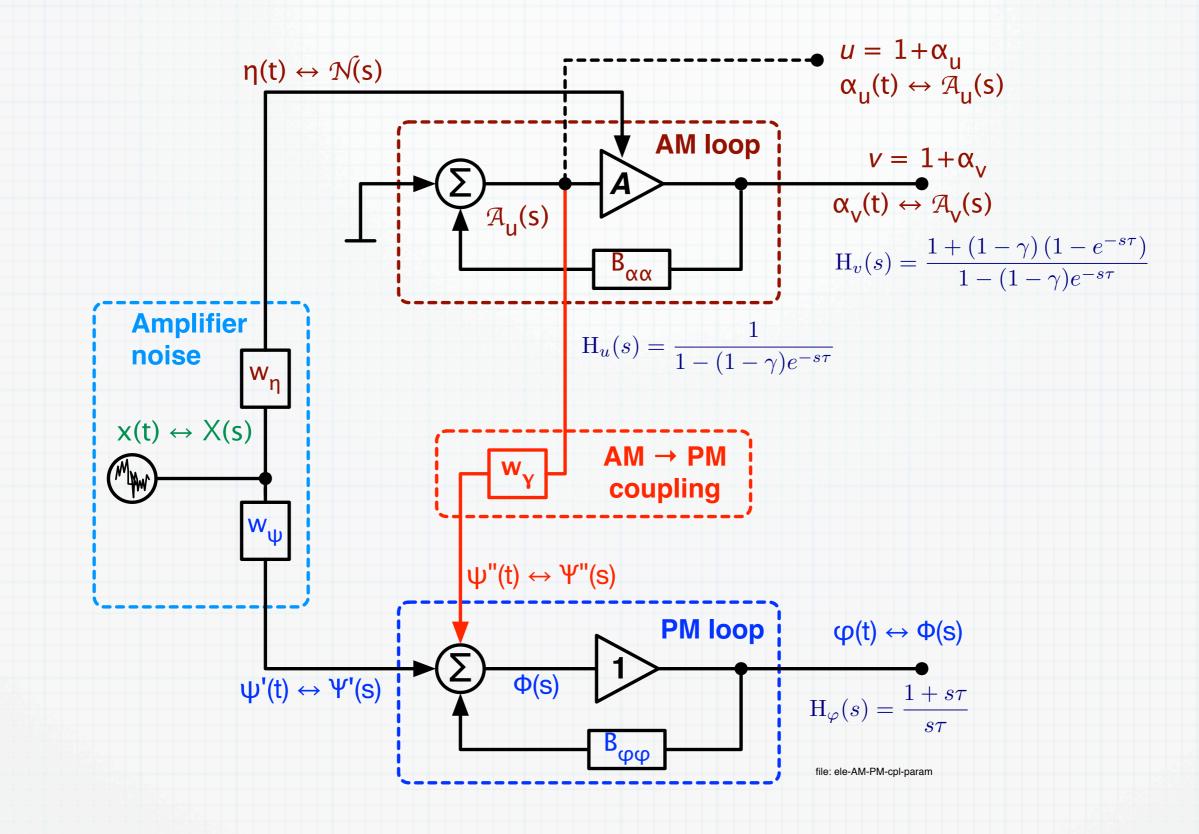
The need for this model comes from the physics of popular amplifiers

- Bipolar transistor. The fluctuation of the carriers in the base region acts on the base thickness, thus on the gain, and on the capacitance of the reverse-biased basecollector junction.
- Field-effect transistor. The fluctuation of the carriers in the channel acts on the drain-source current, and also on the gatechannel capacitance because the distance between the `electrodes' is affected by the channel thickness.
- Laser amplifier. The fluctuation of the pump power acts on the density of the excited atoms, and in turn on gain, on maximum power, and on refraction index.

