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KLTS: A Rigorous Method to Compute the
Confidence Intervals for the Three-Cornered

Hat and for Groslambert Covariance
Éric Lantz , Claudio Eligio Calosso, Enrico Rubiola, Vincent Giordano, Christophe Fluhr,

Benoît Dubois, and François Vernotte

Abstract— The three-cornered hat/Groslambert Covariance
(GCov) methods are widely used to estimate the stability of each
individual clock in a set of three, but no method gives reliable
confidence intervals for large integration times. We propose a
new KLTS (Karhunen-Loève Tansform using Sufficient statistics)
method which uses these estimators to consider the statistics of
all the measurements between the pairs of clocks in a Bayesian
way. The resulting cumulative density function (CDF) yields
confidence intervals for each clock Allan variance (AVAR). This
CDF provides also a stability estimator that is always positive.
Checked by massive Monte Carlo simulations, KLTS proves to
be perfectly reliable even for one degree of freedom. An example
of experimental measurement is given.

Index Terms— Allan variance (AVAR), Bayesian analysis, clock
stability, confidence interval, covariances, three-cornered hat.

I. INTRODUCTION

ALTHOUGH the three-cornered hat [1] and the Groslam-
bert Covariance (GCov) [2] methods are widely used to

measure the stability of each individual clock in a set of three,
the only methods that exist to compute error bars are limited
to the smallest integration times, i.e., when the number of
equivalent degrees of freedom (EDF) is high [3]–[5]. However,
there is no reliable method to assess confidence intervals
over the estimates if their number of EDF is low, typically
5 or below. However, since this case occurs for the largest
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integration times, it is an important issue for all applications
dealing with long-term stability (e.g., time keeping).

Likewise, another problem frequently arises when using the
three-cornered hat or the GCov method: negative variance esti-
mates can occur. Although this issue was already considered
by Premoli and Tavella [6], it would be useful to get a method
that could provide simultaneously a positive estimate as well
as its confidence interval.

In a previous article, we performed a first Bayesian attempt
to estimate confidence intervals from the statistics of the three-
cornered estimates, but we observed that this method was only
valid beyond an EDF of 5 [5]. We propose here a new method,
also based on Bayesian inversion, which uses the statistics of
the data themselves, instead of the statistics of the estimates.
Nevertheless, these statistics of the data can be computed
from the values of the estimates, since these estimates form
“sufficient statistics” [7] for variance estimation. The resulting
cumulative density functions (CDFs) yield the lower and upper
bounds of the 95% confidence interval. On the other hand,
the CDF at 50% provides a useful stability estimator of the
stability of each clock, i.e., the median value, which has the
advantage of always being positive.

The performances of this method have been checked by
using massive Monte Carlo simulations. The principle of these
simulations is described in this article and the comparisons
with the theoretical confidence intervals given by our new
method are discussed. Finally, this method is applied to the
measurement of three cryogenic sapphire oscillators (CSOs).

II. STATEMENT OF THE PROBLEM

A. Clock Comparisons

Let us consider three independent clocks: A, B , and C .
It is possible to compare these clocks by pairs by using
three time-interval counters (TICs), as shown in Fig. 1, and
to estimate the corresponding Allan variances (AVARs). Let
us denote ȳABk the kth frequency deviation sample between
A and B integrated without dead time over a duration τ ,
ȳABk = (1/τ)

� tk+τ
tk

y(t)dt , and zABk = (ȳABk+1−ȳABk)/
√

2.
For clocks A and B , the AVAR is

σ 2
AB (τ ) = E

�
z2

ABk

�
(1)

where E[·] stands for the mathematical expectation of the
quantity between the brackets. For the sake of concision of the
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Fig. 1. Layout of the clock measuring device.

notations, we will drop the dependence on τ in the following.
Since σ 2

AB = σ 2
A + σ 2

B , the three-cornered hat is based on the
following property:

TCHA = 1

2

�
σ 2

AB − σ 2
BC + σ 2

C A

� = σ 2
A. (2)

On the other hand, the GCov is based on this other property

GCovA = E[zABk · zACk] = σ 2
A. (3)

B. Measurement Noise Influence

Let us consider the layout of Fig. 1:
1) clocks B and C are connected to counter 1, which is

affected by a measurement noise {zN1k};
2) clocks C and A are connected to counter 2, which is

affected by a measurement noise {zN2k};
3) clocks A and B are connected to counter 3, which is

affected by a measurement noise {zN3k}.
We assume that these three measurement noises are
uncorrelated.

