MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

Short course on stable oscillators

December 2009 Enrico Rubiola

FEMTO-ST Institute, CNRS and UFC, Besancon, France

Contents

- Part 1: General metrology of amplitude and phase noise
- Part 2: The origin of frequency instability and noise in oscillators
- Part 3: The cross-spectrum experimental method

home page http://rubiola.org

Acknowledgements

I am indebted to prof. Theodor W. Hänsch for inviting me at MPQ

I owe gratitude to dr. Thomas Udem for having proposed and organized my visits at MPQ, and for a wealth of discussions and experience that followed

I am grateful to Lute Maleki and to John Dick for numerous discussions during my visits at the NASA JPL, which are the first seed of my approach to the oscillator noise

This material would never have existed without continuous help and support of Vincent Giordano, FEMTO-ST, during more than a dozen of years

Phase noise and frequency stability in oscillators

THE CAMBRIDGE RF AND MICROWAVE ENGINEERING SERIES

Phase Noise and Frequency Stability in Oscillators Cambridge University Press, November 2008 ISBN 978-0-521-88677-2

Cambridge announced the paperback edition

Contents

- Forewords (L. Maleki, D. B. Leeson)
- Phase noise and frequency stability
- Phase noise in semiconductors & amplifiers
- Heuristic approach to the Leson effect
- Phase noise and feedback theory
- Noise in delay-line oscillators and lasers
- Oscillator hacking
- Appendix

Another book is in progress, on the **Experimental methods for the measurement of AM/PM noise**

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

Short course on Stable oscillators — Part 1 — General metrology of amplitude and phase noise

December 2009 Enrico Rubiola

FEMTO-ST Institute, CNRS and UFC, Besancon, France

Outline

- Basics & definitions
- PM noise in systems
- The saturated mixer
- The measurement of the oscillator PM noise
- Advanced topics (including AM noise)

home page http://rubiola.org

Basics

Clock signal affected by noise

Time Domain

Phasor Representation

v

polar coordinates

$$(t) = V_0 \left[1 + \alpha(t) \right] \cos \left[\omega_0 t + \varphi(t) \right]$$

 α

Cartesian coordinates

$$v(t) = V_0 \cos \omega_0 t + n_c(t) \cos \omega_0 t - n_s(t) \sin \omega_0 t$$

under low noise approximation

$$|n_c(t)| \ll V_0$$
 and $|n_s(t)| \ll V_0$

It holds that

$$(t) = \frac{n_c(t)}{V_0}$$
 and $\varphi(t) = \frac{n_s(t)}{V_0}$

Physical quantities

$$v(t) = V_0 \left[1 + \alpha(t)\right] \cos \left[2\pi\nu_0 t + \varphi(t)\right]$$

Allow $\varphi(t)$ to exceed $\pm \pi$ and count the number of turns, so that $\varphi(t)$ describes the clock fluctuation in full

The power spectral density

The power spectral density extends the concept of root-mean-square value to the frequency domain

Phase noise & friends

(f) (re)defined

The problem with this definition is that it does not divide AM noise from PM noise, which yields to ambiguous results

Engineers (manufacturers even more) like [1](f)

Mechanical stability

Any phase fluctuation can be converted into length fluctuation

 $L = \frac{\varphi}{2\pi} \frac{c}{\nu_0}$

 b_{-1} = –180 dBrad²/Hz and v_0 = 10 GHz is equivalent to S_L = 1.46x10^{-23} m²/Hz at f = 1 Hz

Any flicker spectrum h_{-1}/f can be converted into a flat Allan variance

 $\sigma_L^2 = 2\ln(2) h_{-1}$

A residual flicker of -180 dBrad²/Hz at f = 1 Hz off the 10 GHz carrier is equivalent to $\sigma^2 = 2x10^{-23} \text{ m}^2$ thus $\sigma = 4.5x10^{-12} \text{ m}$ for reference, the Bohr radius of the electron is R = 0.529 Å

- Don't think "this is just engineering" !!!
- Learn from non-optical microscopy (bulk matter, 5x10⁻¹⁴ m)
- Careful DC section (capacitance and piezoelectricity)
- The best advice is to be at least paranoiac

Averaged spectra must be smooth

stationary & ergodic process (means repeatable and reproducible): the statistics of all an(t) and bn(t) is the same

average on m spectra: confidence of a point improves by 1/m^{1/2} interchange ensemble with frequency: smoothness 1/m^{1/2}

PM noise in systems

White noise

Cascaded amplifiers (Friis formula) The (phase) noise is chiefly that of the 1st stage

The Friis formula applied to phase noise $b_0 = \frac{F_1 k T_0}{P_0} + \frac{(F_2 - 1) k T_0}{P_0 g_1^2} + \dots$

H. T. Friis, Proc. IRE 32 p.419-422, jul 1944

14

Flicker noise

r noise – experiments

Phase noise vs. power

- The 1/f phase noise b₋₁ is about independent of power
- The white noise b₀ scales up/down as 1/P₀, i.e., the inverse of the carrier power
- Describing the 1/f noise in terms of fc is misleading because fc depends on the input power

Phase noise of cascaded amplifiers

 The expected flicker of a cascade increases by: 3 dB, with 2 amplifiers 5 dB, with 3 amplifiers

Regenerative amplifiers

• Phase noise increase as the squared gain because the noise source at each roundtrip is correlated

Phase noise of paralleled amplifiers

• Connecting two amplifiers in parallel, the phasenoise flicker is expected to decrease by 3 dB

The theory is fully confirmed on more amplifiers (E.Rubiola & R.Boudot)

16

Environmental noise

A time constant can be present

 $\varphi = \varphi_A + \varphi_B$ and $\alpha = \alpha_A + \alpha_B$ regardless of the amplifier order

Cascading *m* equal amplifiers, $S_{\alpha}(f)$ and $S_{\phi}(f)$ increase by a factor m^2 .

If the amplifier were independent, S_{α} (f) and $S_{\phi}(f)$ would increase only by a factor *m*.