AM and PM fluctuations are correlated because originate from the same near-dc random process

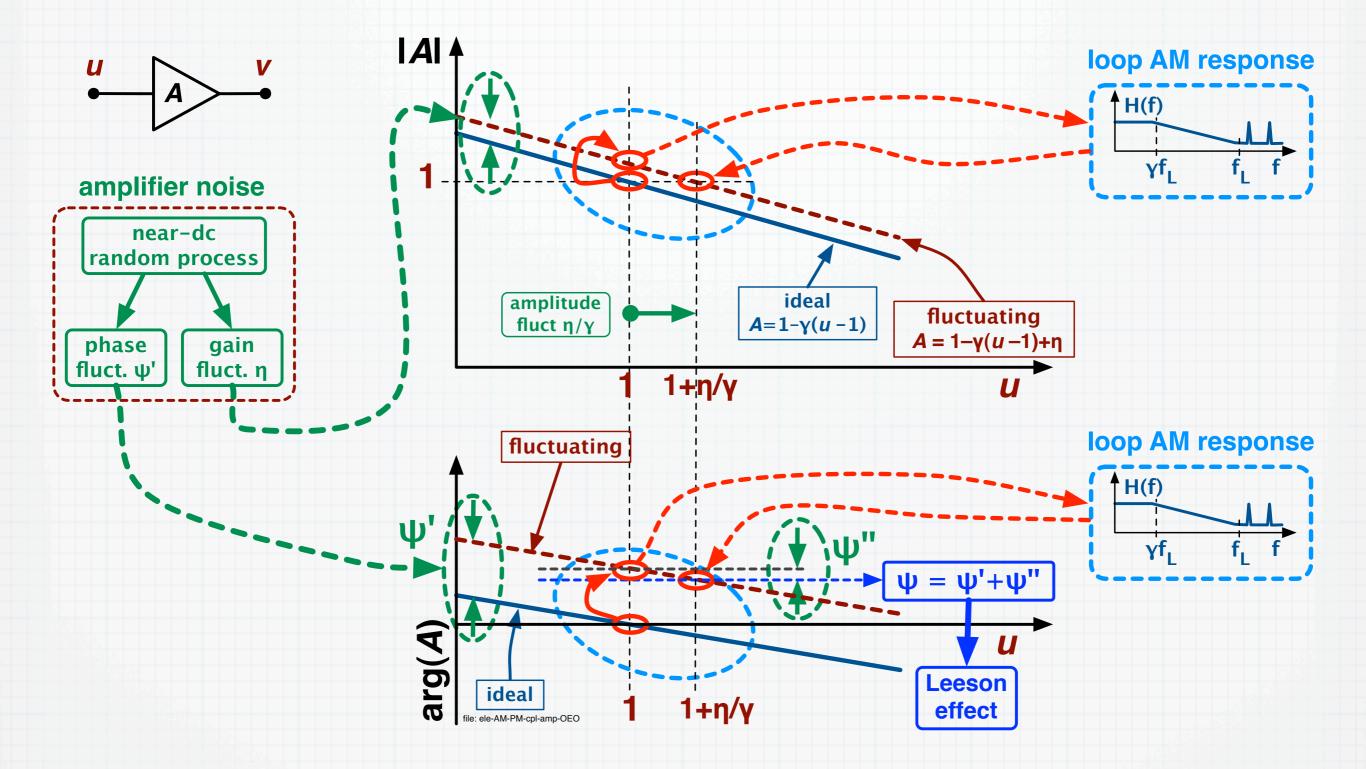
Parametric noise & AM-PM noise coupling

147



E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

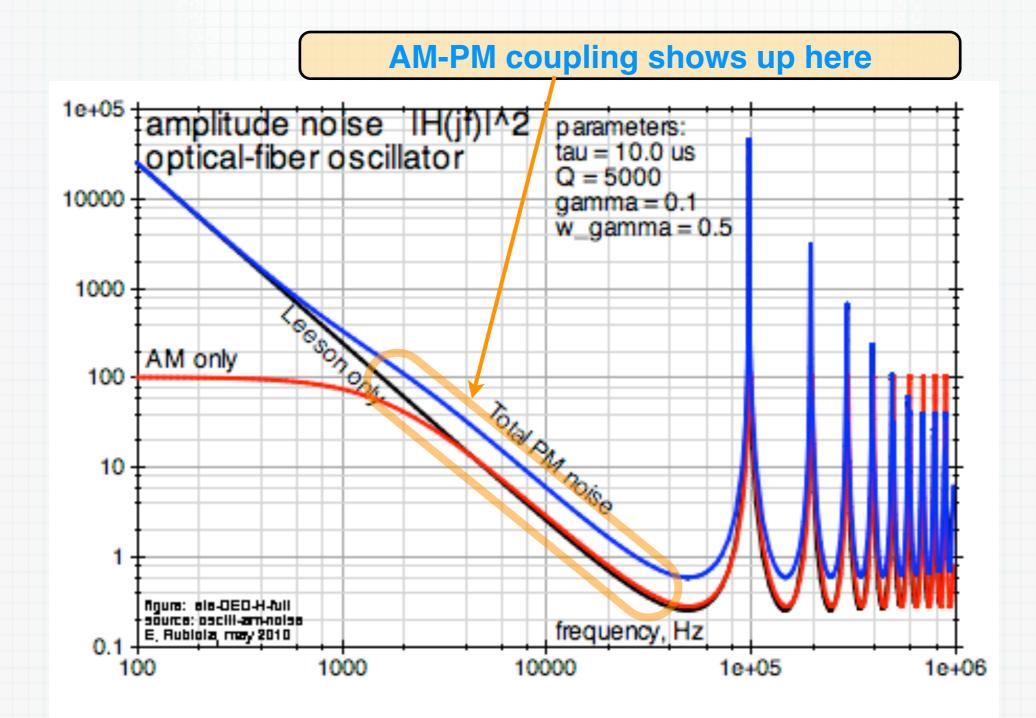
Effect of AM-PM noise coupling



