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Response and Uncertainty of the Parabolic Variance
PVAR to Noninteger Exponents of Power Law

François Vernotte , Siyuan Chen , and Enrico Rubiola

Abstract— The oscillator fluctuations are described as the
phase or frequency-noise spectrum or in terms of a wavelet
variance as a function of the measurement time. The spectrum
is generally approximated with the “power law,” i.e., a Laurent
polynomial with integer exponents of the frequency. This
article provides: 1) the analytical expression of the response
of the wavelet variance parabolic variance (PVAR) to the
frequency-noise spectrum in the general case of noninteger expo-
nents of the frequency and 2) a useful approximate expression
of the statistical uncertainty. In turn, PVAR is relevant in that
it replaces the widely used modified Allan variance (MVAR),
featuring the identification of noise processes with fewer data.

Index Terms— Degrees of freedom (dof), fractional noise,
frequency stability, uncertainty assessment.

I. INTRODUCTION

THE fluctuations of an oscillator are generally described as
the phase noise L ( f ), where f is the Fourier frequency,

or as the two-sample variance σ 2
y (τ ), where τ is the integration

time. The latter takes different flavors, the most known of
which are the Allan variance (AVAR) and the modified Allan
variance (MVAR). The concepts related to L ( f ) were intro-
duced in the 1960s to describe the fast fluctuations of oscilla-
tors for radars and frequency synthesis [1]. By contrast, σ 2

y (τ )
was introduced to describe the fluctuations of Cs-beam clocks
for timekeeping, with obvious focus on slow fluctuations
[2], [3]. Traditionally, the boundary between these two choices
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was τ ≈ 0.1, . . . , 1 or f ≈ 1, . . . , 10 Hz, with small overlap,
of the order of one decade. In fact, time counters could not be
easily used at a sampling interval τ0 smaller than ≈ 100 ms,
limited by the slowness of the IEEE 488 BUS transferring
American Standard Code for Information Interchange (ASCII)
data. By contrast, the measurement of L ( f ) at low Fourier
frequencies was limited by the narrow dynamic range of the
double balanced mixer used as the phase-to-voltage converter
(no more than ±20◦) and of the analog-to-digital converters.
The Fast Fourier Transform analyzers were so complex and
expensive that they were avoided when possible. Interestingly,
the two-sample variance is broadly equivalent to a one-octave
filter centered at f ≈ 0.45/τ .

Nowadays, these limitations are gone, and the overlap in the
domain of application of L ( f ) and σ 2

y (τ ) is of 6–8 decades.
Digital instruments can measure L ( f ) from 0.1 to 1 mHz
[4]–[7]. This is made possible by software-defined radio
techniques (see [8], [9] for a general overview), which enables
phase measurements not bounded to ±π . The CORDIC algo-
rithm [10], [11] is the preferred choice to calculate ϕ(t) from
the digitized I/Q stream. Counters with picosecond resolution
were available since the 1970s with the Nutt interpolator [12],
but continuous time stamps at a sampling interval τ0 ≈ 100 ns
[13], [14] could be possible only due to field-programmable
gate arrays (FPGAs). The minimum τ is actually greater than
τ0 because trivial limitations intervene, but the practical limit
is still of the order of several μs. The conclusion is that
assessing the equivalence between spectra and variances is
more important than ever.

It is generally agreed that the phase noise of oscillators
is well described by the “power law” or “polynomial law”
model, which is the extension of the regular polynomial to
negative powers of the variable (Laurent polynomials). While
the literature is shy about exceptions, we came across signif-
icant practical cases where the phase noise has a noninteger
slope over a few decades. In other domains of physics, it is
generally agreed that flicker noise has the spectrum of the
f β type, where the exponent β is actually in [−1.2,−0.8]
to [−1.5,−0.5], depending on the author [15]–[17]. Accord-
ingly, we may find f β phase noise or f β−2 phase noise
after the phase-to-frequency conversion known as the Leeson
effect [18]. The fractional-order frequency control, nowadays
quite popular [19]–[21], is a good reason for noninteger slopes
in the spectrum of a locked oscillator or laser. Noninteger
slopes also appear in other branches of frequency metrology.
For example, theoretical predictions about millisecond pulsars
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suggest that the common FM noise could follow the f −7/3 law
[22], [23]. Finally, a continuous power law is also necessary,
especially in Bayesian statistical analysis, if the exponent of
this law is a parameter that we are trying to estimate [24].

