

Phase & Frequency Noise Metrology

Enrico Rubiola

Outline

- Introduction
- Measurement methods
- Microwave photonics
- Electronic and optical components
- AM noise and RIN

home page http://rubiola.org

Though frequency standards are moving to optics (and beyond), RF and microwaves are inevitable

Lower phase noise is required

Phase noise & friends

Mechanical stability

- Don't think "this is just engineering" !!!
- Learn from non-optical microscopy (bulk matter, 5x10⁻¹⁴ m)
- Careful DC section (capacitance and piezoelectricity)
- The best advice is to be at least paranoiac

1 – Measurement methods

Correlation measurements

basics of correlation

$$S_{yx}(f) = \mathbb{E} \left\{ Y(f)X^*(f) \right\}$$

= $\mathbb{E} \left\{ (C - A)(C - B)^* \right\}$
= $\mathbb{E} \left\{ CC^* - AC^* - CB^* + AB^* \right\}$
= $\mathbb{E} \left\{ CC^* \right\}$
0
0
0
$$S_{yx}(f) = S_{cc}(f)$$

in practice, average on m realizations

Two separate instruments measure the same DUT. Only the DUT noise is common

a(t), b(t) -> instrument noise c(t) -> DUT noise

phase noise measurements						
DUT noise,	a, b	instrument noise				
normal use	c	DUT noise				
background,	a, b	instrument noise				
ideal case	c = 0	no DUT				
background,	a, b	instrument noise				
with AM noise	c ≠ 0	AM-to-DC noise				

E. Rubiola, The magic of cross-spectrum measurements from DC to optics, http://rubiola.org

Cross-spectrum, increasing m

|Re{Syx}| with C≠0,

The thermal noise is rejected as any signal. The limit $S_{\phi} = P_0/kT$ does not apply

X and Y are uncorrelated The cross spectrum is proportional to the temperature difference

C. M. Allred, A precision noise spectral density comparator, J. Res. NBS 66C no.4 p.323-330, Oct-Dec 1962 Application to AM/PM noise: E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, Aug 2000

Carrier recirculation

Invented by J. Hall for gas spectroscopy. The gain is increased by the number of times the light beam circulates in the cavity

Also works with RF/microwave carrier, provided the DUT be "transparent". For small no. of roundtrips, gives the appearance of "real-time"

Bridge (interferometric) method

fluctuating error $\delta Z =>$ noise sidebands

 $\Re\{\delta Z\} => AM \text{ noise } x(t) \cos(\omega_0 t)$ $\Im\{\delta Z\} => PM \text{ noise } -y(t) \sin(\omega_0 t)$

Basic ideas

- Carrier suppression => the error amplifier cannot flicker: it does know ω_0
- High gain, due to the (microwave) error amplifier
- Low noise floor => the noise figure of the (microwave) error amplifier
- High immunity to the low-frequency magnetic fields due to the microwave amplification before detecting
- Rejection of the master oscillator's noise
- Detection is a scalar product => signal-processing techniques

Derives from H. Sann, MTT 16(9) 1968, and F. Labaar, Microwaves 21(3) 1982 Later, E. Ivanov, MTT 46(10) oct 1998, and Rubiola, RSI 70(1) jan 1999

Actual block diagram

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, June 2002

Concepts

- Coarse and fine carrier suppression reduces the flicker noise
- Scalar product gives v₁(t) and v₂(t) in Cartesian frame. Linear algebra fixes the arbitrary phase, gain asymmetry and quadrature defect
- Closed-loop control of the carrier suppression works as a RF VGND
- Correlation is possible, using two amplifiers and two detectors
- Correlating the signals detected on two orthogonal axes (±45°) eliminates the amplifier noise. Works with a single amplifier!

