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The Parabolic Variance (PVAR): A Wavelet Variance
Based on the Least-Square Fit

François Vernotte, Michel Lenczner, Pierre-Yves Bourgeois, and Enrico Rubiola

Abstract—This paper introduces the parabolic variance
(PVAR), a wavelet variance similar to the Allan variance (AVAR),
based on the linear regression (LR) of phase data. The companion
article arXiv:1506.05009 [physics.ins-det] details the Ω frequency
counter, which implements the LR estimate. The PVAR combines
the advantages of AVAR and modified AVAR (MVAR). PVAR is
good for long-term analysis because the wavelet spans over 2τ ,
the same as the AVAR wavelet, and good for short-term analysis
because the response to white and flicker PM is 1/τ3 and 1/τ2,
the same as the MVAR. After setting the theoretical framework,
we study the degrees of freedom and the confidence interval for
the most common noise types. Then, we focus on the detection of
a weak noise process at the transition—or corner—where a faster
process rolls off. This new perspective raises the question of which
variance detects the weak process with the shortest data record.
Our simulations show that PVAR is a fortunate tradeoff. PVAR is
superior to MVAR in all cases, exhibits the best ability to divide
between fast noise phenomena (up to flicker FM), and is almost as
good as AVAR for the detection of random walk and drift.

Index Terms—Allan variance, atomic frequency standard,
flicker, frequency noise, frequency stability, measurement uncer-
tainty, oscillator, phase noise.

I. INTRODUCTION

T HE ALLAN variance (AVAR) was the first of the wavelet-
like variances used for the characterization of oscillators

and frequency standards [1]. After 50 years of research, AVAR
is still unsurpassed at rendering the largest τ for a given time
series of experimental data. This feature is highly desired for
monitoring the frequency standards used for timekeeping.

Unfortunately, AVAR is not a good choice in the region of
fast noise processes. In fact, the AVAR response to white and
flicker PM noise is nearly the same, 1/τ2. For short-term anal-
ysis, other wavelet variances are preferred, chiefly the modified
AVAR (MVAR) [2]–[4]. The MVAR response is 1/τ3 and 1/τ2

for white and flicker PM, respectively. However, MVAR is
poor for slow phenomena because the wavelet spans over 3τ
instead of 2τ . Thus, for a data record of duration T , the absolute
maximum τ is T/3 instead of T/2.
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Speaking of “wavelet-like” variances, we review the funda-
mentals. A wavelet ψ(t) is a shock with energy equal to one and
average equal to zero, whose energy is well confined in a time
interval (see, e.g., [5, p. 2]) called “support” in proper math-
ematical terms. In formula,

∫
R ψ

2(t) dt = 1,
∫
R ψ(t) dt = 0,

and
∫ a/2
−a/2 ψ

2(t) dt = 1− ϵ, with small ϵ > 0. It makes sense

to renormalize the wavelet as 1
a

∫
R ψ

2(t) dt = 1, so that it is
suitable to power-type signals (finite power) instead of energy-
type signals (energy finite). By obvious analogy, we use the
terms “power-type wavelet” and “energy-type wavelet.” These
two normalizations often go together in spectral analysis and
telecom (see the classical books [6] and [7]). For historical rea-
sons, in clock analysis, we add a trivial coefficient that sets
the response to a linear drift Dy to 1

2Dy
2, the same for all the

variances.
High resolution in the presence of white and flicker phase

noise is mandatory for the measurement of short-term fluctu-
ations (µs to s), and useful for medium-term fluctuations (up
to days). This is the case of optics and the generation of pure
microwaves from optics. The same features are of paramount
importance for radars, VLBI, geodesy, space communications,
etc. As a fringe benefit, extending the time-domain measure-
ments to lower τ is useful to check on the consistency between
variances and phase noise spectra. MVAR is suitable to the
analysis of fast fluctuations, at a moderate cost in terms of
computing power. Frequency counters specialized for MVAR
are available as a niche product, chiefly intended for research
labs [8].

A sampling rate of 1/τ is sufficient for the measurement
of AVAR, while a rate of 1/τ0 = m/τ is needed for MVAR,
where the rejection of white phase noise is proportional to
m. MVAR is based on the simple averaging of m fully over-
lapped (spaced by the sampling step τ0) frequency data, before
evaluating σ2(τ).

