

The Measurement of (1/f) AM noise of Oscillators

Enrico Rubiola FEMTO-ST Institute, Besançon, France (CNRS and Université de Franche Comté)

Outline

- * Introduction
- * Power detectors
- * Experimental method
- * Results
- * Perspectives and conclusions

http://rubiola.org

introduction 1

Motivations for AM noise metrology

- Emerging need, after the progress of
 - oscillators and sources
 - phase noise metrology (bridge/interferometric) method
- Impacts on

 - oscillators \rightleftharpoons power effects on the resonator

 - •

• Measurement the AM noise of a source relies on instruments

AM noise

polar coordinates

$$v(t) = V_0 \left[1 + \alpha(t)\right] \cos\left[\omega_0 t + \varphi(t)\right]$$

 $\alpha(t) = \frac{n_c(t)}{V_0}$ and $\varphi(t) = \frac{n_s(t)}{V_0}$

Cartesian coordinates

$$v(t) = V_0 \cos \omega_0 t + n_c(t) \cos \omega_0 t - n_s(t) \sin \omega_0 t$$

In low noise conditions

Relates to power fluctuations

$$\alpha(t) = \frac{1}{2} \frac{\delta P}{P_0}$$

Same formulae as for frequency noise

 $\alpha(t) \Leftrightarrow y(t)$

Power-law

 $\begin{array}{ll} h_{-2}/f^2 & \text{random walk} \\ h_{-1}/f & \text{flicker} \\ h_0 & \text{white} \end{array}$

Allan variance

$$\sigma_{\alpha}^{2}(\tau) = \frac{h_{0}}{2\tau} + 2\ln(2)h_{-1} + \frac{4\pi^{2}}{6}h_{-2}\tau$$

white

flicker

random walk

3

detectors 1

The diode power detector

law: $v = k_d P$

same form as in optical quantum detectors 4

differential resistance $R_d = \frac{V_T}{I_0}$ $V_T = kT/q \simeq 25$ mV thermal voltage

detectors 2

Tunnel and Schottky power detectors

parameter	Schottky tunnel		
input bandwidth	up to 4 decades	1-3 octaves	
	$10\mathrm{MHz}$ to $20\mathrm{GHz}$	up to 40 GHz	
VSVR max.	1.5:1	3.5:1	
max. input power (spec.)	-15 dBm	-15 dBm	
absolute max. input power	20 dBm or more	20 dBm	
output resistance	$1{-}10\mathrm{k}\Omega$	50-200 Ω	
output capacitance	20-200 pF	10–50 pF	
gain	300 V/W	1000 V/W	
cryogenic temperature	no	yes	
electrically fragile	no	yes	

The "tunnel" diode is actually a backward diode. The negative resistance region is absent.

5

			Cobottlay		Tuppel
load resistance, Ω	detector ga DZR124AA (Schottky)	in, A^{-1} DT8012 (tunnel)	-20 -20 Age dB -40 -40 -40 -40 -40 -40 -40 -40	htage, dBV	
$\begin{array}{ c c c }\hline & 1 \times 10^2 \\ & 3.2 \times 10^2 \end{array}$	$\frac{35}{98}$	$\begin{array}{c} 292 \\ 505 \end{array}$	⁰ 10 kΩ 10 kΩ 3.2 kΩ	output vo	1 kΩ 320 Ω
$\begin{array}{c c} 1 \times 10^3 \\ 3.2 \times 10^3 \end{array}$	217 374	652 724	-80	1 kΩ 320 Ω	100 Ω
$\begin{array}{c} 1 \times 10^4 \\ \hline \\ \text{conditions: pow} \end{array}$	494 ver -50 to -20	750) dBm		100 Ω ampli dc offset 30 -20 -10 0 10	ampli dc offset

Noise mechanisms

In practice

the amplifier white noise turns out to be higher than the detector noise and the amplifier flicker noise is even higher

method 1

Cross-spectrum method

 $v_a(t) = 2k_a P_a \alpha(t) + \text{noise}$ $v_b(t) = 2k_a P_b \alpha(t) + \text{noise}$

The cross spectrum $S_{ba}(f)$ rejects the single-channel noise because the two channels are independent. 7

$$S_{ba}(f) = \frac{1}{4k_a k_b P_a P_b} S_\alpha(f)$$

•Averaging on m spectra, the singlechannel noise is rejected by $\sqrt{1/2m}$

- A cross-spectrum higher than the averaging limit validates the measure
- •The knowledge of the single-channel noise is not necessary

Calibration

Repeat interchanging the channels

Note that only the kP product is needed because

$$S_{ba}(f) = \frac{1}{4k_a k_b P_a P_b} S_\alpha(f)$$

Alternate (and complex) calibration method.

- It exploits the sensitivity and the accuracy of a lock-in amplifier.
- As before, it requires a reference power-ratio

results 1

Example of AM noise spectrum

Single-arm 1/f noise is that of the dc amplifier (the amplifier is still not optimized)

AM noise of some sources

source	h_{-1} (flicker)		$(\sigma_{lpha})_{ m floor}$
Anritsu MG3690A synthesizer (10 GHz)	2.5×10^{-11}	-106.0 dB	5.9×10^{-6}
Marconi synthesizer (5 GHz)	1.1×10^{-12}	-119.6 dB	1.2×10^{-6}
Macom PLX 32-18 $0.1 \rightarrow 9.9$ GHz multipl.	1.0×10^{-12}	-120.0 dB	1.2×10^{-6}
Omega DRV9R192-105F 9.2 GHz DRO	8.1×10^{-11}	-100.9 dB	1.1×10^{-5}
Narda DBP-0812N733 amplifier (9.9 GHz)	2.9×10^{-11}	-105.4 dB	6.3×10^{-6}
HP 8662A no. 1 synthesizer (100 MHz)	6.8×10^{-13}	$-121.7 \mathrm{~dB}$	9.7×10^{-7}
HP 8662A no. 2 synthesizer (100 MHz)	1.3×10^{-12}	-118.8 dB	1.4×10^{-6}
Fluke 6160B synthesizer	1.5×10^{-12}	$-118.3 \mathrm{dB}$	1.5×10^{-6}
Racal Dana 9087B synthesizer (100 MHz)	8.4×10^{-12}	-110.8 dB	3.4×10^{-6}
Wenzel 500-02789D 100 MHz OCXO	4.7×10^{-12}	-113.3 dB	2.6×10^{-6}
Wenzel 501-04623E no. 1 100 MHz OCXO	2.0×10^{-13}	-127.1 dB	5.2×10^{-7}
Wenzel 501-04623E no. 2 100 MHz OCXO	1.5×10^{-13}	-128.2 dB	4.6×10^{-7}

worst

best

persp. & concl. 1 Measurement of the detector noise

Basic ideas

- Remove the noise of the source by balancing C–A and C–B
 - Use a lock-in amplifier to get a sharp null measurement
- Channels A and B are independent -> noise is averaged out
- Two separate JFET amplifiers are needed in the C channel
 - JFETs have virtually no bias-current noise
- Only the noise of the detector C remains

Conclusions

- * Method for the measurement of AM noise in oscillators
 - * High sensitivity and accurate calibration
 - * Suitable to optics and to microwave photonics
 - * Measurement of some RF/microwave sources
- * Single-channel sensitivity still limited by the dc amplifier
- * Measurement of the detector noise in progress

http://rubiola.org Free downloads (text and slides)

http://arxiv.org/abs/physics/0512082 (text only)