## On the 1/f noise in ultra-stable quartz oscillators

Enrico Rubiola and Vincent Giordano FEMTO-ST Institute, Besançon, France (CNRS and Université de Franche Comté)

#### Outline

- \* Amplifier noise
- \* Leeson effect
- \* Interpretation of  $S_{\phi}(f)$
- \* Examples





#### **Amplifier white noise**



Cascaded amplifiers (Friis formula)

$$N = F_1 k T_0 + \frac{(F_2 - 1)k T_0}{g_1^2} + \dots$$

#### As a consequence, (phase) noise is chiefly that of the 1st stage

### **Amplifier flicker noise**

parametric up-conversion of the near-dc noise



#### Resonator in the phase space

4



#### 3 – the resonator phase response is a low-pass function



#### The Leeson effect



#### phase response - use the linear-feedback theory



## Interpretation of $S_{\varphi}(f)$ [1]



#### Interpretation of $S_{\varphi}(f)$ [2]



2–3 buffer stages => the sustaining amplifier contributes  $\leq 25\%$  of the total 1/f noise

#### Interpretation of $S_{\varphi}(f)$ [3]



Technology suggests a merit factor  $Q_t$ . In all xtal oscillators we find  $Q_t \gg Q_s$ 

#### Example – CMAC Pharao



 $F=1dB \ b_0 => P_0 = -20.5 \ dBm$ 

#### Example – Oscilloquartz 8607



 $F=1dB \ b_0 => P_0 = -20 \ dBm$ 

#### Example – Wenzel 501-04623



F=1dB  $b_0 \Rightarrow P_0=0 dBm$ 

#### **Other oscillators**

| Oscillator           | $ u_0$         | $(b_{-3})_{ m tot}$ | $(b_{-1})_{ m tot}$ | $(b_{-1})_{\mathrm{amp}}$ | $f_L'$      | $f_L''$ | $Q_s$               | $Q_t$                | $f_L$ | $(b_{-3})_{ m L}$ | R    | Note |
|----------------------|----------------|---------------------|---------------------|---------------------------|-------------|---------|---------------------|----------------------|-------|-------------------|------|------|
| Oscilloquart<br>8600 | <sup>z</sup> 5 | -124.0              | -131.0              | -137.0                    | 2.24        | 4.5     | $5.6 \times 10^{5}$ | $1.8 \times 10^{6}$  | 1.4   | -134.1            | 10.1 | (1)  |
| Oscilloquart<br>8607 | <sup>z</sup> 5 | -128.5              | -132.5              | -138.5                    | 1.6         | 3.2     | $7.9 \times 10^{5}$ | $2 \times 10^{6}$    | 1.25  | -136.5            | 8.1  | (1)  |
| CMAC<br>Pharao       | 5              | -132.0              | -135.5              | -141.1                    | 1.5         | 3       | $8.4 \times 10^{5}$ | $2 \times 10^{6}$    | 1.25  | -139.6            | 7.6  | (2)  |
| FEMTO-ST<br>LD prot. | 10             | -116.6              | -130.0              | -136.0                    | 4.7         | 9.3     | $5.4 \times 10^{5}$ | $1.15 \times 10^{6}$ | 4.3   | -123.2            | 6.6  | (3)  |
| Agilent<br>10811     | 10             | -103.0              | -131.0              | -137.0                    | 25          | 50      | $1 \times 10^{5}$   | $7 \times 10^{5}$    | 7.1   | -119.9            | 16.9 | (4)  |
| Agilent<br>prototype | 10             | -102.0              | -126.0              | -132.0                    | 16          | 32      | $1.6 \times 10^{5}$ | $7 \times 10^{5}$    | 7.1   | -114.9            | 12.9 | (5)  |
| Wenzel 501-04623     | 100            | -67.0               | -132?               | -138?                     | 1800        | 3500    | $1.4 \times 10^{4}$ | $8 \times 10^{4}$    | 625   | -79.1             | 15.1 | (6)  |
| unit                 | MHz            | $dB \\ rad^2/Hz$    | $dB \\ rad^2/Hz$    | $dB \\ rad^2/Hz$          | $_{\rm Hz}$ | Hz      | (none)              | (none)               | Hz    | $dB$ $rad^2/Hz$   | dB   |      |

Notes

(1) Data are from specifications, full options about low noise and high stability.