E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

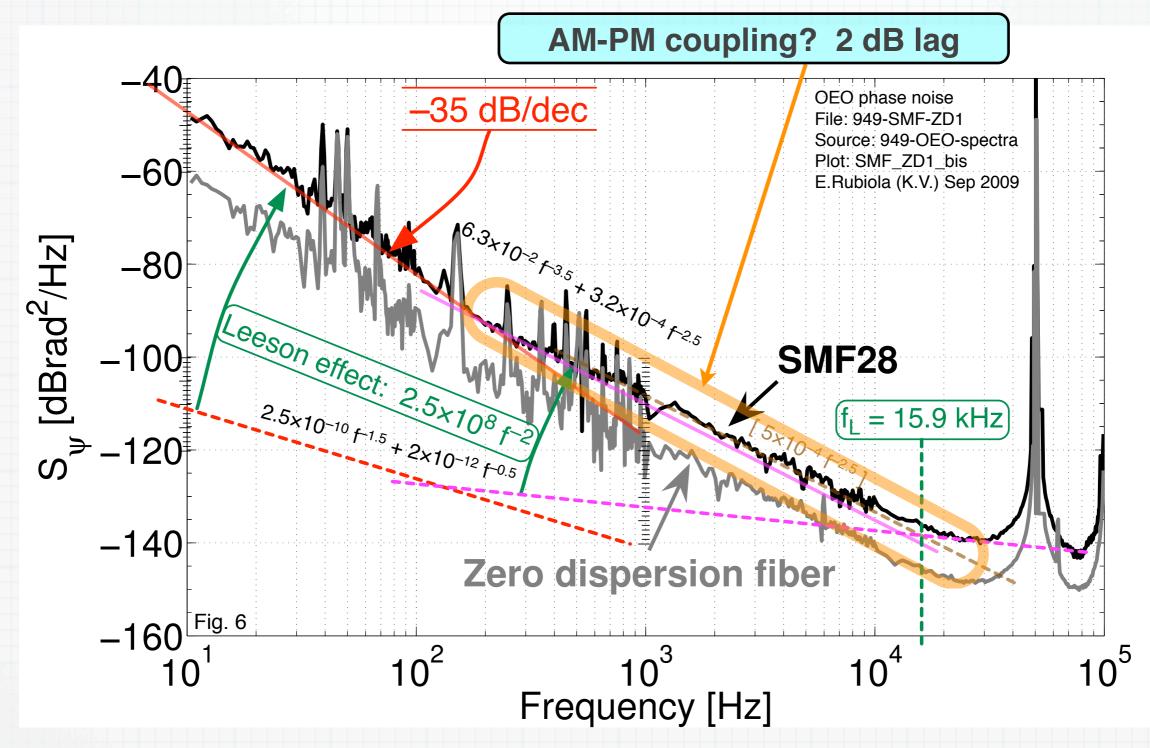
148

Noise transfer function and spectra



Notice that the AM-PM coupling can increase or decrease the PM noise

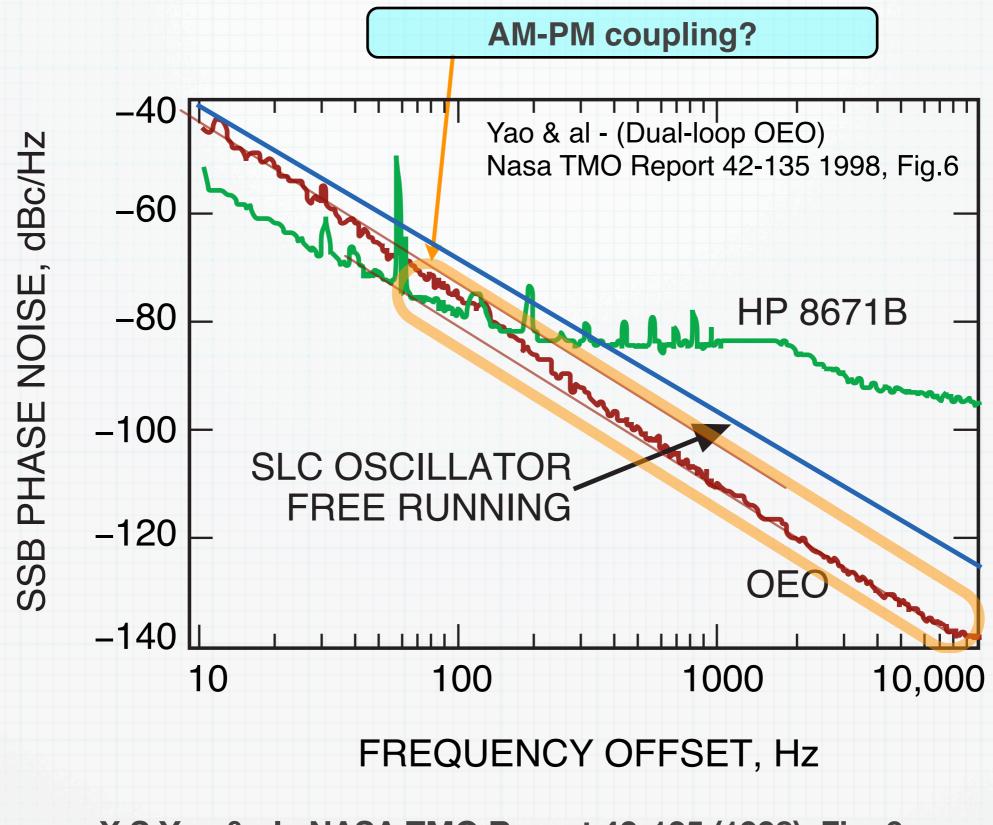
In a real oscillator, flicker noise shows up below some 10 kHz In the flicker region, all plots are multiplied by 1/f 149