Example of results

Noise of a by-step attenuator

Noise of a pair of HH-109 hybrid junctions

Background noise of the fixed-value bridge

Background noise of the fixed-value bridge (larger m)

Averaged spectra must be smooth

Average on m spectra: confidence of a point improves by 1/m^{1/2} interchange ensemble with frequency: smoothness 1/m^{1/2}

The complete machine (100 MHz)

A 10 GHz experiment

(dc circuits not shown)

Comparison of the background noise

AM-PM calibration

- In most cases the phase detector is a double-balanced mixer saturated at both inputs
- In a double-balanced mixer, the offset is affected by power,
- AM noise is detected as it was PM noise, which is conceptually incorrect
- k_{ϕ}/k_{α} can be as low as 5
- In the bridge, the effect of AM noise is divided by the microwave gain

Primary AM-PM calibration

E. Rubiola - unpublished

AM and PM can be defined as

- P_0 = power of the carrier P_x = power of the in-phase sidebands
- P_y = power of the quadrature sidebands

Basic ideas

- Generate reference AM and PM by adding sidebands to a carrier
- Power detectors provide absolute reference of PM as a null of AM
- Accurate (0.02 dB) power-ratio measurement with commercial power-meters
- Correct IQ modulators and detectors with linear algebra (2x2 matrices)
- Transfer the accuracy of a LF (kHz range) lock-in amplifier to RF/microwave
- Worst-case accuracy 0.3 dB => improvement in progress

I-Q modulator

RF

output

LO pump

0

90°

I

Bridge (interferometric) instrument

Light blue: work in progress

The dual-bridge contains almost all the blocks needed to calibrate the measurement

E. Rubiola, V. Giordano, Rev. Sci. Instrum 73 6 p.2445–57, jun 2002. Also arXiv:physics/0503015

2 – Microwave photonics

Opto-electronic discriminator

Rubiola, Salik, Huang, Yu, Maleki, JOSA-B 22(5) p.987–997 (2005)

The short arm can be a microwave cable or a photonic channel

Laplace transforms

- delay –> frequency-to-phase conversion
- works at any frequency
- long delay (microseconds) is necessary for high sensitivity
- the delay line must be an optical fiber fiber: attenuation 0.2 dB/km, thermal coeff. 6.8 10⁻⁶/K cable: attenuation 0.8 dB/m, thermal coeff. ~ 10⁻³/K

Laplace transforms

$$\Phi(s) = H_{\varphi}(s)\Phi_i(s)$$

$$|H_{\varphi}(f)|^2 = 4\sin^2(\pi f\tau)$$

$$S_y(f) = |H_y(f)|^2 S_{\varphi i}(s)$$

$$|H_y(f)|^2 = \frac{4\nu_0^2}{f^2} \sin^2(\pi f\tau)$$

Measurement of a sapphire oscillator

Volyanskiy & al., JOSAB (in press). Also arXiv:0807.3494v1 [physics.optics] July 2008.

- The instrument noise scales as 1/T, yet the blue and black plots overlap magenta, red, green => instrument noise blue, black => noise of the sapphire oscillator under test
- We can measure the 1/f³ phase noise (frequency flicker) of a 10 GHz sapphire oscillator (the lowest-noise microwave oscillator)
- Low AM noise of the oscillator under test is necessary

Dual-channel (correlation) measurement

Volyanskiy & al., JOSAB (in press) and arXiv:0807.3494v1 [physics.optics] July 2008. Derives from: E. Salik, N. Yu, L. Maleki, E. Rubiola, Proc. Ultrasonics-FCS Joint Conf., Montreal, Aug 2004 p.303-306

Improvements

- Understanding flicker (photodetectors and amplifiers)
- SiGe technology provides lower 1/f phase noise
- CATV laser diodes exhibit lower AM/FM noise
- Low $V\pi$ EOMs show higher stability because of the lower RF power
- Optical fiber sub-mK temperature controlled