The response of σ 2
y (τ ) to phase noise in the case of noninte-

ger exponents of the power law was already solved [25] for the
AVAR and the MVAR, while the parabolic variance (PVAR)
was introduced later [26], [27]. MVAR is no longer interesting
for us because PVAR is suitable for the same applications,
enabling the detection of the same noise phenomena at the
same confidence level with a shorter data record [27].

This work stands on [25] and extends the results to PVAR
providing conversion formulas, degrees of freedom (dofs), and
statistical uncertainty (Type A uncertainty, according to the
definitions given by the International Vocabulary of Metrol-
ogy [28]).

II. RESPONSE TO POLYNOMIAL SPECTRA

A. Basic Definitions and Tools

We consider a clock signal V0 cos[ω0t + ϕ(t)] of nominal
frequency ω0/2π and random phase ϕ(t). It is understood
that ϕ(t) is not bounded to ±π and that |ϕ̇(t)| ≪ ω0. The
associated time fluctuation is x(t) = ϕ(t)/ω0, usually referred
to as phase time. The quantity y(t) = ẋ(t) is the fractional
frequency fluctuation.

According to the IEEE Standard 1139 [29], the phase noise
is defined as L ( f ) = (1/2)Sϕ( f ), that is, half the single-sided
power spectral density (PSD) of ϕ(t). For our purposes, it is
convenient to let Sϕ( f ) aside and to use the quantity

Sy( f ) = f 2

(ω0/2π)2
Sϕ( f ) (1)

which provides fully equivalent information. The associated
polynomial law is usually written as

Sy( f ) =
2∑

α=−2

hα f α (2)

where the exponent α equals −2 for random walk FM noise,
−1 for flicker FM noise, 0 for white FM noise, 1 for flicker
PM noise, and 2 for white PM noise.

From a general perspective, the two-sample variance can be
written as

σ 2
y (τ ) = 1

2
E

{[
y2 − y1

]2
}

(3)

where E{} is the mathematical expectation and y1 and y2 stand
for y(t) averaged over contiguous time intervals of duration τ
(hereafter the integration time). Our use of (3) differs from
the general literature in that y2 and y1 are weighted averages.
The uniform average gives AVAR, the triangular average gives
MVAR, and the parabolic average gives PVAR. Other options
are possible, for example, the Hadamard and the Picimbono
variances. Accordingly, (3) is rewritten as

σ 2
y (τ ) = E

{[ ∫ ∞

−∞
y(t) w(t) dt

]2}
(4)

where w(t) is a wavelet-like function that describes y2 − y1,
including the weight functions. The specific w(t), named

wA(t) for AVAR, wM(t) for MVAR, and wP (t) for PVAR,
is defined in [27, Fig. 3 and related text]. For example,
the PVAR weighting function is

wP(t) = 3
√

2 t

τ 3
(|t| − τ ) (5)

with t ∈ [−τ, τ ] which is the quadratic form which gives the
parabolic shape of this weighting function. Since y(t) is the
derivative of x(t), (4) may be rewritten as