It is experimentally observed that the temperature fluctuations cause a spectrum $S_{\alpha}(f)$ or $S_{\phi}(f)$ of the 1/f⁵ type

Yet, at lower frequencies the spectrum folds back to 1/f

Cascaded amplifiers let z(t) = x(t) + y(t)

Phase noise $S_{z}(f) = ZZ^{*}$ $= (X + Y) (X + Y)^{*}$ $= XX^{*} + YY^{*} + XY^{*} + YX^{*}$ $= S_{x} + S_{y} + \underbrace{S_{xy}}_{>0} + \underbrace{S_{yx}}_{>0}$

Frequency synthesis

The ideal noise-free frequency synthesizer repeats the input time jitter

After division, the noise of the output buffer may Λ be larger than the input-noise scaled down

After multiplication, the scaled-up phase noise sinks energy from the carrier. At m \approx 2.4, the carrier vanishes

m

Beat note

Chose $v_1 \approx v_2$ with a small difference v_b

The beat stretches the time associated to 1 rad by a factor $v_1v_b \approx v_2v_b$

Accordingly, it is easier to measure S_{ϕ} at the low frequency v_b , or to find a reference with negligible S_{ϕ}

The saturated mixer

Double-balanced mixer

 \sim

 ∇

 $\langle \rangle$

saturated multiplier => phase-to-voltage detector $v_o(t) = k_{\phi} \phi(t)$ $k_{\phi} \approx 100...500 \text{ mV/rad}$

mixer LO source LO RF RF source input input D2D1 \bowtie $\sim \sim \sim$ \sim R_G ¦₿ $v_p(t)$ $v_i(t)$ R_G \bowtie D3 D4 IF $v_o(t)$ out IF load R_L

E. Rubiola, Tutorial on the double-balanced mixer, arXiv/physics/0608211

Practical issues

needs a capacitive-input filter to recirculate the $2\omega_0$ output signal

Mixer limitations

1 – Power

narrow power range: ±5 dB around P_{nom} = 7–13 dBm r(t) and s(t) should have ~ same P

2 – Flicker noise

due to the mixer internal diodes typical $S_{\phi} = -140 \text{ dBrad}^2/\text{Hz}$ at 1 Hz in average-good conditions

3 – Low gain

k_φ ~ 0.2–0.3 V/rad typ. -10 to -14 dBV/rad

4 – White noise

due to the operational amplifier

- 5 Takes in AM noise due to the residual power-to-offset
- conversion

E. Rubiola, Tutorial on the double-balanced mixer, arXiv/physics/0608211

Useful schemes

two-port device under test

a pair of two-port devices 3 dB improved sensitivity

the measurement of an amplifier needs an attenuator

the measurement of a low-power DUT needs an amplifier, which flickers

measure two oscillators under test best use a tight loop

measure an oscillator vs. a resonator

Calibration – general procedure

1 – adjust for proper operation: driving power and quadrature

- 2 measure the mixer gain ${\bf k}_\phi$ (volts/rad)
 - offset 159 Hz (1 krad/s), measure the slope with an oscilloscope
 - reference phase modulator
 - other methods
 - 3 measure the residual noise of the instrument

4 - measure the rejection of the oscillator noise

Make sure that the power and the quadrature are the same during all the process

The measurement of the oscillator PM noise

k_φ (V/rad) **Phase Locked Loop (PLL)**

27

o (rad/s/V) 0 $k_{\varphi} (V/rad)$ $k_{\varphi}^{\varphi} (V/rad)$ FFT $k_o (rad/s/V) \ k_o (rad/s/V)$ RF $|k_{o}k_{o}H_{c}(f)|^{2}$ VCO_{in} $\frac{SS_{\varphi_{2}}(f)(f)}{S_{\varphi_{1}}(f)} = \frac{|k_{o} + \pi^{2} + k_{o} + \mu^{2} + k_{o} + \mu^{2} + k_{o} + \mu^{2} + k_{o} + \mu^{2} + \mu^{2}$ Phase: the PLL is a low-pass filter $=\frac{S_{vo}(f)}{S_{\varphi_{1}}^{vo}(f)(\overline{f})} = \frac{4\pi f^{2}k_{\varphi}^{2}}{4\pi f^{2}k_{\varphi}^{2}} \frac{4$ **Output voltage: the PLL** is a high-pass filter

compare an oscillator under test to a reference low-noise oscillator

compare two equal oscillators and divide the spectrum by 2 (take away 3 dB)

Loose Phase Locked Loop (PLL)

He is a constant (1storder PLL)

A large dynamics is required because of the f'slope

A tight PLL shows many advantages

Still 1 storder PLL

increased gain

a marrower dynamics is sufficient

but you have to correct the spectrum for the PLL transfer function

Practical measurement of S_{\phi}(f) with a PLL

- 1. Set the circuit for proper electrical operation
 - a. power level
 - b. lock condition (there is no beat note at the mixer out)
 - c. zero dc error at the mixer output (a small V can be tolerated)
- 2. Choose the appropriate time constant
- 3. Measure the oscillator noise
- 4. At end, measure the background noise

Warning: a PLL may not be what it seems

Parasitic locking or coupling of the oscillators may impair the result BAD SYMPTOMS : actual 1/13 - odd slope Sy - Open-loop Waveforms IFout - results (sq) depuid on the cable length 0-55

PLL – beat method

With low-noise microwave oscillators (like whispering gallery) the noise of a microwave synthesizer at the oscillator output can not be tolerated.

Due to the lower carrier frequency, the noise of a VHF synthesizer is lower than the noise of a microwave synthesizer.

This scheme is useful

with narrow tuning-range oscillator, which cannot work at the same freq.

to prevent injection locking due to microwave leakage

A weird example

supplementary material

A frequency discriminator can be used to measure the phase noise of an oscillator

RESOMATOR $\varphi = - excTen 2Qy$ y = AVy = X DELAY LINE T Qq = NTZ

Gose q mean. Sym = $4Q^2 Sy$ $Sym = 4Q^2 f^2 Sy$ QUASISTATIC TRANSFORM. f< ye

supplementary material

The delay-line as a discriminator

The delay line turns a frequency into a phase

Virtues

- Works at any frequency v = n/τ, integer τ (the resonator does not)
- Sφ measurement of an oscillator
- Dual-channel Sφ measurement of an oscillator
- Stabilization of an oscillator
- Opto-electronic oscillator

Problems & solution

- Coax cable: 50 dB attenuation limits to
 - 950 ns @ 1 GHz (Q=3000) RG213
 - 300 ns @ 10 GHz (Q=11500) RG402
- Optical fiber:
- max delay is not limited by the attenuation
- 1-100 µs delay is possible (Q=10⁵-10⁷ @ 31 GHz)

supplementary material

Opto-electronic discriminator

Rubiola & al., JOSAB 22(5) p.987–997 (2005) --- Volyanskiy & al., JOSAB 25(12) p.2140–2150 (2008)

The short arm can be a microwave cable or a photonic channel

Laplace transforms

- delay –> frequency-to-phase conversion
- works at any frequency
- long delay (microseconds) is necessary for high sensitivity
- the delay line must be an optical fiber fiber: attenuation 0.2 dB/km, thermal coeff. 6.8 10⁻⁶/K cable: attenuation 0.8 dB/m, thermal coeff. ~ 10⁻³/K

Laplace transforms

$$\Phi(s) = H_{\varphi}(s)\Phi_i(s)$$

$$|H_{\varphi}(f)|^2 = 4\sin^2(\pi f\tau)$$

 $S_y(f) = |H_y(f)|^2 S_{\varphi i}(f)$

$$|H_y(f)|^2 = \frac{4\nu_0^2}{f^2} \sin^2(\pi f\tau)$$

Advanced topics (including AM noise)

Bridge PM and AM noise measurement

- Bridge => high rejection of the master-oscillator noise
- Amplification and synchronous detection of the noise sidebands
- No carrier => the amplifier can't flicker (no up-conversion of near-dc 1/f)
- High microwave gain before detection => low background
- Low 50-60 Hz residuals because microwave circuits are insensitive to magnetic fields

Fractional noise (5, 15, 25, 35 dB/dec)

However heretic it seems, we have observed these slopes in optical systems.