The measurement given by counter 3 is then the sum of
the clock noises plus the corresponding measurement noise:
z3k = zABk + zN3k . Its variance is

σ 2
3 = E[(zABk +zN3k)

2] = σ 2
AB + σ 2

N3 =σ 2
A + σ 2

B + σ 2
N3.(4)

In the following, we will call z1k , z2k , and z3k the
measurements.

The three-cornered hat becomes TCHA = (1/2)(σ 2
3 − σ 2

1 +
σ 2

2 ) = σ 2
A + (1/2)(σ 2

N3 − σ 2
N1 + σ 2

N2). Let us assume that
the three counter measurement noises are of the same level:
σ 2

N1 ≈ σ 2
N2 ≈ σ 2

N3 = σ 2
N . Therefore, TCHA = σ 2

A + (1/2)σ 2
N .

By contrast, the GCov remains, because the measurement
noises are uncorrelated

GCovA = E[(zABk + zN3k) · (zACk + zN2k)] = σ 2
A. (5)

Therefore, the only difference between these two approaches
concerns the measurement noise due to the counters, since
the expectation of the GCov estimates is not sensitive to
this noise [4]. Note, however, that the variance of the GCov
estimates does include a measurement noise term.

C. Model Parameters and Estimates

The previously defined quantities σ 2
A , σ 2

AB , TCHA, GCovA,
and σ 2

1 , . . . are unknown real values. However, they can be
estimated by estimates that are random variables. We can then
define the following estimates:

σ̂ 2
3 = 1

M

M�
k=1

z2
3k = 1

M

M�
k=1

(zABk + zN3k)
2

= σ̂ 2
A + σ̂ 2

B + σ̂ 2
N (6)

where the hat (·̂) stands for estimate and M is the number of
available consecutive zABk . Let us call the σ̂ 2

1 , σ̂ 2
2 , and σ̂ 2

3 the
elementary estimates.

Similarly, �TCHA = σ̂ 2
A + (1/2)σ̂ 2

N and

�GCovA = 1

M

M�
k=1

z3kz2k

= 1

M

M�
k=1

(zABk + zN3k)(zACk + zN2k)

= σ̂ 2
A. (7)

Let us call the σ̂ 2
A, σ̂ 2

B , and σ̂ 2
C the final estimates.

Meanwhile, let us call the σ 2
A, σ 2

B , and σ 2
C the model

parameters.
The aim of this article consists in calculating a confidence

interval over each model parameter σ 2
A , σ 2

B , and σ 2
C , from the

final and elementary estimates.

D. Estimation of the Measurement Noise by the
Closure Relationship

The closure relationship is obtained by computing the sum
of the measurements of all counters for a given k

zcls,k = z1k + z2k + z3k

= zBCk + zN1k + zC Ak + zN2k + zABk + zN3k

= zN1k + zN2k + zN3k (8)

since zABk = zBk − zAk . These three measurement noises
being uncorrelated and of equal level, the variance of the
closure is σ 2

cls = E[(zN1k + zN2k + zN3k)
2] = 3σ 2

N .
This gives an efficient way to estimate the variance of the

measurement noise

σ̂ 2
N = 1

3M

M�
k=1

(zN1k + zN2k + zN3k)
2 = 1

3
σ̂ 2

cls . (9)

