

The effect of AM noise on correlation PM noise measurements

1/f noise in RF and microwave amplifiers

Enrico Rubiola, Rodolphe Boudot, Yannick Gruson

FEMTO-ST Institute, Besançon, France CNRS and Université de Franche Comté

TimeNav'07 - May 31, 2007

Outline

* Part 1 - The effect of AM noise ...

* Part 2 - Amplifier noise ...

home page http://rubiola.org

1 - The effect of AM noise on correlation phase noise measurements

Effect of AM noise on a saturated mixer

The AM noise propagates through the system

A null of AM sensitivity (sweet point) can be found in some mixers

tip: use a phase offset, or a DC bias at the mixer IF

 $v_o(t) = k_\varphi \,\varphi(t) + k_{lr} \,\alpha(t)$

$$v_o(t) = k_\varphi \,\varphi(t) + k_l \,\alpha_l(t) + k_r \,\alpha_r(t)$$

With two separated inputs, the effect of AM noise adds up

A delay de-correlates the two inputs, thus it destroys the sweet point

4

$v_o(t) = k_\varphi \,\varphi(t) + k_l \,\alpha_l(t) + k_r \,\alpha_r(t)$

$v_o(t) = k_\varphi \,\varphi(t) + k_{sd} \,\alpha(t)$

In a bridge, the AM noise propagates to the output only through the LO. The effect is strongly reduced by the RF amplification before detecting

Basics of correlation spectrum measurements

phase noise measurements					
DUT noise,	a, b	instrument noise			
normal use	c	DUT noise			
background,	a, b	instrument noise			
ideal case	c = 0	no DUT			
background,	a, b	instrument noise			
with AM noise	c ≠ 0	AM-to-DC noise			

 $S_{yx} = \mathbb{E}\left\{YX^*\right\}$ W. K. theorem $S_{yx} = \langle YX^* \rangle_m$

measured, m samples

a, b and c are incorrelated expand X = C - A and Y = C - B

 $S_{yx} = S_{cc}$ $S_{yx} = S_{cc} + O(\sqrt{1/m})$ a, b, c independent

measured, m samples

Averaging on a sufficiently large number *m* of spectra is necessary to reject the single-channel noise

The AM noise in a correlation system

Should set both channels at the sweet point of the RF input, if exists, by offsetting the PLL or by biasing the IF The effect of the AM noise is strongly reduced by the RF amplification

pink: noise rejected by correlation and averaging

Measurement of the mixer sensitivity to AM

- The measurement schemes follow immediately from the statement of the problem
- •A lock-in amplifier is used for highest noise immunity
- •Set the amplitude modulator to the minimum of residual PM (at least in the scheme B-C)

LO & RF \rightarrow IF: coefficient k_{lr} $v_o(t) = k_{\varphi} \varphi(t) + k_{lr} \alpha(t)$

LO or RF \rightarrow IF: coefficients k_l and k_r $v_o(t) = k_{\varphi} \varphi(t) + k_l \alpha_l(t) + k_r \alpha_r(t)$ 7

LO → IF in a sync.-detection scheme: coefficient k_{sd} $v_o(t) = k_{\varphi} \varphi(t) + k_{sd} \alpha(t)$

Example of results (microwave mixers)

The AM sensitivity depends on frequency. This is ascribed to the microstrip baluns, and to the diode capacitances

The AM sensitivity can have opposite sign at the two inputs

Example of results (microwave mixers)

The effect of power is somewhat weaker than that of frequency

Example of results (microwave mixers)

Mixer	k_{arphi}	k_{lr}	k_r	k_l	k_{sd}	
Narda 4805 s.no. 0972	272	16	7.9	37	6.5	
Narda 4805 s.no. 0973	274	18.3	17.1	44	9.8	
NEL 20814	279	51.5	12.1	37.9	2.7	
NEL 20814	305	41	1.9	30.2	3.73	
unit	mV/rad	mV	mV	mV	mV	
Test parameters: $\nu_0 = 10$ GHz, $P = 6.3$ mW (8 dBm)						

Some relevant facts

- •The AM noise rejection is of 15–40 dB
- •Generally, k_{sd} is smaller than the other coefficients
- •There is no predictable relation between k_{φ} , k_l , k_r , k_{lr} , and k_{sd}
- •It is observed that k_{lr} , $\neq k_l + k_r$

Example of results (VHF mixers)

The AM noise rejection is of 15–40 dB
The sweet point is not observed in general
There is no predictable relation between k_φ, k_l, k_r, (k_{lr}, and k_{sd} are not reported)

Warning: even in single-channel measurements, the pollution from AM noise may be not that small

E. Rubiola, "The measurement of AM noise of oscillators," arXiv:physics/0512082, dec 2005

- * The AM noise is taken in via the DC-offset sensitivity to the power
- * The AM noise rejection is of 15-40 dB
- For a given mixer, there is no predictable relation between the AM noise sensitivity in different configurations
- * The sweet point exists only in some configurations
- * The sweet point is generally not observed in VHF mixers
- In correlation systems, rejecting the AM noise is possible only in some cases
- * The AM noise can even limit the single-channel measurements

home page http://rubiola.org

Free downloads (texts and slides)

2 - On the 1/f noise in RF and microwave amplifiers

Amplifier white noise

Cascaded amplifiers (Friis formula)