Other researchers report on similar issues, yet without pointing out the problem (exception, D. Eliyahu)

AM noise – The diode power detector

law: $v = k_d P$

differential resistance $R_d = \frac{V_T}{I_0}$ $V_T = kT/q \simeq 25$ mV thermal voltage

AM noise – Cross-spectrum method

 $v_a(t) = 2k_a P_a \alpha(t) + \text{noise}$ $v_b(t) = 2k_a P_b \alpha(t) + \text{noise}$

The cross spectrum $S_{ba}(f)$ rejects the single-channel noise because the two channels are independent.

$$S_{ba}(f) = \frac{1}{4k_a k_b P_a P_b} S_\alpha(f)$$

The problem with single-channel measurement is that the background noise cannot be measured without a reference source

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

Short course on Stable oscillators — Part 2 — The origin of frequency instability and noise in oscillators

December 2009 Enrico Rubiola

FEMTO-ST Institute, CNRS and UFC, Besancon, France

Outline

- Basics
- Oscillator hacking
- The Leeson effect (theory)
- Extension to AM noise
- Delay-line oscillator (and laser)

home page http://rubiola.org

Basics

General oscillator model

Barkhausen condition $A\beta = 1$ at ω_0 (phase matching)

The model also describes the negative-R oscillator

44

Heuristic derivation of the Leeson formula

Though obtained with simplifications, this result turns out to be is exact

Including the sustaining-amplifier noise

The sustaining-amplifier noise is $S_{\varphi}(f) = b_0 + b_{-1}/f$ (white and flicker)

The effect of the output buffer

Cascading two amplifiers, flicker noise adds as $S_{\phi}(f) = [S_{\phi}(f)]_1 + [S_{\phi}(f)]_2$

The resonator natural frequency fluctuates

- The oscillator tracks the resonator natural frequency, hence its fluctuations
- The fluctuations of the resonator natural frequency contain 1/f and 1/f² (frequency flicker and random walk), thus 1/f³ and 1/f⁴ of the oscillator phase
- The resonator bandwidth does not apply to the natural-frequency fluctuation.
 (Tip: an oscillator can be frequency modulated ar a rate >> fL)

50

stability in oscillators, © Cambridge University Press

Oscillator hacking

Analysis of some commercial oscillators

The purpose of this section is to help to understand the oscillator inside from the phase noise spectra, plus some technical information. I have chosen some commercial oscillators as an example.

The conclusions about each oscillator represent only my understanding based on experience and on the data sheets published on the manufacturer web site.

You should be aware that this process of interpretation is not free from errors. My conclusions were not submitted to manufacturers before writing, for their comments could not be included.

Miteq D210B, 10 GHz DRO

• $kT_0 = 4 \times 10^{-21} \text{ W/Hz} (-174 \text{ dBm/Hz})$

Rubiola, Phase noise

The figure is from E.

is © Miteq. The figure stability in oscillators,

<u>.</u>

and frequency The spectrum

© Cambridge University Press

- floor –146 dBrad²/Hz, guess F = 1.25 (1 dB) => $P_0 = 2 \mu W$ (–27 dBm)
- $f_L = 4.3 \text{ MHz}, f_L = v0/2Q \implies Q = 1160$
- $f_c = 70 \text{ kHz}$, $b_{-1}/f = b_0 => b_{-1} = 1.8 \times 10^{-10} (-98 \text{ dBrad}^2/\text{Hz})$ [sust.ampli]
- $h_0 = 7.9 \times 10^{-22}$ and $h_{-1} = 5 \times 10^{-17} = \sigma_v = 2 \times 10^{-11} / \sqrt{\tau} + 8.3 \times 10^{-9}$

Poseidon Scientific Instruments – Shoebox⁴ 10 GHz sapphire whispering-gallery (1)

 $f_L = v_0/2Q = 2.6 \text{ kHz} => Q = 1.8 \times 10^6$

This incompatible with the resonator technology. Typical Q of a sapphire whispering gallery resonator: 2×10⁵ @ 295K (room temp), 3×10⁷ @ 77K (liquid N), 4×10⁹ @ 4K (liquid He). In addition, d ~ 6 dB does not fit the power-law.

The interpretation shown is wrong, and the Leeson frequency is somewhere else

Poseidon Scientific Instruments – Shoebox⁵⁵ 10 GHz sapphire whispering-gallery (2)

The 1/f noise of the output buffer is higher than that of the sustaining amplifier (a compex amplifier with interferometric noise reduction) In this case both 1/f and 1/f² are present white noise -169 dBrad²/Hz, guess F = 5 dB (interferometer) => P₀ = 0 dBm buffer flicker -120 dBrad²/Hz @ 1 Hz => good microwave amplifier $f_L = \nu_0/2Q = 25$ kHz => $Q = 2 \times 10^5$ (quite reasonable)

f_c = 850 Hz => flicker of the interferometric amplifier –139 dBrad²/Hz @ 1 Hz

Poseidon Scientific Instruments 10 GHz dielectric resonator oscillator (DRO)

- floor –165 dBrad²/Hz, guess F = 1.25 (1 dB) => $P_0 = 160 \ \mu W$ (–8 dBm)
- $f_L = 3.2 \text{ MHz}, f_L = v0/2Q \implies Q = 625$

Phase noise

E. Rubiola,

from

<u>s</u>

figure

The

Poseidon.