E. Bayesian Inference
In Bayesian analysis, we have to consider the model

parameters �� = (θ1, . . . , θm)T that have, in the model
world, m-definite but unknown values, and the measurements
�X = (x1, . . . , xn)

T that are n random variables. In our case,
the parameters are the three true σ 2

A , σ 2
B , and σ 2

C AVAR
values of the three clocks and the measurements are either
the elementary estimates σ̂ 2

1 , σ̂ 2
2 , and σ̂ 2

3 (see the previous
method described in [5]) or directly the 3M measurements
{zABk, zBCk, zACk}. In the present method, we will compute
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the probability density function (PDF) of these 3M measure-
ments, by using only the measured values of the final and
elementary estimates, because these estimates form a sufficient
statistics for the measurements [7], [8]: the precise knowledge
of the set of measurements does not bring any new information
beyond the estimates.

While using the same estimates as [5], the present method
computes only the Gaussian PDF of the measurements them-
selves, while [5] lays on the approximation of the PDF of
the estimators by a Gaussian law, inducing errors for a low
number of EDF.

The Bayesian inversion lays on the distinction between two
issues.

1) The direct problem, which consists, in the model world,
in calculating the PDF of the estimates knowing the
model parameters p( �X | ��).

2) The inverse problem, which consists, in the experimenter
world, in calculating the PDF of the model parameters
knowing the estimates p( ��| �X). This is the most precise
knowledge we can gain on these parameters after a
measurement.

The direct problem has been solved in [5] and the inverse
problem may be solved thanks to the Bayes theorem⎧⎨

⎩
p( ��| �X) ∝ π( ��) · p( �X | ��)�

p( ��| �X)d �X = 1
(10)

where π( ��), called the prior, is the a priori probability of the
parameter �� before any measurement.

III. THE KLTS METHOD

In the following, to distinguish our previous method
described in [5] and the present method, we will call the
former the KLTG method, for “Karhunen–Loève transform
with Gaussian approximation” method, and the latter the KLTS
method, for “Karhunen–Loève transform using sufficient sta-
tistics” method.

A. Using the Measurements z

The KLTS method relies on the use of the z1k , z2k , and
z3k measurements, which are Gaussian random variables (r.v.),
instead of the σ̂ 2

1 , σ̂ 2
2 , and σ̂ 2

3 elementary estimates, which are a
linear combination of ρ2 random variable. The main advantage
of this approach lays in the property of the Gaussian r.v., which
remain Gaussian when they are linearly combined.

However, these measurements are strongly correlated for
two reasons.

1) The zABk and zABk+1 are not independent (except in
the case of White FM and AVAR without overlapping).

2) For a given k, the z1k , z2k , and z3k are not independent
(e.g., their sum is null if the measurement noise is
neglected).

We will postpone the treatment of the correlation between
successive measurements. We first treat the correlations among
the three measurements at a given time. Hence, let us assume
that the 3M measurements form M independent triplets,

successive realizations of three correlated Gaussian r.v. We aim
to determine three linear combinations of these r.v. that are
independent of each other

wl,k = αl z1,k + βl z2,k + γl z3,k, l = 1, 2, 3. (11)

The solution of this problem is given by the
Karhunen–Loève (K.L.) transform: the nine coefficients
αl , βl , γl form the eigenvectors of the rotation matrix that
diagonalizes the covariance matrix of the measurements,
whose diagonal elements are given by (4) and nondiagonal
elements by (5). Note that this matrix is singular in the
absence of measurement noise because zBCk = zACk − zABk :
if the measurement noise is negligible, a 2 × 2 matrix must
be used instead of a 3 × 3 matrix.

