

Optical disk resonators with ANK micro-wave free spectral range for optoelectronic oscillators

Hervé Tavernier, Ngan Ti Kim Nguyen, Patrice Féron, Patrice Salzenstein, Laurent Larger, Enrico Rubiola

Outline

- Choice of the material
- Resonator fabrication
- Experiments
- Results
- Conclusion

Optical materials

• $\mathbf{Q} = \mathbf{6} \times \mathbf{10^{10}}$ demonstrated with CaF₂ disk (I. Grudinin).

	MgF2	CaF2	Fused silica	Quartz
Transparency range	0.12 to 8.5 μm	0.2 to 9 μm	0.18 to 2.5 μm	0.19 to 2.9 μm
Refractive index @ 1550 nm	no = 1.37 ne = 1.38	n = 1.42	n = 1.44	no = 1.54 ne = 1.53
Hardness (Mohs)	6	4	6-7	7
Crystal Class	Tetragonal	Cubic	noncrystalline	Hexagonal
H2O pollution	Good	Good	Bad	Bad
Mechanical shock	Good	Bad	Good	good

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, Phys. Rev. A 74, 063806(9) (2006).

MgF2 inversion point relates to Pound stabilization

Whispering-gallery-mode resonators as frequency references. II. Stabilization

J. Opt. Soc. Am. B/Vol. 24, No. 12/December 2007

Anatoliy A. Savchenkov, Andrey B. Matsko,* Vladimir S. Ilchenko, Nan Yu, and Lute Maleki

- Brushless motor.
- Air-bearing to guarantee low vibrations.
- Small eccentricity error (200 nm).
- Precision collet to position the resonator holder.

Derives from hard-disk test equipment Can you figure out what a hard disk is? $3.5" \& 7200 \text{ rpm} => \sim 200 \text{ km/h}$ $1 (\mu \text{m})^2$ bit area, 50 nm head–disk distance

Resonators preforming

 Stick a 6 mm MgF2 optical window on a metal holder (0.5 - 1 mm thick).

• Correct for the centering error by grinding with several diamond grains size (40 - 20 μ m).

• Create two 20° bevels to get a thin edge (about 30 μ m, depending on crystal splinters).

Manual polishing step

 Several polishing powders in decreasing grains size (diamond, colloidal silica, cerium oxide, alumina) diluted in distilled water (6 µm to 30 nm).

• Polishing baize used as powder holder.

Rotation speed depends on grain size.

Newton rings

- White light phase-shifting microscope with 1 nm of resolution.
- (FEMTO-ST instrument, based on the idea of phase-contrast microscope)

 Interference fringes as contour curves.
 Smooth contour curves indicates roughness less than 20 nm.

200 nm surface roughness

< 20 nm surface roughness

Roughness measurement

White light phase-shifting microscope with piezo control, after scan and image processing

3D surface of the disk

Taper coupling

- Tapered SMF28 fiber glued on the holder.
 Manufactured by LASEO (Lannion, FR)
- For lowest stress, holder geometry and alloy match the thermal expansion of glass.
- Waist < 3 μm.
- 3-axis nano-positioning with 20 nm resolution.

Advantages vs. prism-shaped fiber: + higher modal selectivity

- + clean mechanical design
- + one coupler serves as in/out

Taper glued on the holder

Nano-positioning system

Resonance measurement

- 1550 nm erbium laser
 (3 mW power).
- 50 pm wavelength sweep (6 GHz).
- High resolution oscilloscope to analyze very sharp phenomena as peak

Tunics @ 1550 r

resonance.

fendential Detection of the resonance peak

- Single mode excitation:
 - Small taper size selects a thin excitatior region.
 - Needs polarization controller.
- Wavelength span too small to scan a full FSR.
- Scan rate 50 Hz

Q factor measurement

- Self-homodyne method.
- Increasing wavelength triangle scan.
- 400 Hz scan rate.
- Oscillation damping gives:
 Q=3.4 x 10^8

J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, J. Opt. Soc. Am. B 11, 2811 (1997).

Thermal effect

- Asymmetric shape.
- Positive TC (λ) of the resonance.
- Triangle sweep.
- First half of resonance shape: the carrier increasingly heats the energy region.
- The resonance tracks the carrier.
- Second half: heating decreases.
- The resonance steps back

bottom plane at a reference temperature

finite-element simulation and data refer to another resonator because with a single taper we can't measure the resonator dissipated power

thermal expansion yields a frequency change

$$\frac{\Delta\nu}{\nu_0} \simeq \frac{dL}{L\,dT}\,\Delta T$$

the thermal expansion coefficient of CaF_2 is

$$\frac{dL}{L\,dT} \simeq 1.85 \times 10^{-5}$$

take a frequency change of 1.13 MHz at 192 THz (1560 nm)

$$\Delta T \simeq 3.2 \times 10^{-4} \text{ K}$$

A factor 10 is missing, vs. finite-element calculus.

Of course, the mode ring is constrained by the cold crystal around.

High temperature gradient

Conclusion

- Design and implementation of a dedicated lathe with 200 nm eccentricity error and low vibrations.
- A few 5.5 mm MgF2 resonator implemented.
- Preforming and polishing process gives surface roughness of 0.92 nm rms on the 60 μm polished edge.
- First demonstration of the microwave-FSR resonator with taper coupling.
- Stable coupling over > 1 week.
- Preliminary result: $Q = 3.4 \times 10^8$.

Thanks to L.Maleki, N.Yu, I.Grudinin, V.IIchenko, A.Savchenkov (JPL/OEwaves) for numerous discussions Grants from ANR and CNES