0

The spectrum is

and frequency stability in oscillators,

© Cambridge University Press

• $f_c = 9.3 \text{ kHz}$, $b_{-1}/f = b_{-1} = 2.9 \times 10^{-13} (-125 \text{ dBrad}^2/\text{Hz})$ [sust.ampli, too low]

Slopes are not in agreement with the theory

OCXO 8600 Technical Specification

Courtesy of Oscilloquartz (handwritten notes are mine). The specifications, which include this spectrum, are available at the URL http://www.oscilloquartz.com/file/pdf/8600.pdf

ANALYSIS

- 1 floor S_{ϕ 0} = −155 dBrad²/Hz, guess F = 1 dB \rightarrow P₀ = −18 dBm
- 2 ampli flicker $S_{\phi} = -132 \text{ dBrad}^2/\text{Hz} @ 1 \text{ Hz} \rightarrow \text{good RF amplifier}$
- $3 \text{merit factor } Q = v_0/2f_L = 5 \cdot 10^6/5 = 10^6$ (seems too low)
- 4 take away some flicker for the output buffer:
 - * flicker in the oscillator core is lower than -132 dBrad²/Hz @ 1 Hz
 - * f_L is higher than 2.5 Hz
 - * the resonator Q is lower than 10⁶

This is inconsistent with the resonator technology (expect Q > 10⁶). The true Leeson frequency is lower than the frequency labeled as f_L The 1/f³ noise is attributed to the fluctuation of the quartz resonant frequency

Wenzel 501-04623 G - Lowest phase noise 100 MHz SC-cut oscillator

1 – floor S_{$\phi0$} = −173 dBrad²/Hz, guess F = 1 dB \rightarrow P₀ = 0 dBm 2 – merit factor Q = $v_0/2f_L$ = 10⁸/7×103 = 1.4×10⁴ (seems too low)

From the literature, one expects Q ~ 10^5 . The true Leeson frequency is lower than the frequency labeled as f_L The 1/f³ noise is attributed to the fluctuation of the quartz resonant frequency

Courtesy of OEwaves (handwritten notes are mine). Cut from the oscillator specifications available at the URL http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf

The Leeson effect

Low-pass representation of AM-PM noise

Linear time-invariant (LTI) systems

impulse response

response to the generic signal v_i(t)

H(s), $s=\sigma+j\omega$, is the analytic continuation of H(ω) for causal system, where h(t)=0 for t<0

62

Laplace-transform patterns

Fundamental theorem: F(s) is completely determined by its roots (poles and zeros)

Resonator in the phase space

Resonator impulse response (proof)

67

Resonator impulse response (proof)

DETAILS

$$U'(t) = \cos(\omega \cdot t) e^{-t/t} + \cos(\omega \cdot t \cdot t) [\Lambda - e^{-t/t}]$$

$$U'(t) = \cos(\omega \cdot t) e^{-t/t} + [\cos(\omega \cdot t)\cos(k) - n \cdot n \cdot (\omega \cdot t) n \cdot (k)] [\Lambda - e^{-t/t}]$$

$$U(t) = \cos(\omega \cdot t) e^{-t/t} + [\cos(\omega \cdot t)\cos(k) - n \cdot n \cdot (\omega \cdot t) n \cdot (k)] [\Lambda - e^{-t/t}]$$

$$use \quad k < 1 \quad \cos k = 1 \quad n \cdot k = k$$

$$U(t) = \cos(\omega \cdot t) e^{-t/t} + [\cos(\omega \cdot t) - k \cdot n \cdot (\omega \cdot t)] [\Lambda - e^{-t/t}]$$

$$= \cos(\omega \cdot t) e^{-t/t} + \cos(\omega \cdot t) [\Lambda - e^{-t/t}] - k \cdot n \cdot (\omega \cdot t) [\Lambda - e^{-t/t}]$$

$$U(t) = \cos(\omega \cdot t) - k \quad s \cdot u \cdot (\omega \cdot t) [\Lambda - e^{-t/t}]$$

$$W(t) = \cos(\omega \cdot t) - k \quad s \cdot u \cdot (\omega \cdot t) [\Lambda - e^{-t/t}]$$

$$Re \quad Im \quad Friend vector$$

88

Resonator impulse response (proof)

FRESNEL VECTOR

K[1-et/t] $arg(V) = \kappa [1 - e^{\frac{-\nu}{c}}]$ unity step ->= ruplace Ku(+) -> u(+) · don't forget that all this holds for KSSS $b(t) = 1 - e^{-t/t}$ stepresponse response $b(t) = \frac{1}{t} e^{-t/t}$ derivative $B(s) = \frac{1/\tau}{s+ 1/\tau}$ \$2+1

B08b

Resonator step and impulse response

Leeson effect

71

Extension to AM noise
Common types of gain saturation

Gain compression is necessary for the oscillation amplitude to be stable

Low-pass model of amplitude (1)

First we need to relate the system restoring time τ_r to the relaxation time τ

simple feedback theory

$$u = \epsilon + v_2$$

$$v_2 = \frac{1}{\tau} \int (v_1 - v_2) dt$$

$$v_2 = u - \epsilon$$

$$v_1 = v = Au$$

$$u = \epsilon + \frac{1}{\tau} \int (A - 1)u + \epsilon dt$$

differential equation

 $\dot{u} - \frac{1}{\tau} \left(A - 1 \right) u = \frac{1}{\tau} \epsilon + \dot{\epsilon}$

The Laplace / Heaviside formalism cannot be used because the amplifier is non-linear

Low-pass model of amplitude (2)

Startup – analysis vs. simulation

Gain fluctuations – definition

Gain fluctuations – output is u

Gain fluctuations – output is v

boring algebra relates α_v to α_u

$$v = Au$$

$$A = -\gamma(u - 1) + 1 + \eta$$

$$v = [-\gamma(u - 1) + 1 + \eta] u$$

$$v = [-\gamma\alpha_u + 1 + \eta] [1 + \alpha_u]$$

$$\chi + \alpha_v = \chi + \eta - \gamma\alpha_u + \alpha_u - \alpha_u \eta - \gamma \alpha_u^2$$

$$\alpha_v = (1 - \gamma)\alpha_u + \eta$$
linearization

$$\alpha_u = \frac{\alpha_v - \eta}{1 - \gamma}$$
linearization for low noise

$$\begin{pmatrix} s + \frac{\gamma}{\tau} \end{pmatrix} \mathcal{A}_{u}(s) = \frac{1}{\tau} \mathcal{N}(s) \quad \begin{array}{c} \text{starting equation} \\ \text{equation} \\ \mathcal{A}_{u}(s) = \frac{\mathcal{A}_{v}(s) - \mathcal{N}(s)}{1 - \gamma} \\ \\ \begin{pmatrix} s + \frac{\gamma}{\tau} \end{pmatrix} \mathcal{A}_{v}(s) = \left(s + \frac{1}{\tau}\right) \mathcal{N}(s) \\ \\ \text{H}(s) = \frac{\mathcal{A}_{v}(s)}{\mathcal{N}(s)} \quad \begin{array}{c} \text{definition} \\ \\ \text{H}(s) = \frac{s + 1/\tau}{s + \gamma/\tau} \quad \begin{array}{c} \text{result} \\ \\ \hline y \geq 1 \\ \hline y \geq 1 \\ \hline y \geq 1 \\ \end{array}$$

σ

 $-\gamma/\tau$ $-1/\tau$

file: ele-H-AM

 f_L/γ f_L f_L/γ

Additive noise – output is u

 $u = 1 + \alpha_u$

non-linear equation

lineariz. for low noise

 $\dot{\alpha}_u + \frac{\gamma}{\tau} \alpha_u = \dot{\epsilon} + \frac{1}{\tau} \epsilon$