Now, since the wl,k are all independent, the PDF is easy
to calculate in the model world, by assuming definite values
for the true variances: p( �W | ��) = �M

k=1
�3

l=1 p(wl,k | ��).
To render more explicit this expression, let us introduce the
three K.L. variances Vl obtained by diagonalization of the
covariance matrix. All PDFs are Gaussian and their product
can be written as

p( �W | ��) =
3


l=1

1

V M/2
l

exp

�
−

�M
k=1 w2

l,k

2Vl

�
. (12)

B. Using the Sufficient Statistic Properties of the Estimates

In this equation, it is quite interesting to develop, using (11),
the numerator of the exponential argument, which is the only
term that depends on the actual measurements

M�
k=1

w2
l,k = M

�
α2

l σ̂ 2
1 + β2

l σ̂ 2
2 + γ 2σ̂ 2

3 + 2αβ�GCovA

− 2αγ �GCovB + 2βγ �GCovC

�
. (13)

Equation (13) means that the only knowledge of the six
elementary or final estimates is sufficient to compute the
PDF of the actual set of 3M measurements. The number of
estimates reduces to two in the absence of measurement noise
(in this case, the final estimates can be computed from the
elementary ones).

This result was expected: indeed, the variance estimates
form a sufficient statistics for the variance estimation, meaning
that the precise knowledge of the set of measurements �X =
(x1, . . . , xn)T does not bring any new information beyond the
estimates. More precisely, the vector of estimates �E forms
a sufficient statistics for �� if p( �X | ��) = f ( �E, ��) · g( �X),
where f and g are two functions [8]. Indeed, we obtain after
Bayesian inversion: p( ��| �X) ∝ π( ��) · p( �X | ��) ∝ π( ��) ·
f ( �E, ��) · g( �X). In the experimenter world, �X is formed by
actual measurements, with known values. Hence, g( �X) appears
as a constant. On the other hand, p( ��| �X) is a function of the
random variable ��, whose integral is unity. Because of this
normalization, the multiplication by the constant g( �X) does
not change the value of the function that is entirely determined
by f ( �E, ��) and the prior. However, it does not mean that
only the PDF of the estimates makes sense. We prove in this
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article that the best way is to use these estimates to compute
the Gaussian PDF of the data themselves that remain Gaussian
after applying the K.L. transform.

Because we only use the estimates, the correlation between
successive data does not lead to more complexity. Indeed, let
N be the number of degrees of freedom corresponding to a
set of M measurements, with N < M . The estimation of N
has been reported in [9]. We have to simply write (12) for N
independent measurements by using estimates computed on
M correlated measurements, giving

p( �W | ��) =
3


l=1

1

V N/2
l

exp

�
− N

�M
k=1 w2

l,k

2MVl

�
. (14)

C. KLTS Algorithm

To compute p( ��| �W ), we apply the same approach as in [5].
To consider all the a priori values of ��, we use a Monte
Carlo scheme with random sampling. This sampling ensures
the observance of the total ignorance a priori law: the samples
are chosen at random on a logarithmic scale, independently of
each variance. We work in the experimenter point of view:
we assume that two triplets of estimates, final and elementary,
have been calculated from the 3M elementary measurements.
These six numbers have six definite values that will be used
in the calculations detailed below. The different steps of the
calculation are performed in the same order as in [5] (the
common steps of the two methods are recalled here, for
the sake of completeness).

1) Choose at random a triplet of true variances, with a
uniform probability on a logarithmic scale for each
variance and independence between the three variances.

2) Calculate for this triplet the covariance matrix of the
measurements given by (1) and (3).

3) Calculate the eigenvectors and eigenvalues of this
covariance matrix.

4) Use these values to calculate the PDF given in (14),
using (13).

5) For an exhaustive exploration of the PDF, repeat 107

times the entire process.
6) For each of the three variables, normalize the probability

densities by dividing by their sum (sum of 107 values).
7) Also for each of the three variables, sort the true variance

values and calculate the CDF by a partial sum of the
associated normalized probability densities.

8) Determine a confidence interval at 95% on each true
variance from the corresponding CDFs.