σ 2
y (τ ) = E

{[ ∫ ∞

−∞
x(t) ẇ(t) dt

]2}
(6)

where ẇ(t) is the time derivative of w(t). Thus, for PVAR

ẇP(t) = 6
√

2

τ 3

(
|t| − τ

2

)
(7)

with t ∈ [−τ, τ ].
In measurements, the variance is calculated from a stream

of N samples x j taken at the interval τ0, and the measurement
time is τ = mτ0, where m (hereafter the normalized integration
time) is an integer. The expectation is replaced with the
average � �M on M realizations of y2 − y1, and σ 2

y (τ ) is
replaced with AVAR(τ ) or PVAR(τ )

AVAR(τ ) = 1

2M

M−1∑
i=0

[
yi+1 − yi

]2
(8)

PVAR(τ ) = 72

Mm2τ 2

×
M−1∑
i=0

[m−1∑
k=0

(m − 1

2
− k

)(
xi+k − xi+m+k

)]2

(9)

and M = N − 2m because w(t) spans over 2m samples.
The main advantage of PVAR lies in the fact that this linear
weighting of the x j samples is equivalent to a linear regression
and thus provides the best determination of its slope in the
sense of least squares. PVAR(τ ) is therefore an estimator of
the variance of the slope of the x j samples over the duration τ .
For a more detailed description of PVAR and its properties,
see [27] (particularly Fig. 1 and the related text for the linear
regression equivalence).

B. Response of AVAR and PVAR to f α

The response of a generic σ 2
y (τ ) to Sy( f ) is

σ 2
y (τ ) =

∫ ∞

0
|H ( f )|2 Sy( f ) d f (10)

where H ( f ) is the transfer function or

σ 2
y (τ, α) =

∫ ∞

0
|H ( f )|2 hα f α d f (11)

for the αth term of the polynomial law (2). Using the subscript
A for AVAR, |H ( f )|2 becomes

|HA( f )|2 = 2 sin2(2π f τ )

(π f τ )2 (12)
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Fig. 1. Continuous response of AVAR and PVAR compared to the known
responses for α ∈ [−3,+3]. The responses of AVAR are not plotted for
α ≥ 1 because this estimator diverges without the introduction of a high
cutoff frequency.

therefore

AVAR(τ, α) =
(
2−α+1 − 4

)
	(α − 1) sin(πα/2)

(2πτ)α+1
hα. (13)

This is equivalent to [25, eq. (14)] because we have not
introduced in (10) the usual cutoff frequency fH .

Similarly, the transfer function associated with PVAR is

|HP( f )|2 = 9
[
2 sin2(π f τ ) − πτ f sin(2π f τ )

]
2(π f τ )6 (14)

which is (17) of [27], repeated here. Combining (11) and (14),
we derive the response of PVAR

PVAR(τ, α) = 9×25−α
[
α2 − α − 4 − 2α(α − 3)

]
×	(α − 5) sin(πα/2)

(2πτ)α+1
hα . (15)

Because PVAR converges for f α from f −2 to f +2 FM noise,
we can assume that (15) is valid for α ∈ [−3,+3].

Fig. 1 shows the AVAR and PVAR calculated as above, as a
function of α. For integer α, the results are the same as in
[27, Table I].

III. DEGREES OF FREEDOM OF PVAR ESTIMATES

First, we have to find a simplified expression of the number
of dof of PVAR estimates for integer power-law noises. Since
this equation was solved for a white PM noise (see (24)
in [27]), we assume that the following expression should have
the same form:

ν ≈ 35

A(α)m/M − B(α)(m/M)2
(16)

where A(α) and B(α) are coefficients to be determined.
After [27, eq. (24)], we already know that A(+2) = 23 and
B(+2) = −12. We determined A(α) and B(α) after massive
Monte Carlo simulations and verified the results by comparing
them to the dof computed for continuous power law.