 $\dot{u} = \frac{1}{\tau} (A - 1)u + \dot{\epsilon} + \frac{1}{\tau} \epsilon$

 $\dot{\underline{u}} + \frac{\gamma}{\tau} (\underline{u-1}) u = \dot{\epsilon} + \frac{1}{\tau} \epsilon$

 $\dot{A} = 1 - \gamma(u - 1)$

linearized equation

 $\left(s + \frac{\gamma}{\tau}\right) \mathcal{A}_u(s) = \left(s + \frac{1}{\tau}\right) \mathcal{E}(s)$ Laplace transform

Linearize for low noise and use the Laplace transforms

 $\alpha_u(t) \leftrightarrow \mathcal{A}_u(s) \quad \text{and} \quad \epsilon(t) \leftrightarrow \mathcal{E}(s)$ $\mathrm{H}_u(s) = \frac{\mathcal{A}_u(s)}{\mathcal{E}(s)} \quad \text{definition}$

 $\mathrm{H}_u(s) = \frac{s+1/\tau}{s+\gamma/\tau} \quad \text{result}$

80

Additive noise – output is v

Simulation

Analytic model and numeric simulation yield same time constants and slopes

Delay-line oscillators (and lasers)

Delay-line oscillator

DELAY LINE

$$\delta(t)$$
 $\delta(t-c)$ f

COMPLEX VOLTAGE Space

$$f(s) = \frac{1}{1 - A\beta}$$
 general

B= est

POLES $H(s) = \frac{1}{1 - Ae^{-st}}$

 $\frac{1 - Ae^{-st} = 0}{Ae^{-st} = 1} \xrightarrow{\sim} \left\{ \begin{array}{c} \sigma = \frac{1}{2} \ln(A) \\ \omega = 0 & \text{mod} & \frac{2\pi}{2} \end{array} \right\}$

C7

Delay-line oscillator – complex plane

COMPLEX PLANE

each pole pair is equivalent to a resonator

-> add the frequency response - add the & response

· A -> 1 all the poles are on the jev axes. • equivalent: infinite series of undamped resouctors.

- The loop sustains any periodic waveform ALL INHOINARY POLES: LINK BETWEEN & SERIES TRANSPORT
- · Infinite amplification of noose as Vi

C07b

A bandpass filter is necessary

86

Delay-line oscillator – phase space

68 DELAY LINE - PHASE SPACE Assume that the oscillator has choosen a ferguency 20 by virtue of some dicty trick -Vi(t) be phase stop k U.(6) - 0 δ rusponse $\delta(t) = \delta(t-\hat{c})$ $B(s) = e^{-s\tau}$ 9(5) He(s) = 1-B general $H_{q}(s) = \frac{1}{1 - s^2}$

Phase space – complex-plane

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

Short course on Stable oscillators — Part 3 — The Cross-spectrum experimental method

December 2009 Enrico Rubiola

FEMTO-ST Institute, CNRS and UFC, Besancon, France

Outline

- Statistics
- The FFT analyzer
- Theory
- Applications

home page http://rubiola.org

Statistics

Two reasons to use normal-distributed white noise

Central limit theorem: many random variables => normal distribution Noise can (in most cases) be whitened, then unwhitened after processing

Properties of white zero-mean Gaussian noise

x(t) <=> X(if) = X'(if)+iX''(if)

- 1. x(t) <=> X(If) are gaussian
- **2.** $X(If_1)$ and $X(If_2)$, $f_1 \neq f_2$
 - 1. are statistically independent,
 - 2. var{X(If₁)} = var{X(If₂)}
- 3. real and imaginary part:
 - 1. X' and X" are statistically independent
 - 2. var{X'} = var{X''} = var{X}/2
- 4. $Y = X_1 + X_2$
 - 1. Y is Gaussian
 - 2. var{Y} = var{X₁} + var{X₂}

5. $Y = X_1 \times X_2$

- 1. is Gaussian
- 2. var{Y} = var{X₁} var{X₂}

Properties of flicker noise x(t) <=> X(If) = X'(If)+IX"(If)

- 1. Pair x(t) <=> X(ıf)
 - 1. there is no a-priori relation between the distribution of x(t) and X(if) (theorem)
 - 2. Central limit theorem: x(t) and X(if) end up to be Gaussian
- 2. X(If₁) and X(If₂)
 - 1. are statistically independent
 - **2.** $var{X(If_2)} < var{X(If_1)}$ for $f_2 > f_1$
- 3. Real and imaginary part
 - X' and X" can be correlated
 var{X'} ≠ var{X"} ≠ var{X}/2
- 4. Y = X₁ + X₂, zero-mean Gaussian r.v.
 var{Y} = var{X₁} + var{X₂}
- 5. If X_1 and X_2 are zero-mean Gaussian r.v.
 - **1.** $Y = X_1 \times X_2$ is zero-mean Gaussian
 - 2. var{Y} = var{X₁} var{X₂}

Normal (Gaussian) distribution

One-sided Gaussian distribution

x is normal distributed with zero mean and variance σ^2

$$y = |x|$$

 $a_{1} = |m|$

$$f(x) = 2\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$
$$\mathbb{E}\{f(x)\} = \sqrt{\frac{2}{\pi}\sigma}$$
$$\mathbb{E}\{f^2(x)\} = \sigma^2$$
$$\mathbb{E}\{|f(x) - \mathbb{E}\{f(x)\}|^2\} = \left(1 - \frac{2}{\pi}\right)\sigma^2$$

one-sided Gaussian distribution with $\sigma^2 = 1/2$		
quantity	value	
with $\sigma^2 = 1/2$	$[10\log(), dB]$	
average = $\sqrt{\frac{1}{\pi}}$	$0.564 \\ [-2.49]$	
deviation = $\sqrt{\frac{1}{2} - \frac{1}{\pi}}$	$0.426 \\ [-3.70]$	
$\frac{\mathrm{dev}}{\mathrm{avg}} = \sqrt{\frac{\pi}{2} - 1}$	$0.756 \\ [-1.22]$	
$\frac{\operatorname{avg} + \operatorname{dev}}{\operatorname{avg}} = 1 + \sqrt{\frac{1}{2} - \frac{1}{\pi}}$	$1.756 \\ [+2.44]$	
$\frac{\operatorname{avg} - \operatorname{dev}}{\operatorname{avg}} = 1 - \sqrt{\frac{1}{2} - \frac{1}{\pi}}$	$0.244 \\ [-6.12]$	
$\frac{\text{avg} + \text{dev}}{\text{avg} - \text{dev}} = \frac{1 + \sqrt{1/2 - 1/\pi}}{1 - \sqrt{1/2 - 1/\pi}}$	7.18 $[8.56]$	