(2) Measured by CMAC on a sample. CMAC confirmed that  $2 \times 10^6 < Q < 2.2 \times 10^6$  in actual conditions.

(3) LD cut, built and measured in our laboratory, yet by a different team.  $Q_t$  is known.

(4) Measured by Hewlett Packard (now Agilent) on a sample.

(5) Implements a bridge scheme for the degeneration of the amplifier noise. Same resonator of the Agilent 10811.

(6) Data are from specifications.

$$R = \left. \frac{(\sigma_y)_{\text{oscill}}}{(\sigma_y)_{\text{Leeson}}} \right|_{\text{floor}} = \sqrt{\frac{(b_{-3})_{\text{tot}}}{(b_{-3})_L}} = \frac{Q_t}{Q_s} = \frac{f_L''}{f_L}$$

# Warning: an effect not accounted for still remains

A fluctuating impedance that affects the input without participating to the gain



This does not fit general experience on amplifiers, yet it is to be reported

## Conclusions

\* The analysis of  ${\boldsymbol{S}}_{\phi}({\boldsymbol{f}})$  provides insight in the oscillator

- \* The oscillator 1/f<sup>3</sup> phase noise (Allan variance floor) originates from:
  - amplifier 1/f noise, via the Leeson effect
  - resonator instability
- In actual oscillators, the resonator instability turns out to be the dominant effect



Full text available on <u>http://arxiv.org/abs/physics/0602110</u> Talk slides and full text (20 pages, pdf) available on <u>http://rubiola.org</u>

We owe gratitude to J.-P. Aubry (Oscilloquartz), V. Candelier (CMAC), G.J. Dick (JPL), J. Grolambert (FEMTO-ST), L. Maleki (JPL), R. Brendel (FEMTO-ST)





Details [2] 
$$\cos[\omega_0t] = \cos[\omega_0t^{+K} \cup (0)]$$
  
DETAILS  $\sum_{k=0}^{K} \sum_{k=0}^{K-1} \sum_{k=0$ 

- -

## FRESNEL VECTOR VECTOR VECTOR V

$$K[1-e^{-t/t}]$$

$$arg(V) = K[1-e^{-t/t}]$$

$$arg(V) = K[1-e^{-t/t}]$$

$$arg(V) = K[1-e^{-t/t}]$$

$$arg(V) = K[1-e^{-t/t}]$$

$$arg(V) = 4-e^{-t/t}$$

$$bolds for koss$$

$$bolds for koss$$

$$b(t) = 4-e^{-t/t}$$

$$derivative$$

$$B(t) = \frac{1}{t}e^{-t/t}$$

$$derivative$$

$$B(s) = \frac{1/t}{s+4/t} = \frac{1}{st+1}$$

### Summary of the amplifier phase noise



- •White PM noise is inversely proportional to P<sub>0</sub>
- •Flicker PM noise is about independent P<sub>0</sub>
- •The corner frequency fc follows

#### The Leeson effect

#### **A** – High Q, low $v_0$ (xtal) **B** – Low Q, high $v_0$ (microw.)



two typical patterns

#### Example – Oscilloquartz 8600



 $F=1dB \ b_0 => P_0 = -18 \ dBm$ 

#### Example – FEMTO-ST prototype



(there is a problem)

 $(b_{-3})_{osc} \implies \sigma_y = 1.7 \times 10^{-13}, Q = 5.4 \times 10^5 \text{ (too low)}$ Q=1.15x10<sup>6</sup> =>  $\sigma_y = 8.1 \times 10^{-14}$  Leeson (too low)

#### Example – Agilent 10811



 $F=1dB \ b_0 => P_0 = -11 \ dBm$ 

### Example – Agilent prototype



 $F=1dB \ b_0 => P_0 = -12 \ dBm$ 

 $(b_{-3})_{osc} \implies \sigma_y = 9.3 \times 10^{-13} \text{ Q} = 1.6 \times 10^5$  $Q \stackrel{?}{=} 7 \times 10^5 \implies \sigma_y = 2.1 \times 10^{-13} \text{ (Leeson)}$