The linear regression (LR) provides the lowest-energy (or
lowest-power) fit of a data set, which is considered in most
cases as the optimal approximation, at least for white noise.
For our purposes, the least-square fit finds an obvious applica-
tion in the estimation of frequency from a time series of phase
data, and opens the way to improvements in fluctuation anal-
ysis. Besides, new digital hardware—like field-programmable
gate arrays (FPGAs) and systems on chip (SoCs)—provides
bandwidth and computing power at an acceptable complexity,
and makes possible least-square fitting in real time.

We apply least-square estimation of frequency to fast time
stamping. The simplest estimator in this family is the LR on
phase data. The LR can be interpreted as a weight function
applied to the measured frequency fluctuations. The shape of
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such weight function is parabolic. The corresponding instru-
ment is called “Ω counter,” described in the companion article
[9]. The name Ω comes from the graphical analogy of the
parabola with the Greek letter, in the continuity of the Π and Λ
counters [10], [11]. The Ω estimator is similar to the Λ estima-
tor, but exhibits higher rejection of the instrument noise, chiefly
of white phase noise. This is important in the measurement of
fast phenomena, where the cutoff frequency fH is necessar-
ily high, and the white phase noise is integrated over the wide
analog bandwidth that follows.

In the same way as the Π and Λ estimators yield the AVAR
and the MVAR, respectively, we define a variance based on the
Ω estimator. Like in the AVAR and MVAR, the weight func-
tions are similar to wavelets, but for the trivial difference that
they are normalized for power-type signals. A similar use of the
LR was proposed independently by Benkler et al. [12] at the
IFCS, where we gave our first presentation on the Ω counter
and on our standpoint about the PVAR. In a private discus-
sion, we agreed on the name parabolic variance (PVAR) for this
variance, superseding earlier terms [13].

We stress that the wavelet variances are mathematical tools
to describe the frequency stability of an oscillator (or the fluc-
tuation of any physical quantity). Albeit they have similar
properties, none of them should be taken as “the stability” of an
oscillator. For the same reason, MVAR and PVAR should not
be mistaken as “estimators” of the AVAR. To this extent, the
only privilege of AVAR is the emphasis it is given in standard
documents [14].

After setting the theoretical framework of the PVAR, we
provide the response to noise described by the usual polyno-
mial spectrum. Then, we calculate the degrees of freedom and
confidence intervals, checking on the analytical results against
extensive simulations. Finally, we compare the performance of
AVAR, MVAR, and PVAR for the detection of noise types,
using the value of τ where σ2(τ) changes law as an indica-
tor. In most practical cases, PVAR turns out to be the fastest, to
the extent that it enables such detection with the shortest data
record.

II. STATEMENT OF THE PROBLEM

The clock signal is usually written as

v(t) = V0 sin[2πν0t+ ϕ(t)]

where V0 is the amplitude, ν0 is the nominal frequency, and
ϕ(t) is the random phase fluctuation. Notice that ϕ(t) is
allowed to exceed ±π. Alternatively, randomness is ascribed
to the frequency fluctuation (∆ν)(t) = 2πϕ̇(t).

We introduce the normalized quantities

x(t) = t+ x(t)

y(t) = 1 + y(t)

where x(t) = ϕ(t)/2πν0 and y(t) = ẋ(t). The quantity x(t) is
the clock readout, which is equal to the time t plus the random
fluctuation x(t). Accordingly, the clock signal reads

v(t) = V0 sin[2πν0x(t)]

= V0 sin[2πν0t+ 2πν0x(t)].

Fig. 1. Principle of two-sample LR measurement and notation.

For the layman, x is the time displayed by a watch, t is the
“exact” time from a radio broadcast, and x the watch error.
The error x is positive (negative) when the watch leads (lags).
Similarly, y is the normalized frequency of the watch’s inter-
nal quartz, and y its fractional error. For example, if y =
+10ppm (constant), the watch leads uniformly by 1.15 s/day.
For the scientist, x(t) is the random time fluctuation, often
referred to as “phase time” (fluctuation), and y(t) is the ran-
dom fractional-frequency fluctuation. The quantities x(t) and
y(t) match exactly x(t) and y(t) used in the general literature
of time and frequency, respectively [14]–[16].