Chi-square distribution

 x_i are normal distributed with zero mean and equal variance σ^2

 $\chi^2 = \sum_{i=1}^r x_i^2$

is χ^2 distributed with r degrees of freedom

$$f(x) = \frac{x^{\frac{r}{2}-1} e^{-\frac{x^2}{2}}}{\Gamma(\frac{1}{2}r) 2^{\frac{r}{2}}} \quad x \ge 0$$
$$\mathbb{E}\{f(x)\} = \sigma^2 r$$
$$\mathbb{E}\{[f(x)]^2\} = \sigma^4 r(r+2)$$
$$\mathbb{E}\{|f(x) - \mathbb{E}\{f(x)\}|^2\} = 2\sigma^4 r$$
$$z! = \Gamma(z+1), \quad z \in \mathbb{N}$$

Averaging chi-square distributions

averaging m variables $|X|^2$, complex X=X'+IX", yields a χ^2 distribution with r = 2m

Rayleigh distribution

Rayleigh distribution with $\sigma^2 = 1/2$	
$\begin{array}{c} \text{quantity} \\ \text{with } \sigma^2 = 1/2 \end{array}$	value $[10 \log(), dB]$
average = $\sqrt{\frac{\pi}{4}}$	$0.886 \\ [-0.525]$
deviation = $\sqrt{1 - \frac{\pi}{4}}$	$0.463 \\ [-3.34]$
$\frac{\mathrm{dev}}{\mathrm{avg}} = \sqrt{\frac{4}{\pi} - 1}$	$0.523 \\ [-2.82]$
$\frac{\operatorname{avg} + \operatorname{dev}}{\operatorname{avg}} = 1 + \sqrt{\frac{4}{\pi} - 1}$	$1.523 \\ [+1.83]$
$\frac{\text{avg} - \text{dev}}{\text{avg}} = 1 - \sqrt{\frac{4}{\pi} - 1}$	$0.477 \\ [-3.21]$
$\frac{\operatorname{avg} + \operatorname{dev}}{\operatorname{avg} - \operatorname{dev}} = \frac{1 + \sqrt{4/\pi - 1}}{1 - \sqrt{4/\pi - 1}}$	$3.19 \\ [5.04]$

The FFT analyzer

Normalization

Commonly used quantities

quantity	physical dimension	purpose
$X_T(\imath f)$	V/Hz	Two-sided FT Theoretical issues
$S^{I}(f) = \frac{2}{T} X_{T}(if) ^{2}, f > 0$	V^2/Hz or W/Hz	One-sided PSD Measurement of noise level (power spectral density)
$\frac{\frac{1}{T}S^{I}(f)}{\frac{2}{T^{2}} X_{T}(if) ^{2}}, f > 0$	V^2 or W	One-sided PS Power measurement of carriers (sinusoidal signals)

Truncated signal
$$X_T($$

$$X_T(if) = \int_{-T/2}^{T/2} x(t) e^{-i2\pi ft} dt$$

Sampling and aliasing

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

100

Truncation and energy leakage

101

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

Supplementary material Fitting the Fourier transform into a computer memory

102

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

FFT – How long does it take?

total time = acquisition time + computation time

- The FFT of a N-sample time series has N complex points (Re and Im)
- The FFT is symmetric with respect to N/2 Re{X} has even symmetry Im{X} has odd symmetry
- If the samples (time series) are real, all the information is contained in the first N/2 complex points
- The upper part of the spectrum is polluted by aliasing and distorted by the anti-aliasing filter, thus it is not used.
- Keeping the upper ξN/2 points (ξ≈0.8), the displayed points are N' = ξN/2 (N' ≈ 0.4 N)
- The acquisition of N samples at the sampling frequency f_s takes a time T_a = N/f_s
- The frequency span is $f_{span} = \xi f_s/2$ ($f_{span} \approx 0.4 f_s$) The acquisition time is $T_a = N' / f_{span}$
- The FFT algorithm takes N log₂(N) complex additions and (N/2) log₂(N) complex multiplications
- The computation time is proportional to N log(N)

Spectrum of the quantization noise

The analog-to-digital converter introduces a quantization error x, $-V_q/2 \le x \le +V_q/2$

104

Ergodicity suggests that the quantization noise can be calculated statistically

 $\sigma^2 = \frac{V_q^2}{12}$

 $p(x) \qquad \qquad \sigma^2 = \frac{V_q^2}{12}$

 $NB = \frac{V_q^2}{12}$

$$N = \frac{V_q^2}{12B}$$

Noise of the real FFT analyzer

The quantization noise scales with the frequency span, the front-end noise is constant

The energy is equally spread in the full FFT bandwidth, including the upper region not displayed because of aliasing

Example of FFT analyzer noise

Experimental observation

Theoretical evaluation

DAC 12 bit resolution, including sign

range 10 mV_{peak} $V_{fsr} = 20 \text{ mV} (\pm 10 \text{ mV})$ resolution $V_q = V_{fsr} / 2^{12}$ $= 4.88 \mu V$

total noise $\sigma^2 = (4.88 \ \mu V)^2 / 12$ $= 2 \times 10^{-12} \ V^2 \ (-117 \ dB)$

quantization noise PSD

 $S_v = \sigma^2 / B$ = -117 dBV²/Hz with B = 1 Hz (etc.)

Front-end noise, evaluated from the plot

 $S_v = 2 \times 10^{-15}$ V² (-150 dB), at 10–100 kHz or 45 nV/Hz^{1/2}

use Sv = 4kTR R = 125 k Ω or R = 100 k Ω and F = 1 dB (noise figure) 106

Oscillator noise measurement

A tight loop is preferred because:

- reduces the required dynamic range
- overrides (parasitic) injection locking

FFT noise in oscillator measurements

Explanation: the steps occurring at the transition between decades are due the quantization noise, when the resolution is insufficient

calculated

The steps are due to the FFT quantization noise

The problem shows up when the dynamic range is insufficient, often in the presence of large stray signals

Systematic errors are also possible at high Fourier frequencies

108
Linear vs. logarithmic resolution

Linear resolution

Logarithmic resolution (80 pt/dec)

Combining M independent values, the confidence interval is reduced by sqrt(M), (5 dB left-right in one decade)

A weighted average is also possible

Theory

Correlation measurements

Two separate instruments measure the same DUT. Only the DUT noise is common

noise measurements					
DUT noise,	a, b	instrument noise			
normal use	c	DUT noise			
background,	a, b	instrument noise			
ideal case	c = 0	no DUT			
background, real case	a, b c ≠ 0	c is the correlated instrument noise Zero DUT noise			

a(t), b(t) -> instrument noise c(t) -> DUT noise

The concept of ergodicity

Ergodicity allows to interchange time statistics and ensemble statistics, thus the running index i of the sequence and the frequency f. The average and the deviation calculated on the frequency axis are the same as the average and the deviation of the time series.