Unfortunately, the awareness of this model come after the end of the experiments

Spectrum from K. Volyanskiy & al., IEEE JLT (Submitted, Apr. 2010)

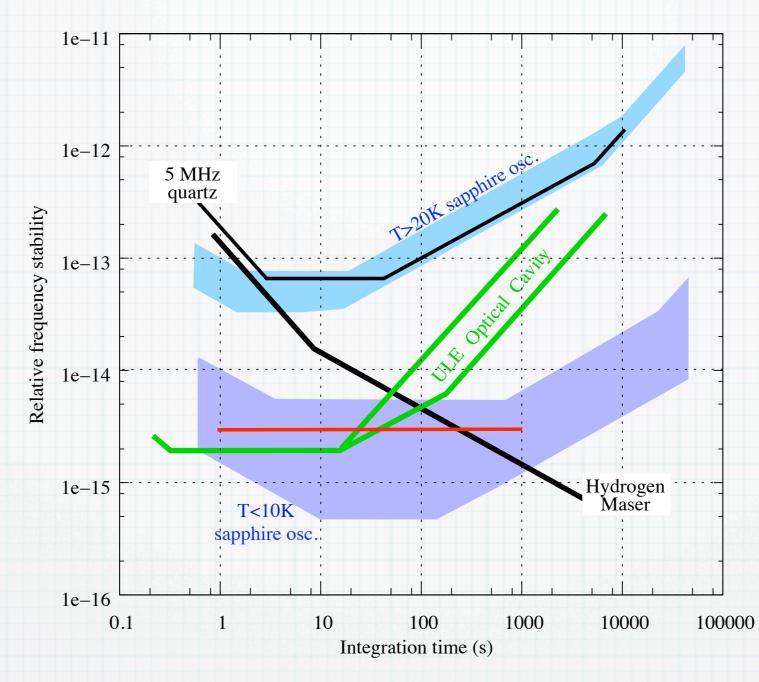
Noise spectra



X.S.Yao & al., NASA TMO Report 42-135 (1998), Fig. 6

Cryogenic oscillator (Elisa)