The main point of this paper is explained in Fig. 1. We use
the LR of phase data to get a sequence {ŷ} of data averaged on
contiguous time intervals of duration τ , and in turn the sequence
{ŷ} of fractional-frequency fluctuation data. Two contiguous
elements of {ŷ} and {ŷ} are shown in Fig. 1, from which we
get one value of 1

2 (y2 − y1)
2 for the estimation of the variance.

Most of the concepts below are expressed in both the contin-
uous and the discrete settings with common notations without
risk of confusion. For example, the same expression x = t+ x
maps into xk = tk + xk in the discrete case, and into x(t) =
t+ x(t) in the continuous case. The notations ⟨ . ⟩, (·, ·), and
|| . || represent the average, the scalar product, and the norm.
They are defined as ⟨x⟩ = 1

n

∑
k xk, (x,y) = 1

n

∑
k xkyk,

||x|| = (x,x)1/2 where n is the number of terms of the
sum in the discrete case, and as ⟨x⟩ = 1

T

∫
x(t) dt, (x,y) =

1
T

∫
x(t)y(t) dt, ||x|| = (x,x)1/2 where T is the length of

the interval of integration in the continuous case. The span of
the sum and the integral will be made precise in each case of
application. The mathematical expectation and the variance of
random variables are denoted by E{ · } and V{ · }.

The LR problem consists in searching the optimum value ŷ
of the slope η (dummy variable) that minimizes the norm of the
error x− x0 − ηt, i.e., ŷ = argminη ||x− x0 − ηt||2. Since
we are not interested in x0, which only reflects choice of the
origin of x, the solution is the random variable

ŷ =
(x− ⟨x⟩ , t− ⟨t⟩)

||t− ⟨t⟩ ||2 .

We recall some useful properties of ŷ as an estimator of the
slope of x. For the sake of simplicity, with no loss of generality,
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we refer to a time sequence which is centered at zero, i.e.,
⟨t⟩ = 0.

1) The estimator ŷ can be simplified as

ŷ =
(x, t)

||t||2 .

2) If the component xk (or the values x(t)) is independent,
the estimator variance is

V{ŷ} =
σ2

x

||t||2 .

The assumption of independent continuous random pro-
cess is rather usual in theoretical works. However, this is
done to simplify some proofs, the results can be used in
their discrete form.

3) Sampling uniformly at the interval τ0, the discrete time is
tk = (k + 1

2 )τ0 for k ∈ {−p, . . . , p}, m = 2p, and τ =
mτ0. For large m, we get

ŷ ≈ 1 +
12 (x, t)
mτ2

and V{ŷ} ≈ 12σ2
x

mτ2
.

4) With a signal that is continuous over a symmetric time
interval (− τ

2 ,
τ
2 ), we get

ŷ = 1 +
12 (x, t)
τ3

. (1)

The continuous form of the estimator ŷ can be expressed as a
weighted average of x or y. For this purpose, it is useful to take
ŷ as a time-dependent function defined over t ∈ (0, τ)

ŷ(t) =
12

τ3

∫ τ/2

−τ/2
s x(t− τ/2 + s) ds

=
12

τ3

∫ 0

−τ
(s+ τ/2) x(t+ s) ds

=
12

τ3

∫ τ

0
(τ/2− s) x(t− s) ds. (2)

III. TIME-DOMAIN REPRESENTATION

A. Generic Wavelet Variance

Let us denote with T the duration of the data run, with τ0
the sampling interval, with N the number of samples, and with
n the ratio T/τ . Thus, T = Nτ0 and N = mn. We consider
the series {ŷi}i=1,...,n of frequency deviation estimates. In this
section, we denote with σ2(τ) a generic wavelet variance, either
AVAR, MVAR, PVAR, etc.

In the case of uncorrelated frequency fluctuations (white
FM), an unbiased estimator of the variance V {ŷ} is

S2
n−1 =

1

n− 1

n∑

i=1

⎛

⎝ŷi −
1

n

n∑

j=1

ŷj

⎞

⎠
2

so

V {ŷ} = E
{
S2
n−1

}
.