Example: Measurement of |Syx|

Measurement (C≠0), |Syx|

S_{yx} shrinks => better confidence level S_{yx} decreases => higher single-channel noise rejection

Measurement (C≠0), |Re{Syx}|

Running the measurement, m increases S_{xx} shrinks => better confidence level S_{yx} decreases => higher single-channel noise rejection

Boring exercises before playing a Steinway

Single-channel spectrum S_{xx}

Gaussian X with independent Re and Im

dev $\sqrt{1}$	the S _{xx} track on the
= 1/-	EET SA chrinke ac 1/m1/2
$avg \vee m$	FFI-SA SIIIIIKS dS 1/III

Normalization: in 1 Hz bandwidth var{X} = 1, and var{X'} = var{X''} = 1/2

S_{yx} with correlated term (1)

A, B = instrument background C = DUT noise channel 1 X = A + C channel 2 Y = B + C A, B, C are independent Gaussian noises Re{ } and Im{ } are independent Gaussian noises

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Cross-spectrum

$$\langle S_{yx} \rangle_m = \frac{1}{T} \langle YX^* \rangle_m = \frac{1}{T} \langle (Y' + \imath Y'') \times (X' - \imath X'') \rangle_m$$

Expand using $X = (A' + \imath A'') + (C' + \imath C'') \text{ and } Y = (B' + \imath B'') + (C' + \imath C'')$

S_{yx} with correlated term κ≠0 (2)

All the DUT signal goes in Re{Syx}, Im{Syx} contains only noise

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

A, B, C are independent Gaussian noises Re{ } and Im{ } are independent Gaussian noises

Expand S_{yx}

$$S_{yx} = \frac{1}{T} \mathbb{E} \left\{ \mathscr{A} + \imath \mathscr{B} + \mathscr{C} \right\}$$

Gaussian, avg=0, var=1/4 $\mathscr{A} = B'A' + B''A'' + B'C' + B''C'' + C'A' + C''A''$ Gaussian, $\mathscr{B} = B''A' + B'A'' + B''C' - B'C'' + C''A' - C'A''$ avg=0, var= $\kappa^{2}/4$

> $\mathscr{C} = C'^2 + C''^2$ $\checkmark ---- \text{ white, } \chi^2, 2 \text{ DF}$ $avg = \kappa^2, var = \kappa^4$

term	E	V	PDF	comment
$\langle \mathscr{A} \rangle_m$	0	$\frac{1+2\kappa^2}{2m}$	Gauss	average (sum) of zero-mean
$\langle \mathscr{B} angle_m$	0	$\frac{1+2\kappa^2}{2m}$	Gauss	Gaussian processes
$\langle \mathscr{C} \rangle_m$	κ^2	κ^4/m	χ^2	average (sum) of
			$\nu = 2m$	chi-square processes
$\left\langle \tilde{\mathscr{C}} \right\rangle_m$	κ^2	κ^4/m	Gauss	approximates $\left< \mathscr{C} \right>_m$ for large m

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Estimator $\hat{S} = |\langle S_{yx} \rangle_m|$

$$|\langle S_{yx} \rangle_{m}| = \frac{1}{T} \sqrt{\left[\Re\left\{\langle YX^{*} \rangle_{m}\right\}\right]^{2} + \left[\Im\left\{\langle YX^{*} \rangle_{m}\right\}\right]^{2}} \\ = \frac{1}{T} \sqrt{\left[\langle \mathscr{A} \rangle_{m} + \langle \widetilde{\mathscr{C}} \rangle_{m}\right]^{2} + \left[\langle \mathscr{B} \rangle_{m}\right]^{2}} .$$

$\kappa \rightarrow 0$ Rayleigh distribution

$$\langle \mathscr{Z} \rangle_{m} = \sqrt{[\langle \mathscr{A} \rangle_{m}]^{2} + [\langle \mathscr{B} \rangle_{m}]^{2}} .$$

$$\mathbb{E}\{\langle \mathscr{Z} \rangle_{m}\} = \sqrt{\frac{\pi}{4m}} = \frac{0.886}{\sqrt{m}}$$

$$\mathbb{V}\{\langle \mathscr{Z} \rangle_{m}\} = \frac{1}{m} \left(1 - \frac{\pi}{4}\right) = \frac{0.215}{m}$$

$$\frac{\operatorname{dev}\{|\langle S_{yx} \rangle_{m}|\}}{\mathbb{E}\{|\langle S_{yx} \rangle_{m}|\}} = \sqrt{\frac{4}{\pi} - 1} = 0.523$$

Normalization: in 1 Hz bandwidth $var{A} = var{B} = 1$, $var{C} = \kappa^2$ $var{A'} = var{A''} = var{B'} = var{B''} = 1/2$, and $var{C'} = var{C''} = \kappa^2/2$ 3.0

3.5

Estimator $\hat{S} = \text{Re}\{\langle S_{yx} \rangle_m\}$

$$\langle \mathscr{Z} \rangle_m = \langle \mathscr{A} \rangle_m + \langle \widetilde{\mathscr{C}} \rangle_m$$

$$\begin{split} \mathbb{E}\left\{\langle \mathscr{Z} \rangle_m\right\} &= \kappa^2 \\ \mathbb{V}\left\{\langle \mathscr{Z} \rangle_m\right\} &= \frac{1 + 2\kappa^2 + 2\kappa^4}{2m} \\ \operatorname{dev}\left\{\langle \mathscr{Z} \rangle_m\right\} &= \sqrt{\frac{1 + 2\kappa^2 + 2\kappa^4}{2m}} \approx \frac{1 + \kappa^2}{\sqrt{2m}} \\ \frac{\operatorname{dev}\left\{\langle \mathscr{Z} \rangle_m\right\}}{\mathbb{E}\left\{\langle \mathscr{Z} \rangle_m\right\}} &= \frac{\sqrt{1 + 2\kappa^2 + 2\kappa^4}}{\kappa^2 \sqrt{2m}} \approx \frac{1 + \kappa^2}{\kappa^2 \sqrt{2m}} \end{split}$$

0 dB SNR requires that m=1/2κ⁴. Example κ=0.1 (DUT noise 20 dB lower than single-channel background) averaging on 5x10³ spectra is necessary to get SNR = 0 dB.

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Estimator $\hat{S} = \text{Re}\{\langle S_{yx} \rangle_{m'}\}$ averaging on the m' positive values

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Estimator $\hat{S} = \langle max(Re\{S_{yx}\}, 0_+) \rangle_m$

125

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Estimator $\hat{S} = \langle max(Re\{S_{yx}\}, 0_+) \rangle_m$

126

 $\mu_1 > \mu_2 > \mu_3$.