9) Verify that the low limit of the confidence interval is
meaningful. For a Gaussian distribution, 99.7% of data
are included in a confidence interval at ±3σ . If the low
limit of this ±3σ confidence interval (in logarithmic
scale) is smaller than the low limit of the a priori range
(here 10−5 ), we suspect (and have verified) that the
low limit of the ±2σ confidence interval calculated in
the preceding step will depend on the low limit of the
a priori range. If it occurs, we replace the low limit of
the confidence interval by 0.

Finally, we calculate the median value, i.e., the argument
giving the CDF equal to 0.5. This value, always positive, may
be an alternative estimate of the parameters.

IV. VALIDATION OF THE KLTS METHOD BY MONTE

CARLO SIMULATIONS

A. Principle of the Simulation

In order to validate the KLTS method, we have compared
its results with Monte Carlo simulations.

The algorithm is as follows.
1) Select a target set of three final estimates (σ̂ 2

A, σ̂ 2
B , σ̂ 2

C ) =
(A0, B0, C0). We call it “reference estimate set.”

2) Draw at random a parameter triplets (σ 2
A, σ 2

B , σ 2
C ).

3) Randomly draw 3N measurements {zABk, zBCk, zC Ak}
according to (σ 2

A, σ 2
B , σ 2

C ).
4) Compute the final estimates (�GCovA, �GCovB, �GCovC )

from these measurements.
5) If this final estimate set is close to the reference estimate

set within 10%,1 the corresponding parameter triplet
(σ 2

A, σ 2
B , σ 2

C ) is kept; otherwise, it is thrown.
6) Go to Step 2).

Each simulation run stops when 10 000 achievements have
been obtained to provide a meaningful knowledge of the
parameter statistical distributions.

This ensemble of 10 000 parameter triplets giving
(σ̂ 2

A, σ̂ 2
B , σ̂ 2

C ) = (A0, B0, C0) is then compared with the
confidence interval obtained by the KLTS method.

Thanks to the sufficient statistic properties of the estimates,
it turns out that any 3N measurement set providing the
reference estimate set leads to the same statistical distribution
of the parameter triplet.

B. Results and Discussion
We will focus this study only on the efficiency of the

method, i.e., its ability to fit the true confidence intervals, and
not on the behavior of the confidence intervals versus different
parameters. More details on this latter subject may be found
in [5].

This validation way checks the accuracy of the KLTS
method with respect to several physical variables.

1) Influence of the EDF: In order to compare the confidence
interval given by several other methods, we chose to set
the final estimate values to σ̂ 2

A = σ̂ 2
B = σ̂ 2

C = 1 and to
vary the number of EDF. The results given by the different
methods, a simple Gaussian approximation [4], the Ekstrom–
Koppang (EK) method [3], and the KLTG method [5], are
shown in Fig. 2(a). All these confidence intervals fit pretty
well the empirical error bars obtained by 10 000 Monte Carlo
simulations above 200 EDF. Between 50 and 200 EDF, EK and
KLTG remain usable, but only KLTG fits quite well between
5 and 50 EDF. Finally, below 5 EDF, none of these methods
is satisfactory.

1This 10% interval was selected by a compromise ensuring that the final
estimate set is sufficiently close on a log scale to the reference estimate set,
while the calculation time is reasonable (the computation time increases as
the cube of the inverse of the interval width).
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Fig. 2. Estimation of the 95% confidence interval for a set of clocks
with equal final estimates (σ̂ 2

A = σ̂ 2
B = σ̂ 2

C = 1) versus the EDF number.
(a) Results obtained from the previous methods and (b) results of the KLTS
method (green area) compared with the KLTG (red area). The reference is
given by the blue error bars that were obtained by massive Monte Carlo
simulations (see algorithm Section IV-A).

The new KLTS method is compared with KLTG in Fig. 2(b).
The KLTG confidence intervals fit pretty well the empirical
error bars even for 2 EDF. The same is true for the median
estimates that correspond perfectly to the empirical median
values at the center of the error bars.