Delay-line oscillator – operation

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

Delay-line oscillator – phase noise

General feedback theory $H(s) = \frac{\Phi(s)}{\Psi(s)} = \frac{1}{1 - B(s)}$

Delay-line oscillator $H(s) = \frac{1 + s\tau_f}{1 + s\tau_f - e^{-s\tau_d}}$

E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2

Delay-line oscillator

Delay-line oscillator - measured noise

- 1.310 nm DFB CATV laser
- Photodetector DSC 402 (R = 371 V/W)
- **RF filter** $v_0 = 10$ **GHz**, **Q** = 125
- RF amplifier AML812PNB1901 (gain +22dB)

expected phase noise $b_{-3} \approx 6.3 \times 10^{-4}$ (-32 dB)

Optical-fiber 10 GHz oscillator

- use positive feedback with a short cable (3-5 ns) in the feedback path to implement the mode selector filter
- the positive feedback also increase the amplifier gain (AML SiGe parallel amplifiers exhibits lowest flicker, but low have gain 22 dB)
- use the 2-km (10 μs) path to eliminate the 50-kHz noise peak due to the 4-km (20 μs)
- the microwave power is changed by adjusting the laser power.
- high noise figure, due to the two power splitters/combiners
 40
 Kiryll Volyanskiy, jan 2008

Regenerative optical-fiber 10 GHz oscillator

P_{rf} is given, thus $V_0 = (2RP)^{1/2}$ V_π is estimated (4.5 V at 10 GHz)

Use

$$m = 2J_1\left(\frac{\pi V_0}{V_\pi}\right)$$

Get

P, dBm	Vp, V	πV ₀ / V _π	m
11	1.122	0.860	0.783
9	0.891	0.683	0.644
8	0.794	0.6.09	0.581

28

The oscillator phase noise minima are 6 dB lower than b₀=N/P₀ (white noise)

$$\begin{split} m &= 0.725 \ (P_{rf} = 11 \ dBm) \\ (S_{\phi})_{min} &= -142 \ dB \\ F &= 10 \ dB \ (incl. \ couplers) \\ \eta &= 0.6 \\ v_l &= 194 \ THz \end{split}$$

Feeding the available data in the model

 $(S_{\varphi})_{\min} = \frac{8}{m^2} \left\{ \frac{Fk_B T_0}{R_0} \left[\frac{h\nu_l}{q\eta} \right]^2 \frac{1}{\overline{P}_l^2} + 2 \frac{h\nu_l}{\eta} \frac{1}{\overline{P}_l} \right\}$ we get $P_0 = 6.4 \,\mu\text{W} \text{ (-22 dBm)}$ $P_l \approx 0.71 \,\text{mW}$

There is room for engineering

3 – Electronic and optical components

Flicker in electronic & optical components

30

Avanier 010075. 10 MH2

r noise – experiments

Phase noise vs. power

- The 1/f phase noise b₋₁ is about independent of power
- The white noise b₀ scales up/down as 1/P₀, i.e., the inverse of the carrier power
- Describing the 1/f noise in terms of fc is misleading because fc depends on the input power

Phase noise of cascaded amplifiers

 The expected flicker of a cascade increases by: 3 dB, with 2 amplifiers 5 dB, with 3 amplifiers

Regenerative amplifiers

• Phase noise increase as the squared gain because the noise source at each roundtrip is correlated

Phase noise of paralleled amplifiers

• Connecting two amplifiers in parallel, the phasenoise flicker is expected to decrease by 3 dB

Photodetector 1/f noise

Rubiola, Salik, Yu, Maleki, MTT 54(2) p.816-820, Feb 2006

photodiode	$S_{lpha}(1{ m Hz})$		$S_arphi(1{ m Hz})$		
	estimate	uncertainty	estimate	uncertainty	
HSD30	-122.7	-7.1 + 3.4	-127.6	-8.6 + 3.6	
DSC30-1K	-119.8	-3.1 + 2.4	-120.8	-1.8 +1.7	
QDMH3	-114.3	-1.5 +1.4	-120.2	-1.7 +1.6	
unit	dB/Hz	dB	$\rm dBrad^2/Hz$	dB	