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1, var{C}= κ^2 var{A'} = var{A''} = var{B'} = var{B''} = 1/2, and var{C'} = var{C''} = $\kappa^2/2$

Applications

Radio-astronomy

128 Cassiopeia A (Harvard)

Cygnus A (Harvard)

- The radio link breaks the hypothesis of symmetry of the two channels, introducing a phase θ
- The cross spectrum is complex
- The the antenna directivity results from the phase relationships
- The phase of the cross spectrum indicates the direction of the radio source

Cassiopeia A

R. Hanbury Brown & al., Nature 170(4338) p.1061-1063, 20 Dec 1952 R. Hanbury Brown, R. Q. Twiss, Phyl. Mag. ser.7 no.366 p.663-682

Radiometry -- Johnson thermometry

129

correlation and anti-correlation

noise comparator

C. M. Allred, A precision noise spectral density comparator, J. Res. NBS 66C no.4 p.323-330, Oct-Dec 1962

Thermal noise compensation

hybrid output

$$y_1(t) = \frac{1}{\sqrt{2}} x_2(t) + \frac{1}{\sqrt{2}} x_1(t)$$
$$y_2(t) = \frac{1}{\sqrt{2}} x_2(t) - \frac{1}{\sqrt{2}} x_1(t)$$

correlation

$$\mathcal{R}_{y_1 y_2}(\tau) = \lim_{\theta \to \infty} \frac{1}{\theta} \int_{\theta} y_1(t) y_2^*(t-\tau) dt$$
$$= \frac{1}{2} \mathcal{R}_{x_2 x_2}(\tau) - \frac{1}{2} \mathcal{R}_{x_1 x_1}(\tau)$$

Fourier transform and thermal noise

$$S_{y_1y_2}(f) = \frac{1}{2} S_{x_2}(f) - \frac{1}{2} S_{x_1}(f)$$
$$S_{y_1y_2}(f) = \frac{k_B(T_2 - T_1)}{2}$$

Correlation-and-averaging rejects the thermal noise

Noise calibration

thermal noise

shot noise

 $S = 2qI_{avg}R$

S = kT

high accuracy of I_{avg} with a dc instrument

Compare shot and thermal noise with a noise bridge

This idea could turn into a redefinition of the temperature

Fig. 1. Theoretical plot of current spectral density of a tunnel junction (Eq. 3) as a function of dc bias voltage. The diagonal dashed lines indicate the shot noise limit, and the horizontal dashed line indicates the Johnson noise limit. The voltage span of the intersection of these limits is $4k_{\rm B}T/e$ and is indicated by vertical dashed lines. The bottom inset depicts the occupancies of the states in the electrodes in the equilibrium case, and the top inset depicts the out-of-equilibrium case where $eV \gg k_{\rm B}T$.

In a tunnel junction, theory predicts the amount of shot and thermal noise

L. Spietz & al., Primary electronic thermometry using the shot noise of a tunnel junction, Science 300(20) p. 1929-1932, jun 2003

Hanbury Brown - Twiss effect

in single-photon regime, anti-correlation shows up

R. Hanbury Brown, R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177 (1956) 27-29

Also observed at microwave frequencies

C. Glattli & al. (2004), PRL 93(5) 056801, Jul 2004

 $kT = 2.7 \times 10^{-25} J$, $hv = 1.12 \times 10^{-24} J$, kT/hv = -6.1 dB

Electromigration in thin films

Fig. 1 1/f noise of an AlSi_{0.01}Cu_{0.002} thin film measured at room temperature (a) without and (b) with the phase-sensitive ac correlation technique. The Johnson noise level is indicated by the dashed line.

- Random noise: X' and X" (real and imag part) of a signal are statistically independent
- The detection on two orthogonal axes eliminates the amplifier noise. This work with a single amplifier!
- The DUT noise is detected

$$S_{ud}(f) = \frac{1}{2} \left[S_{\alpha}(f) - S_{\varphi}(f) \right]$$

A. Seeger, H. Stoll, 1/f noise and defects in thin metal films, proc. ICNF p.162-167, Hong Kong 23-26 aug 1999 RF/microwave version: E. Rubiola, V. Giordano, H. Stoll, IEEE Transact. IM 52(1) pp.182-188, feb 2003

Measurement of noise in semiconductors

FIG. 2. Schematics of the building blocks of our correlation spectrum analyzer performing the suppression of the uncorrelated input noises by a digital processing of sampled data.

134

FIG. 9. Experimental frequency spectrum of the current noise from DUT resistances of 100 k Ω and 500 M Ω (continuous line) compared with the limits (dashed line) given by the instrument and set by residual correlated noise components.

FIG. 3. Schematics of the active test fixture for current noise measurements.

M. Sampietro & al, Rev. Sci. Instrum 70(5) p.2520-2525, may 1999

Amplitude noise & laser RIN

- In PM noise measurements, one can validate the instrument by feeding the same signal into the phase detector
- In AM noise this is not possible without a lower-noise reference
- Provided the crosstalk was measured otherwise, correlation enables to validate the instrument

AM noise of photonic RF/microwave sources

E. Rubiola, the measurement of AM noise, dec 2005 arXiv:physics/0512082v1 [physics.ins-det]

Frequency (Hz)

Wenzel 501-04623E 100 MHz OCXO

Early implementations

1940-1950 technology

Analog correlator

Analog multiplier

Spectral analysis at the single frequency f₀, in the bandwidth **B Need a filter pair for each Fourier frequency**

Phase noise measurement

(relatively) large correlation bandwidth provides low noise floor in a reasonable time

F.L. Walls & al, Proc. 30th FCS pp.269-274, 1976 popular after W. Walls, Proc. 46th FCS pp.257-261, 1992

Phase noise

FFT analyzer

V

Effect of amplitude noise

Should set both channels at the sweet point, if exists

The delay de-correlates the two inputs, so there is no sweet point

Should set both channels at the sweet point of the RF input, if exists, by offsetting the PLL or by biasing the IF

The effect of the AM noise is strongly reduced by the RF amplification

pink: noise rejected by correlation and averaging

E. Rubiola, R. Boudot, IEEE Transact. UFFC 54(5) pp.926-932, may 2007

Phase noise measurement

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, aug 2000 E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, jun 2002

Measurement of H-maser frequency noise

141

R. F. C. Vessot, Proc. Nasa Symp. on Short Term Frequency Stability p.111-118, Greenbelt, MD, 23-24 Nov 1964

Oscillator phase noise measurement

Original idea: D. Halford's NBS notebook F10 p.19-38, apr 1975

First published: A. L. Lance & al, CPEM Digest, 1978

The delay line converts the frequency noise into phase noise

The high loss of the coaxial cable limits the maximum delay

Updated version: The optical fiber provides long delay with low attenuation (0.2 dB/km or 0.04 dB/µs)

A.L. Lance, W.D. Seal, F. Labaar ISA Transact.21 (4) p.37-84, Apr 1982

Dual-mixer time-domain instrument

The average process rejects the mixer noise This scheme is equivalent to the correlation method

S. Stein & al., IEEE Transact. IM 32(1) p.227-230, mar 1983