However, this comparison is limited to 2 EDF, because
the set σ̂ 2

A = σ̂ 2
B = σ̂ 2

C = 1 is impossible for 1 EDF
without measurement noise. It was demonstrated that, if the
measurement noise is negligible and this is always the case
when there is only 1 EDF, the third final estimate is totally
determined by the other two ones [5]. For this reason, we set
σ̂ 2

B = σ̂ 2
C = 1, which leads to σ̂ 2

A = −0.5. Table I compares
the confidence interval obtained by KLTG and KLTS with the
empirical bounds given by 10 000 Monte Carlo simulations.

Unlike the results of KLTG, the KLTS bounds, as well as
the median estimate, show good agreement with the empirical
bounds and median. However, because of the very low level
of the 2.5% bounds, they should be considered as equal to
0. In these conditions, KLTS gives fully reliable 95% upper
limits (95.7% for σ 2

A , 95.6% for σ 2
B and σ 2

C ).

TABLE I

COMPARISON FOR 1 EDF OF THE CONFIDENCE INTERVALS AS WELL AS
THE MEDIAN ESTIMATES (50%) OBTAINED BY THE MONTE CARLO

SIMULATIONS (EMPIRICAL), BY THE KLTG METHOD OF [5], AND

BY THE NEW KLTS METHOD. THE (A0, B0, C0) ESTIMATE

TRIPLET IS (−0.5, 1, 1)

Fig. 3. Estimation of the 95% confidence intervals for two clocks with equal
final estimates (σ̂ 2

B = σ̂ 2
C = 1) versus the final estimate of the other clock

(−0.5 ≤ σ̂ 2
A ≤ 100). The number of EDF is 2. (a) Results obtained from

positive final estimates on a log–log plot. (b) Results obtained from negative
final estimates using a linear scale. The error bars, red for σ2

A and green for
σ 2

B and σ 2
C , were obtained by massive Monte Carlo simulations.

2) Influence of the Disparity of the Three Final Estimates:
Fig. 3 shows for 2 EDF the evolution of the confidence interval
of all parameters versus the final estimates σ̂ 2

A , which vary
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Fig. 4. Estimation of the 95% confidence intervals for a set of clocks with
equal noise measurements (σ̂ 2

A = σ̂ 2
B = σ̂ 2

C = 1) versus the measurement
noise level (0.01 ≤ σ̂ 2

N ≤ 50). The number of EDF is 100. The results
obtained by the KLTS method (green area) may be compared with the ones
obtained by KLTG (red area). The blue error bars were obtained by massive
Monte Carlo simulations.

from 0.01 to 100, whereas the two other ones are set to σ̂ 2
B =

σ̂ 2
C = 1. On the log–log plot as well as on the linear plot,

the agreement between the error bars and the KLTS confidence
intervals is excellent.

3) Influence of the Measurement Noise: The main advantage
of GCov over the three-cornered hat relies on its rejection
of the measurement noise. Since the measurement noise is
directly addressed by KLTS, e.g., to solve (13), it is of
importance to study its influence on the confidence intervals.
This influence is shown in Fig. 4, where the final estimates
are set to (σ̂ 2

A = σ̂ 2
B = σ̂ 2

C = 1), the number of EDF is
100, and the variance of the measurement noise σ 2

N varies
from 0.01 to 50. Despite slight discrepancies between the
confidence intervals and the error bars obtained from the
Monte Carlo simulations, the agreement is quite good. The
main differences appear for 1 < σ 2

N < 10 when the 2.5%
bound decreases drastically. This effect is also visible for the
median estimate that seems to decrease at a different rate for
the theoretical and empirical median estimates. A very small
discrepancy is also visible for the upper bound at σ 2

N = 7,
10, and 20. These discrepancies can be explained as follows:
in the PDF computation of KLTS, the product (14) of the
elementary probabilities of each data becomes extremely small
when the number of data becomes large, and the result of
(14) can be wrongly truncated to 0 even in double precision.
As a consequence, the use of KLTS must be restricted for
cases where the number of EDFs does not exceed 100. For
100 EDF as shown in Fig. 4, the truncation errors already
explain some discrepancies for a high level of measurement
noise, which do not, however, affect much the upper bound
of the confidence interval, undoubtedly the most important
result.