After Allan [1], we replace the estimator S2
n−1 with a two-

sample variance by setting n = 2. Then, the variance V {ŷ} =
E
{
S2
1

}
is

σ2(τ) =
1

2
E
{
(ŷ1 − ŷ2)

2
}

(3)

and its estimator averaged over the n− 1 terms

σ̂2(τ) =
1

2

〈(
ŷi − ŷi+1

)2〉
. (4)

Notice that two-sample variance is generally written as σ2
y (τ),

and that we drop the subscript y.
Following the Lesage–Audoin approach [17], we define the

point variance estimates

αi =
1√
2

(
ŷi − ŷi+1

)
(5)

and the estimated variance

σ̂2(τ) =
1

M

M∑

i=1

α2
i . (6)

The relationship between the αi and the N individual x(kτ0)
measures depends on the type of counter (Π, Λ, Ω).

B. Continuous-Time Formulation of PVAR

In the case of continuous time, the difference between con-
tiguous measures is

ŷ(t+ τ)− ŷ(t) =
12

τ3

[∫ τ

0

(τ
2
− s

)
x(t+ τ − s) ds

−
∫ τ

0

(τ
2
− s

)
x(t− s) ds

]

=
12

τ3

∫ τ

−τ

(
|s|− τ

2

)
x(t− s) ds

=
12

τ3

∫ τ

−τ

(
|t− s|− τ

2

)
x(s) ds.

Accordingly, the two-sample variance (3) is written as

σ2
P (τ) =

1

2
E
{
(ŷ(t+ τ)− ŷ(t))2

}

and notice the subscript P for PVAR. Such variance is indepen-
dent of t, and it can be expressed as the running average

σ2
P (τ) = E

{(∫ +τ

−τ
x(s)wx(s− t) ds

)2
}

(7)

where

wx(t) =
6
√
2

τ3

(
|t|− τ

2

)
χ(−τ,τ)(t)

is the even weight function, and

χ(−τ,τ)(t) =

{
1, t ∈ (−τ, τ)
0, elsewhere

is the indicator function (or characteristic function).
From (7), we see that PVAR can also be written as a

convolution product
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σ2
P (τ) = E

{(∫ +∞

−∞
x(s) hx(t− s) ds

)2
}

= E
{
(x(t) ∗ hx(t))

2
}

where h(t) is the convolution kernel which applies to x(t). The
kernel h(t) is related to the weight function w(t) by the gen-
eral property that h(t) = w(−t). However, since wx(t) is even
function, it holds that hx(t) = wx(t).

Similarly, the estimator (4) is written as

σ2
P (τ) = E

{
1

T

∫ T

0
[y(t) ∗ hy(t)]

2 dt

}
(8)

where

hy(t) =
3
√
2 t

τ3
(|t|− τ)χ(−τ,τ)(t) (9)

is the convolution kernel which applies to y(t).
Thanks to the fact that y(t) = ẋ(t), σ2

P (τ) can also be
expressed as the running average

σ2
P (τ) = E

{(∫

R
y(s)wy(s− t) ds

)2
}

where

wy(t) = −3
√
2 t

τ3
(|t|− τ) χ(−τ,τ)(t)

is the weight function. Since wy(t) is odd function, it holds that
hy(t) = −wy(t). Moreover, the parabolic shape of the PVAR
wavelet comes from the t · |t| factor in wy(t) and hy(t).

For the purpose of operation with the Fourier transform, it
is convenient to restate these expression in terms of filter or
convolution

σ2
P (τ) = E{(y ∗ hy)

2} = E{(x ∗ hx)
2}. (10)

The weight functions wx(t) and wy(t), and also the kernels
hx(t) and hy(t), match the definition of power-type wavelet
given in Section I. As a consequence of the property y(t) =
ẋ(t), it holds that hx(t) = ḣy(t). Fig. 2 shows the convolution
kernels associated to PVAR.

It is worth pointing out that our formulation is in general, as
it applies to AVAR, MVAR, PVAR, and other similar variances
as well. Of course, the wavelet depends on the counter (Fig. 3).

C. Practical Evaluation of PVAR

Denoting the discrete time with xi = x(iτ0), the estimate of
the two-sample variance is [17]

αi =
1√
2 τ

(−xi + 2xi+m − xi+2m) (11)

for AVAR, with M = N − 2m, and

αi =
1√
2mτ

m−1∑

k=0

(−xi+k + 2xi+m+k − xi+2m+k) (12)

Fig. 2. Convolution kernels of PVAR from phase data (above) or frequency
deviations (below) for τ = 8τ0.