The noise of the ∑ amplifier is not detected [Rubiola, Salik, Yu, Maleki, Electron. Lett. 39(19) p.1389-1390 (2003)]

Photodetector 1/f noise

-100

-120

-130

140

-110 -110

-120 -120

-130 -130

-140

ap (**j**)**s** -110

file plot711a.pdf

am

Windhand

background

Rubiola, Salik, Yu, Maleki, MTT 54(2) p.816-820, Feb 2006

- the photodetectors we measured are similar in AM and PM 1/f noise
- the 1/f noise is about -120 dB[rad²]/Hz ٠
- other effects are easily mistaken for the ulletphotodetector 1/f noise
- environment and packaging deserve attention • in order to take the full benefit from the low noise of the junction

DSC30-1k and HSD30

parad Brad 2/Hz

-130

100

 connections are spliced • isolators are inserted

• myself > 3 m far away

avg m=40

f, Hz

air-flow shielding

2 2

Microwave optical link

 Let's be optimistic: a 10 GHz link is limited by the 1/f phase noise of a single component, -120 dBrad²/Hz @ f=1 Hz

• Well known rules give $\sigma_y(\tau) = 4x10^{-17}/\tau$

• Realistically, –100 dBrad²/Hz @ f=1 Hz yields $\sigma_y(\tau) = 4x10^{-16}/\tau$

4 – AM noise and RIN

Amplitude noise & laser RIN

- In PM noise measurements, one can validate the instrument by feeding the same signal into the phase detector
- In AM noise this is not possible without a lower-noise reference
- Provided the crosstalk was measured otherwise, correlation enables to validate the instrument

AM noise of photonic RF/microwave sources

E. Rubiola, the measurement of AM noise, dec 2005 arXiv:physics/0512082v1 [physics.ins-det]

Frequency (Hz)

Wenzel 501–04623E 100 MHz OCXO

AM noise of some sources

source	h_{-1} (f	$(\sigma_{lpha})_{ m floor}$	
Anritsu MG3690A synthesizer (10 GHz)	2.5×10^{-11}	-106.0 dB	5.9×10^{-6}
Marconi synthesizer (5 GHz)	1.1×10^{-12}	-119.6 dB	1.2×10^{-6}
Macom PLX 32-18 $0.1 \rightarrow 9.9$ GHz multipl.	1.0×10^{-12}	-120.0 dB	1.2×10^{-6}
Omega DRV9R192-105F 9.2 GHz DRO	8.1×10^{-11}	-100.9 dB	1.1×10^{-5}
Narda DBP-0812N733 amplifier (9.9 GHz)	2.9×10^{-11}	$-105.4 \mathrm{~dB}$	6.3×10^{-6}
HP 8662A no. 1 synthesizer (100 MHz)	6.8×10^{-13}	$-121.7 \mathrm{~dB}$	9.7×10^{-7}
HP 8662A no. 2 synthesizer (100 MHz)	1.3×10^{-12}	-118.8 dB	1.4×10^{-6}
Fluke 6160B synthesizer	1.5×10^{-12}	$-118.3 \mathrm{dB}$	1.5×10^{-6}
Racal Dana 9087B synthesizer (100 MHz)	8.4×10^{-12}	-110.8 dB	3.4×10^{-6}
Wenzel 500-02789 D 100 MHz OCXO	4.7×10^{-12}	−113.3 dB	2.6×10^{-6}
Wenzel 501-04623E no. 1 100 MHz OCXO	2.0×10^{-13}	-127.1 dB	5.2×10^{-7}
Wenzel 501-04623E no. 2 100 MHz OCXO	1.5×10^{-13}	-128.2 dB	4.6×10^{-7}

worst

best

37