4) Discussion: KLTS Versus KLTG: KLTS is undoubtedly a
rigorous approach that does not rely on approximations or sim-
plifying assumptions. As a consequence, it provides very

relevant confidence intervals even for very low EDF, including
the limit case of 1 EDF (see Table I), as proved by the
almost perfect agreement between the confidence intervals
given by KLTS and obtained by the Monte Carlo simulations
in Figs. 2–4. The only slight differences can be attributed to
the way of computing the PDF by numerical integration.

However, we have seen that truncation errors can occur with
KLTS when the number of data becomes large: the use of
KLTS must be restricted for cases where the number of EDFs
does not exceed 100.

On the other hand, KLTG relies on a Gaussian approxima-
tion of the estimates [5], which can be assumed only for high
EDF. Unlike KLTS, KLTG must be restricted for high EDFs.
Fig. 4 shows that KLTG and KLTS provide almost the same
results for 100 EDFs and these results are in perfect agreement
with the Monte Carlo simulations. KLTG is then a very good
substitute to KLTS above 100 EDFs.

C. Application to a Set of Real Clocks

These methods were applied to assess the confidence inter-
vals for the GCov measurements of a set of three CSOs
designed and made in FEMTO-ST. These measurements were
carried out by the Tracking Direct Digital Synthesizer (DDS)
designed and made in INRiM (for more details, see [10]).
It may be noticed that, since the clocks are in the same
room, we cannot fully assume their total independence.
Fig. 5 shows the same measurements as the ones shown
in [10, Fig. 11 (bottom)], but we have added the 95% con-
fidence intervals obtained by using KLTS (below 100 EDF,
i.e., τ > 5000 s) and KLTG (above 100 EDF, i.e., τ < 5000 s).

As expected, the confidence intervals are pretty tight around
the estimates for low τ values, whereas they extend downward
for high τ values. The lower bounds tend toward 0 above
τ = 2000 s for CSO A, above τ = 20 000 s for CSO C, and
above τ = 100 000 s for CSO B. In these cases, only an upper
limit of the stability of the clock may be assessed. As expected,
the less stable clocks have the smallest confidence intervals
and we can see these intervals increasing or decreasing regard-
ing the relative positions of the other CSOs. For instance, A is
the most stable clock between 500 and 30 000 s but becomes
the less stable clock around 105 s; as a consequence, the lower
bound of its confidence interval increases from ∼0 at 104 s to
∼2 · 10−16 at 105 s.

The median estimates remain generally close to the GCov
estimates. However, when the lower bound of a clock tends
toward 0, the median estimate decreases significantly and
becomes far lower than the GCov estimate when this lat-
ter exists, i.e., when it is positive. Nevertheless, there is
still a positive median estimate even when the GCov esti-
mate is negative (e.g., C above τ = 30 000 s). In such
a case, the upper limit of the confidence interval is the
relevant information, while the estimate is of little value.
It may be noticed that the relevance of the median estimates
could be improved by using a more stringent prior π( ��)
in (10), i.e., a prior based on a perfectly objective a priori
knowledge of the range in which the parameters can vary.
To stay in the most general case, we have preferred to
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Fig. 5. GCov measurements of a set of three CSOs of FEMTO-ST. The
confidence intervals are represented by colored areas: bright colors for 68%
c.i. (1σ ) and pale colors for 95% c.i. (2σ ). Brown line: measurement noise
obtained from the closure. The linear-frequency drifts of the CSO have been
removed.

stick to a “total ignorance” prior (see Section III-C) in this
article.