Fig. 3. Wavelets associated to AVAR, MVAR, and PVAR.

for MVAR, with M = N − 3m+ 1.
Now, we calculate αi for PVAR. First, the discrete form of ŷ

can be obtained from (2) by replacing the time integral with
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a sum with a time increment equal to τ0. Accordingly, τ is
replaced with mτ0, s with kτ0, t with iτ0, and x(t) with xi

ŷi =
12

m3τ30

m−1∑

k=0

(
(m− 1)τ0

2
− kτ0

)
xi−kτ0

=
12

m2τ

m−1∑

k=0

(
m− 1

2
− k

)
xi−k.

Similarly,

ŷi+1 =
12

m2τ

m−1∑

k=0

(
m− 1

2
− k

)
xi+m−k

and consequently

ŷi − ŷi+1 =
12

m2τ

m−1∑

k=0

(
m− 1

2
− k

)
(xi−k − xi+m−k) .

Second, we recall that xi is defined for i ≥ 0. Hence, we have
to shift the origin by m− 1, so that also ŷi is defined with i = 0

ŷi − ŷi+1 =
12

m2τ

m−1∑

k=0

(
m− 1

2
− k

)

× (xi+m−1−k − xi+2m−1−k) .

Third, since the coefficient (m− 1)/2− k is symmetrical for
k and m− 1− k, we interchange i+m− 1− k with i+m−
1− (m− 1− k) = i+ k, and i+ 2m− 1− k with i+ 2m−
1− (m− 1− k) = i+m+ k

ŷi − ŷi+1 =
12

m2τ

m−1∑

k=0

(
m− 1

2
− k

)
(xi+k − xi+m+k) .

Finally, it comes

αi =
6
√
2

m2τ

m−1∑

k=0

(
m− 1

2
− k

)
(xi+k − xi+m+k)

for m ≥ 2 (13)

M = N − 2m+ 2.

For consistency with AVAR and MVAR, we require σ2
P (τ0) =

σ2
A(τ0) = σ2

M (τ0), i.e., all variances are equal at sampling time
τ0. Since (13) gives αi = 0 for m = 1, we redefine

αi =
1√
2τ0

(−xi + 2xi+1 − xi+2) , for m = 1 (14)

M = N − 2.

Having N samples {xi} taken at the interval τ , the estimate
σ̂2
P (τ) can be computed using (6) and (13) as

σ̂2
P (τ) =

72

Mm4τ2

M−1∑

i=0

[
m−1∑

k=0

(
m−1

2
− k

)
(xi+k − xi+m+k)

]2
.

(15)

Fig. 4. PVAR transfer function, compared to AVAR and MVAR, for integration
time is τ = 1 s and sampling interval τ0 = τ/4 = 250 ms.

D. Time-Domain Response

From (15), it comes

σ2
P (τ) = E

{
σ̂2
P (τ)

}

=
72

m4τ2
E
{

1

M

M−1∑

i=0

[
m−1∑

k=0

(
m− 1

2
− k

)
(xi+k − xi+m+k)

]

×
[
m−1∑

l=0

(
m− 1

2
− l

)
(xi+l − xi+m+l)

]}

=
72

m4τ2

m−1∑

k=0

m−1∑

l=0

(
m− 1

2
− k

)(
m− 1

2
− l

)

× [Rx((k − l)τ0)−Rx((k −m− l)τ0)

−Rx((m+ k − l)τ0) +Rx((k − l)τ0)] (16)

where Rx(θ) = E {x(t)x(t+ θ)} is the autocorrelation func-
tion of x(t). The autocorrelation function is detailed in
Section V-D, whereas Rx(τ) depends on fL and fH , these
parameters cancel in the derivation of PVAR.

IV. FREQUENCY DOMAIN REPRESENTATION

A. Transfer Function

The transfer function HP (f) of PVAR is the Fourier trans-
form of the kernel hy(t). The square of its modulus is given
by

|HP (f)|2 =
9
[
2 sin2(πτf)− πτf sin(2πτf)

]2

2(πτf)6
. (17)

Fig. 4 shows |HP (f)|2, together with the transfer function of
AVAR and MVAR. All are bandpass functions with approx-
imately one octave bandwidth. However, PVAR exhibits sig-
nificantly smaller sidelobes because the weight function is
smoother. This is well known with the taper (window) functions
used in the digital Fourier transform [18].