A. Determination of the Coefficients
From Monte Carlo Simulations

The Monte Carlo simulation was performed by com-
puting 10 000 sequences of frequency deviations for each
α ∈ {−2,−1, 0,+1,+2} and for each data-run length N ∈
{128, 2048, 32768}, i.e., 150 000 simulated sequences. For
given α, N , and τ , we derived the dof from the averages
and the variances of the PVAR for the corresponding set of
sequences by using the following well-known property of χ2

ν

distributions [27]:

ν = 2
E

2[PVAR(τ )]
V[PVAR(τ )] (17)

where E[ ] and V[ ] are the mathematical expectation and
the variance of the argument, respectively. The least square fit
results in

1) A(−2) ≈ 34, A(−1) ≈ 28, A(0) ≈ 27, A(+1) ≈ 27,
and A(+2) = 23.

2) B(α) ≈ 12 for all α.

We have then modeled A(α) by the following third-order
polynomial and assumed that B(α) = B is constant:

A(α) = 27 + 1

4
α + 5

14
α2 − 3

4
α3

B = 12. (18)

Due to (16) and (18), we are now able to assess the dof of all
PVAR estimates whatever the normalized integration time m
or the number of samples M .

The top of Fig. 2 compares the dof obtained by the Monte
Carlo simulations and by (16) and (18) for all integer types
of noise. The agreement is confirmed by the bottom, which
shows that the discrepancies are within ±10% except for the
very first values of m (m = 1, 2).

The model provided by (16) and (18) can be applied to the
classical power law, with integer α. Next, we check on its
validity as an extension for real α ∈ [−3, 3] by computing the
dof of PVAR.

B. Verification for Continuous Polynomial-Law Noise

The dof can be computed from (17). The mathematical
expectation of the response of PVAR is given by (15), and
the variance can be computed from (21) and (22) of [27]

V[PVAR(τ )]

= 2

M2

M−1∑
i=0

M−1∑
j=0

[
72

m4τ 2

m−1∑
k=0

m−1∑
l=0

(
m−1

2
−k

)(
m − 1

2
−l

)
{
2Rx[(i +k− j −l)τ0]

−Rx[(i +k− j −m−l)τ0]

−Rx[(i + m + k − j − l)τ0]
}]2

(19)

where Rx(τ ) is the autocorrelation function of the phase-time
samples x(t) = ∫ t

0 y(θ)dθ , i.e., Rx(τ ) = E{x(t)x(t + τ )}.
We used the following continuous expression of Rx(τ ) versus
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Fig. 2. Top: comparison of the empirical dof (crosses) and the approxima-
tions (lines) given by (16) and (18) for all types of noise. The lines are drawn
from point to point without interpolation and the last point is set to 1. Bottom:
relative difference (in %) between the empirical dof and the approximations.

the power-law exponent α (see [25], [30]):

Rx(mτ0) = hα

2(2π)ατα−1
0

	(m − α/2 + 1)	(α − 1)

	(m + α/2)	(α/2)	(1 − α/2)
.

(20)

However, since this expression involves 	-functions with
arguments of the order of m, it limits this computation to
N = 128 samples (	(128) = 3 · 10213!). However, since
	(z) = (z − 1)	(z − 1) for z > 1, we can rewrite (20) by
using the following recurrence formula:

	(m − α/2 + 1)

	(m + α/2)
= 	(3 − α/2)

	(2 + α/2)

m−3∏
j=0

m − j − α/2

m − 1 − j + α/2

which ensures that the arguments of the 	 functions are greater
or equal to 1 for α ∈ [−2,+2]. Therefore, the autocorrelation
function may be computed for large N as

Rx(mτ0) = hα

2(2π)ατα−1
0

	(3 − α/2 + 1)	(α − 1)

	(2 + α/2)	(α/2)	(1 − α/2)

×
m−3∏
j=0

m − j − α/2

m − 1 − j + α/2
. (21)

Due to this equation, we have computed the theoretical vari-
ance of PVAR(τ ) versus continuous α and deduced the dof
from (17).