We have also added the Allan Deviation (ADEV), i.e.,
the square root of the Allan Variance, of the measurement
noise in Fig. 5. It is prevailing below 10 s and we can
see that the confidence intervals of the most stable clock
in this range, B and C, have a larger confidence interval
(e.g., C at 1 s) than for τ = 100 s for instance. At 1 s,
the measurement noise is approximately five times higher
than the stability of C, and despite its huge EDF number
(EDF = 370 000 at 1 s), the effect of the measurement noise
affects clearly its confidence interval as in Fig. 4. In other
words, the measurement noise is too high to be fully rejected
by GCov.

V. CONCLUSION

The method we propose, KLTS, provides the CDFs of
the clock noise variances and the corresponding confidence
intervals. Unlike the direct GCov estimates, the medians of
these intervals cannot be negative.

KLTS is a rigorous method since it involves neither approx-
imations nor simplifying assumptions. It is based on the
property of sufficient statistics that form the estimates.

KLTS is valid even for a very low EDF of 1. Massive
Monte Carlo simulations have perfectly validated KLTS in
different contexts: confidence interval versus the EDF, versus
the stability disparity of the clocks, and versus the level of the
measurement noise.

However, KLTS suffers from the drawback of not being
easily computable for high EDF (> 100). However, it has
been proven in this article that the KLTG method, presented
in a previous article [5], is perfectly reliable above 100 EDF
even if the measurement noise is strong. The combination of
these two methods provides then a powerful tool to assess the
confidence intervals for the clock noise variances, whatever the
EDF and the measurement noise level (see [11] for a software
solution).

APPENDIX

GLOSSARY OF SYMBOLS

A. Measurements
ȳABk kth frequency deviation sample between clock A

and clock B .
ȳ1k kth frequency deviation sample at the output of

counter 1.
ȳN1k kth frequency deviation sample of the intrinsic mea-

surement noise of counter 1.
zABk Difference between the two consecutive clock fre-

quency deviation samples ȳABk+1 and ȳABk divided
by

√
2.

z1k Difference between the two consecutive counter
frequency deviation samples ȳ1k+1 and ȳ1k divided
by

√
2.

zN1k Difference between the two consecutive noise fre-
quency deviation samples ȳN1k+1 and ȳN1k divided
by

√
2.

zcls,k Sum of the kth z measurements of all counters
(closure relationship).

B. Parameters and Estimates

The list below gives the parameters, i.e., the mathematical
expectation we want to assess. The same symbols with a hat ·̂
stand for the estimates of these parameters, i.e., the values
computed from a finite number of measurements.

σ 2
AB AVAR of the comparison between clock A and

clock B .
σ 2

1 AVAR of the output of counter 1 (elementary
estimate).

σ 2
N1 AVAR of the intrinsic measurement noise of

counter 1. Since the noise level is assumed to be
the same for all counters, the subscript 1, 2 or 3
may be omitted.

σ 2
cls AVAR of the closure.

σ 2
A AVAR of clock A (σ 2

A is called model parameter
whereas σ̂ 2

A is called final estimate).
TCHA Three-cornered hat computation of AVAR for

clock A.
GCovA Groslambert covariance computation of AVAR

for clock A.

C. Bayesian Formalism

p
� �X | ��

�
Conditional PDF of the multidimensional
measurement �X knowing the multidimen-
sional parameter �� (model world).

p
� ��| �X

�
Conditional PDF of the multidimensional
parameter �� knowing the multidimensional
measurement �X (experimenter world).

π
� ��

�
A priori PDF of the multidimensional para-
meter �� before any measurement (prior).

D. KLTS Method⎛
⎝α1 β1 γ1

α2 β2 γ2
α3 β3 γ3

⎞
⎠ Eigenvectors of the rotation matrix which

diagonalizes the covariance matrix of the
measurements (K.L. transform).
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�� = (V1, V2, V3)
T KLT variances, i.e., eigenvalues

of the covariance matrix of the
measurements.

�W = (w1k, w2k, w3k)
T Image of the measurements

(z1k, z2k, z3k)
T by the KLT.

M Number of measurements.
N Number of Equivalent degrees of

freedom.
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