

~~

• 5 0

Phase Noise in RF and Microwave Amplifiers

Enrico Rubiola and Rodolphe Boudot

IFCS, Newport, CA, 1-4 June 2010

Outline

- Noise types (white and flicker)
- Amplifier networks
- Experiments
- Conclusions

home page http://rubiola.org

AM-PM noise types

DB

The difference between additive and parametric noise

DB

White noise in cascaded amplifiers

White noise is chiefly the noise of the first stage

$$\begin{cases} N_e = F_1 k T_0 + \frac{(F_2 - 1)k T_0}{A_1^2} + \frac{(F_3 - 1)k T_0}{A_2^2 A_1^2} + \dots \\ F = F_1 + \frac{(F_2 - 1)}{A_1^2} + \frac{(F_3 - 1)}{A_2^2 A_1^2} + \dots \end{cases}$$

Friis formulae H. T. Friis, Proc. IRE 32 p.419-422, jul 1944 Noise is chiefly that of the 1st stage

DB

 $b_0 = \frac{F_1 k T_0}{P_0} + \frac{(F_2 - 1)k T_0}{A_1^2 P_0} + \frac{(F_3 - 1)k T_0}{A_2^2 A_1^2 P_0} + \dots$

Friis formula for phase noise

Parametric noise in cascaded amplifiers

5

DB

There is a nonlinear model that gives exactly the same results, see Chap. 2 of E. Rubiola, *Phase Noise and Frequency Stability in Oscillators*, Cambridge 2008, ISBN 978-0521-88677-2

Flicker: the two amplifiers are independent $\mathbb{E}\{\alpha^2\} = \mathbb{E}\{\alpha_1^2\} + \mathbb{E}\{\alpha_2^2\}$ $S_{\alpha} = S_{\alpha 1} + S_{\alpha 2}$ $\mathbb{E}\{\varphi^2\} = \mathbb{E}\{\varphi_1^2\} + \mathbb{E}\{\varphi_2^2\}$ $S_{\alpha} = S_{\varphi 1} + S_{\varphi 2}$

Environment: a single process drives the two amplifiers $\alpha = \alpha_1 + \alpha_2$ $\mathbb{E}\{\alpha^2\} = \mathbb{E}\{(\alpha_1 + \alpha_2)^2\}$ $\varphi = \varphi_1 + \varphi_2$ $\mathbb{E}\{\varphi^2\} = \mathbb{E}\{(\varphi_1 + \varphi_2)^2\}$ Yet there can be a time constant, not necessarily the same for the two devices

Flicker noise in parallel amplifiers

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

- The phase flicker coefficient b₋₁ is about independent of power
- The flicker of a branch is not increased by splitting the input power
- At the output,
 - the carrier adds up coherently
 - the phase noise adds up statistically
- Hence, the 1/f phase noise is reduced by a factor m
- Only the flicker noise can be reduced in this way

$$b_{-1} = \frac{1}{m} \left[b_{-1} \right]_{\text{cell}}$$

Volume law

The analysis of the parallel amplifier suggests that:

For a given technology, the flicker coefficient b_{-1} should be proportional to the inverse of the volume of the active region

Gedankenexperiment

- Flicker is of microscopic origin because it has Gaussian PDF (central limit theorem)
- Join the m branches of a parallel device forming a compound
- Phase flicker is proportional to the inverse size of the amplifier active region

PB Parametric noise in regenerative amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

Measurement methods

Saturated mixer (common laboratory practice)

Bridge (interferometer)

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, June 2002

Flicker noise of some amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

Amplifier	Frequency	Gain	$P_{1\mathrm{dB}}$	F	DC	b_{-1} (meas.)
	(GHz)	(dB)	(dBm)	(dB)	bias	$(dBrad^2/Hz)$
AML812PNB1901	8 - 12	22	17	7	$15\mathrm{V},425\mathrm{mA}$	-122
AML412L2001	4 - 12	20	10	2.5	$15\mathrm{V},100\mathrm{mA}$	-112.5
AML612L2201	6 - 12	22	10	2	$15\mathrm{V},100\mathrm{mA}$	-115.5
AML812PNB2401	8 - 12	24	26	7	$15 \mathrm{V}, 1.1 \mathrm{A}$	-119
AFS6	8 - 12	44	16	1.2	$15{ m V},171{ m mA}$	-105
JS2	8 - 12	17.5	13.5	1.3	$15\mathrm{V},92\mathrm{mA}$	-106
SiGe LPNT32	3.5	13	11	1	$2\mathrm{V},10\mathrm{mA}$	-130
Avantek UTC573	0.01 - 0.5	14.5	13	3.5	$15\mathrm{V},100\mathrm{mA}$	-141.5
Avantek UTO512	0.005-0.5	21	8	2.5	$15\mathrm{V},23\mathrm{mA}$	-137

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

Phase noise in cascaded amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

The expected flicker of a cascade increases by: 3 dB, with 2 amplifiers 4.8 dB, with 3 amplifiers White noise is limited by the (small) input power

Phase noise in parallel amplifiers

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

Connecting two amplifier in parallel, a 3 dB reduction of flicker is expected

Flicker noise in parallel amplifiers

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

Specification of low phase-noise amplifiers (AML web page)												
amplifier	parameters				phase noise vs. f , Hz							
	gain	F	bias	power	10^{2}	10^{3}	10^{4}	10^{5}				
AML812PNA0901	10	6.0	100	9	-145.0	-150.0	-158.0	-159.0				
AML812PNB0801	9	6.5	200	11	-147.5	-152.5	-160.5	-161.5				
AML812PNC0801	8	6.5	400	13	-150.0	-155.0	-163.0	-164.0				
AML812PND0801	8	6.5	800	15	-152.5	-157.5	-165.5	-166.5				
unit	dB	dB	mA	dBm	$dBrad^2/Hz$							

Phase noise of a regenerative amplifier

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

- A RA is set for the gain of two cascaded amplifiers
- As expected, the RA flicker is 3 dB higher than the two amplifiers
- Indirect measurement through the frequency flicker

Thanks to K.Volyianskiy for the OEO noise spectrum

DB

Environmental effects in RF amplifiers

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

fluctuations cause a spectrum $S_{\alpha}(f)$ or $S_{\phi}(f)$ of the 1/f⁵ type

Yet, at low frequencies the spectrum folds back to 1/f

Correlation between AM and PM noise

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

The need for this model comes from the physics of popular amplifiers

- Bipolar transistor. The fluctuation of the carriers in the base region acts on the base thickness, thus on the gain, and on the capacitance of the reverse-biased base-collector junction.
- Field-effect transistor. The fluctuation of the carriers in the channel acts on the drain-source current, and also on the gatechannel capacitance because the distance between the `electrodes' is affected by the channel thickness.
- Laser amplifier. The fluctuation of the pump power acts on the density of the excited atoms, and in turn on gain, on maximum power, and on refraction index.

AM and PM fluctuations are correlated because originate from the same near-dc random process

Conclusions

- The model predicts the noise of the amplifier and of networks
- First noise model of the regenerative (positive-feedback) amplifier
- Experimental data validate the model
- Correlation between AM noise and PM noise (needs further work)

Thanks to K.Volyanskiy for the measurement of the OEO noise, to Y. Gruson for help with phase noise measurements, to P. Salzenstein and to V. Giordano for support and discussions.

This work results from a long-term transverse program on oscillators and frequency synthesis, supported by the following contracts: ANR-05-BLAN-0135-02, CNES 60265/00, CNES 60281/00, ESA 20135/06/D/MRP, LNE/DRST 08 7 002.

R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT

home page http://rubiola.org