Ultrastable oscillator technologies



Cryogenic Sapphire Oscillator -> frequency stability Cryocooler -> Autonomy

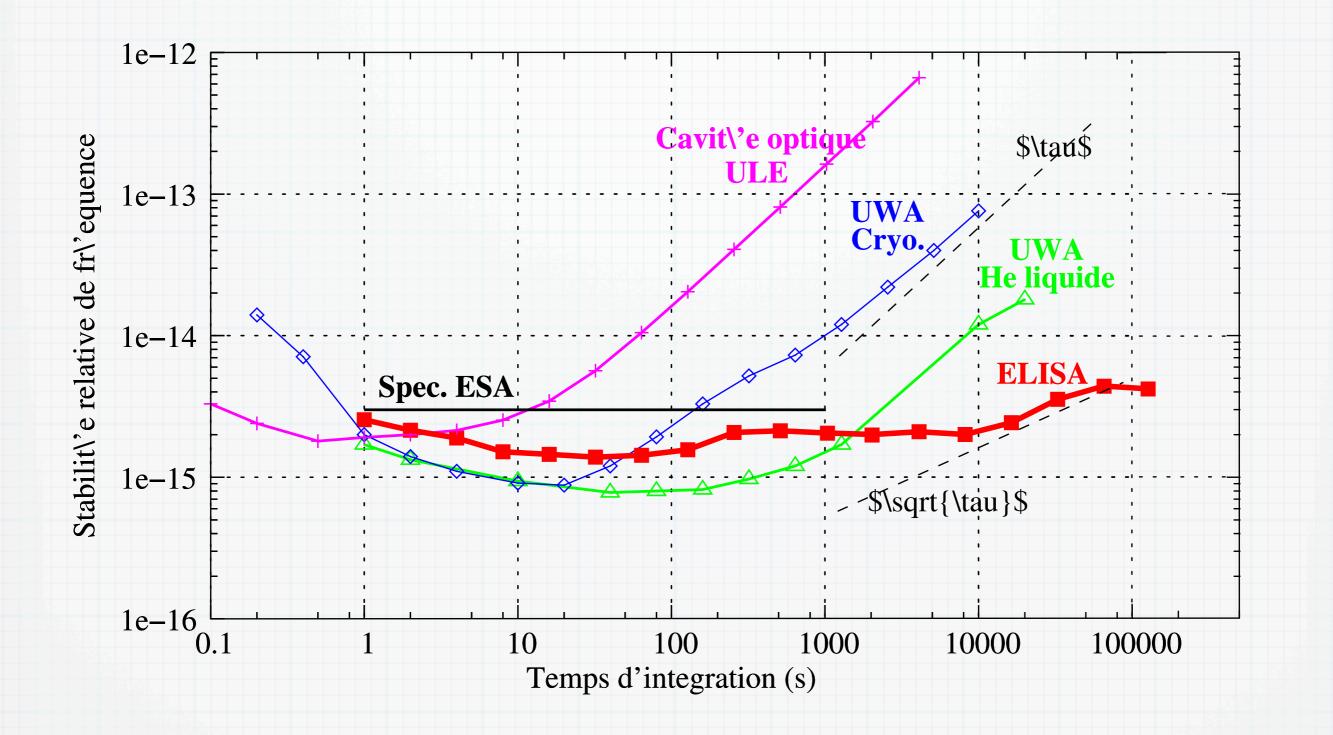
Challenge : vibrations and temperature fluctuations into the cryocooler

Sapphire resonator

- Hemex grade sapphire monocrystal
- Whispering-gallery mode, frequency 10 GHz
- Sytnthesizer fixes machining tolerance (≈ MHz)
- Quality factor $\mathbf{Q} \approx 1\mathbf{E9}$ at 5-8 K
- Temperature turning point

Elisa and Alizée

Stability comparison



156