The (phase) noise is chiefly that of the 1st stage

The Friis formula applied to phase noise $b_0 = \frac{F_1 k T_0}{P_0} + \frac{(F_2 - 1) k T_0}{P_0 g_1^2} + \dots$

Amplifier flicker noise

carrier near-dc noise

$$v_i(t) = V_i e^{j\omega_0 t} + n'(t) + jn''(t)$$
the parametric nature of I/f
noise is hidden in n' and n"

Substitute (careful, this hides the down-conversion)

 $v_o(t) = a_1 v_i(t) + a_2 v_i^2(t) + \dots$ non-linear (parametric)amplifier

expand and select the ω_0 terms

$$v_o(t) = V_i \Big\{ a_1 + 2a_2 \big[n'(t) + j n''(t) \big] \Big\} e^{j\omega_0 t}$$

The noise sidebands are proportional to the input carrier

get AM and PM noise

$$\alpha(t) = 2 \frac{a_2}{a_1} n'(t) \qquad \varphi(t) = 2 \frac{a_2}{a_1} n''(t)$$

The AM and the PM noise are independent of V_i, thus of power

Amplifier flicker noise

typical amplifier phase noise					
RATE	GaSs HBT	SiGe HBT	Si bipolar		
	microwave	microwave	HF/UHF		
fair	-100		-120		
good	-110	-120	-130		
best	-120	-130	-150		
	unit $dBrad^2/Hz$				

- * The phase flicker coefficient b-1 is about independent of power.
- Hence, describing the 1/f noise in terms of fc is misleading because fc depends on the input power

Amplifier flicker noise - experiments

- The 1/f phase noise b-1 is about independent of power
- The white noise bo scales
 up/down as 1/Po, i.e., the
 inverse of the carrier power

Flicker noise in cascaded amplifiers

AB and BA have the same 1/f noise

The phase flicker coefficient b_{-1} is about independent of power. Hence:

- in a cascade, $(b_{-1})_{tot}$ does not depend of the amplifier order *
- in practice, in a cascade each stage contributes about equally *

$$(b_{-1})_{\text{tot}} = \sum_{i=1}^{\infty} (b_{-1})_i$$
 m cascaded amplifiers

m

rs

b-1 is roughly proportional to the gain through the number of * stages

Flicker in cascaded amplifiers - experiments

Flicker noise in parallel amplifiers

- * The phase flicker coefficient b-1 is about independent of power
- * The flicker of a branch is not increased by splitting the input power
- * At the output,
 - * the carrier adds up coherently
 - * the phase noise adds up statistically

$$p_{-1} = \frac{1}{m} \left[b_{-1} \right]_{\text{branch}}$$

- * Hence, the 1/f phase noise is reduced by a factor m
- Only the flicker noise can be reduced in this way

Gedankenexperiment: join the m branches of a parallel amplifier forming a single large active device: the phase flickering is proportional to the inverse physical size of the amplifier active region

Parallel amplifiers, mathematics

branch-amplifier input

main output

branch \rightarrow output

branch

branch \rightarrow output

 \sum branches \rightarrow output

m equal branches \rightarrow output

22

Flicker noise in parallel amplifiers

Flicker noise in parallel amplifiers

Specification of low phase-noise amplifiers (AML web page)

amplifier	parameters			phase noise vs. f , Hz			I	
	gain	F	bias	power	10^{2}	10^{3}	104	10^{5}
AML812PNA0901	10	6.0	100	9	-145.0	-150.0	-158.0	-159.0
AML812PNB0801	9	6.5	200	11	-147.5	-152.5	-160.5	-161.5
AML812PNC0801	8	6.5	400	13	-150.0	-155.0	-163.0	-164.0
AML812PND0801	8	6.5	800	15	-152.5	-157.5	-165.5	-166.5
unit	dB	dB	mA	dBm	dBrad ² /Hz			

Environmental (parametric) noise in amplifiers

A time constant can be present

25

 $\varphi = \varphi_A + \varphi_B$ and $\alpha = \alpha_A + \alpha_B$ regardless of the amplifier order

Cascading *m* equal amplifiers, $S_{\alpha}(f)$ and $S_{\varphi}(f)$ increase by a factor m^2 .

If the amplifier were independent, S_{α} (f) and S_{ϕ} (f) would increase only by a factor *m*.

Cascaded amplifiers let z(t) = x(t) + y(t)

Phase noise $S_{z}(f) = ZZ^{*}$ $= (X + Y) (X + Y)^{*}$ $= XX^{*} + YY^{*} + XY^{*} + YX^{*}$ $= S_{x} + S_{y} + \underbrace{S_{xy}}_{>0} + \underbrace{S_{yx}}_{>0}$

Environmental effects in RF amplifiers

It is experimentally observed that the temperature fluctuations cause a spectrum $S_{\alpha}(f)$ or $S_{\phi}(f)$ of the 1/f⁵ type

Yet, at lower frequencies the spectrum folds back to 1/f

Summary (2)

- Flicker AM/PM noise results from parametric modulation from the near-dc 1/f noise
- * The 1/f noise coefficient b-1 is about independent of the carrier power
- * Describing the 1/f noise in terms of fc is misleading
- Cascading m amplifiers, the 1/f noise increases by a factor m
- Connecting m amplifiers in parallel, the 1/f noise drops by a factor m
- Thermal fluctuations induce 1/f⁵ PM noise, which folds back to 1/f at lower frequencies

home page http://rubiola.org

Free downloads (texts and slides)