Let us define Pν(α, m, M) = (35 M/mν). From (16),
we see that Pν(α, m, M) ≈ A(α) − Bm/M . The top of
Fig. 3 shows Pν(α, m, M) computed from (19) (crosses) and

Fig. 3. Top: comparison of Pν(α, m, M) computed from (19) (×, +,∗) and
approximated by (16) (solid lines) for N = 128 data. The blue squares and the
green circles are, respectively, the values obtained for m = 4 and m = 32 from
the Monte Carlo simulations. Bottom: error (in %) between the approximated
values of Pν(α, m, M) and the computed values.

approximated from (18) (solid lines) versus the noise power
law α for m ∈ {4, 11, 32} (we prefer to plot Pν(α, m, M)
instead of ν because the picture is more readable). The
agreement is quite good for m = 11 and m = 16, but there
is a notable difference for m = 4 and α < −1. The bottom
of Fig. 3 shows that this discrepancy is ≈ 20% maximum,
but it remains within ±5% in most cases (all α for m > 8
and all m for α > −1). This agreement is satisfactory to
get an acceptable assessment of the PVAR uncertainties since
the relative uncertainties are proportional to 1/

√
ν: they are

therefore always below 10% and mostly within ±2.5%.

C. Case of the Largest Integration Time

The approximation given by (16) and (18) is close enough
to the empirical dof ν for m ≤ N/4. Moreover, we know
that ν = 1 for m = N/2. This is enough to draw Fig. 2
since no interpolation is performed between the last two points,
i.e., m = N/4 and m = N/2. On the other hand, we note that
the approximation diverges beyond N/4 (dashed lines in the
top of Fig. 4) if intermediate m values are computed. However,
it is important to assess the uncertainties within this interval,
particularly if N is not a power of 2.

We fill this gap by interpolating the dof within
round(23/20 N/4) ≤ m ≤ round(2−3/20 N/2) (rounding is
necessary to ensure that m is an integer), i.e., between m1 ≈
round(1.11 N/4) and m2 ≈ round(0.901 N/2), with the
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Fig. 4. Top: comparison of the empirical dof (crosses) and the semilogarith-
mic fits (solid lines) for N/4 ≤ m ≤ N/2 and for random walk FM, white FM,
and white PM. The dashed lines represent the approximations given by (16)
and (18). In this example, N = 32 768 samples and the logarithmic increment
of the m-values is 21/20 within [N/4, N/2]. Bottom: error (in %) between
the empirical dof and the semilogarithmic fits for all types of noise.

following semilogarithmic fit:
ν(m) = a ln(m) + b (22)

with

a = ν(m1) − 1

ln(m1) − ln(m2)
(23)

b = ln(m1) − ν(m1) ln(m2)

ln(m1) − ln(m2)
. (24)

For m ≥ m2, the dofs are set to 1.
Fig. 4 (top) shows an enlargement of the highest two

decades of m, i.e., m ∈ [4096, 8192] for N = 32 768 data,
shown to focus on the result of the semilogarithmic fit. The
bottom plot shows the error between the fit and the dof
computed from the Monte Carlo simulations. Most of these
errors are within ±10%, except for white FM. In this case
of white FM, the error is between +5% and −20% and up
to −24% for m = 14 766. However, this fit is sufficient to
ensure an estimation of the PVAR uncertainty for the highest
τ within ∼ 10% at worst.

IV. CONCLUSION

From a theoretical calculation, we have determined the
response of PVAR for continuous power-law noise spectra.
From Monte Carlo simulations, we have obtained a sim-
plified expression providing the dof of the PVAR estimates

within 10%. We have proved that this expression remains valid
for noninteger power-law noises. Finally, we have shown that
a simple interpolation is efficient to fit the dof for the highest
octave of integration times. Due to these results, we will be
able to use PVAR to analyze millisecond pulsar timings and
to estimate the noninteger exponent of a red noise if it is
detected. On the other hand, this article makes it possible
to generalize the use of PVAR to process any signal with
noninteger power-law noise spectrum.
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