This can be proved as follows. The transfer function is
obtained after Fourier transformation, using the property that
hy is odd function
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TABLE I
RESPONSE OF AVAR, MVAR, AND PVAR TO THE COMMON NOISE TYPES AND DRIFT

The lowpass cutoff frequency fH , needed for AVAR, is set to 1/2τ0 (Nyquist frequency).

Hy(f) =

∫

R
hy(t)e

−2iπftdt

=
12i√
2τ3

ℑ
{∫ τ

0
t (t− τ) e−2iπft dt

}
.

The primitive is calculated by parts integration
∫ τ

0
t (t− τ) e−2iπftdt =

1

4π3f3

(
πτf − ie−2iπτf

+πτfe−2iπτf + i
)
.

Then,

HP (f) =
3i√

2π3τ3f3
[1− cos (2πτf)− πτf sin (2πτf)] .

Finally, using 1− cos (2πτf) = 2 sin2 (πτf), we get

HP (f) =
3i√

2π3τ3f3

[
2 sin2 (πτf)− πτf sin (2πτf)

]

and

|HP (f)|2 =
9

2π6τ6f6
[1− cos (2πτf)− πτf sin (2πτf)]2 .

B. Convergence Properties

For small f , it holds that

sin(πτf) ≈ πτf − 1

6
π3τ3f3 +O(f5)

sin(2πτf) ≈ 2πτf − 4

3
π3τ3f3 +O(f5)

so

2 sin2 (πτf)− πτf sin (2πτf) ≈ 2

(
πτf − 1

6
π3τ3f3

)2

− πτf

(
2πτf − 4

3
π3τ3f3

)
+ f5O(f)

≈ 1

18
π4τ4f4

(
π2τ2f2 + 12

)
+ f5O(f)

then, at low frequency,

HP (f) ≈
√
2iπτf.

We conclude that

|HP (f)|2 ≈ 2π2τ2f2 at low frequency

thus PVAR converges for 1/f2 FM noise. Similarly,

|HP (f)|2 ∝ (πτf)−4 at high frequency

therefore, PVAR converges for f2 FM noise.

C. Calculation of PVAR From Spectral Data

Given the power spectral density (PSD) Sx(f), PVAR evalu-
ated as

σ2
P (τ) =

∫ ∞

0
|HP (f)|2 Sy(f) df. (18)

Replacing Sy(f) with the components of the polynomial law,
from h−2f−2 (random walk FM) to h2f2 (white PM), we get
the response shown in Table I, together with AVAR and MVAR.
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Fig. 5. Response of PVAR to the polynomial-law noise types and linear drift.

Fig. 5 shows the response of PVAR to the polynomial-law noise
types as a function of the integration time τ .

For comparison, σ2
P (τ) can also be calculated in the time

domain using (16), and also with Monte Carlo simulations
(see Section V-E). Time domain, frequency domain, and Monte
Carlo simulations give fully consistent results.

V. DEGREES OF FREEDOM AND CONFIDENCE INTERVAL

A. Equivalent Degrees of Freedom (EDF)

We consider the estimates of a generic variance σ2(τ),
assumed kχ2

ν-distributed, k ∈ R+. The EDF ν depend on the
integration time τ , and of course on the noise type. The mean
and variance (the variance of the variance) are

E
{
σ̂2(τ)

}
= kE

{
χ2
ν

}
= kν

V
{
σ̂2(τ)

}
= k2V

{
χ2
ν

}
= 2k2ν.

Accordingly, the degrees of freedom ν are given by

ν =
2E

{
σ̂2(τ)

}2

V {σ̂2(τ)} . (19)

Thus, the knowledge of ν enables to define a confidence interval
around E

{
σ̂2(τ)

}
with given confidence p. For applying this

result to PVAR, we have then to calculate the variance of PVAR.

B. Variance of PVAR

The variance of the estimate σ̂2(τ) is given by

V
{
σ̂2(τ)

}
= E

{[
σ̂2(τ)− E

{
σ̂2(τ)

}]2}

= E

⎧
⎨

⎩

[
1

M

M−1∑

i=0

α2
i − E

{
1

M

M−1∑

i=0

α2
i

}]2
⎫
⎬

⎭ .

(20)

Expanding (20) yields

V
{
σ̂2(τ)

}
=

1

M2

M−1∑

i=0

M−1∑

j=0

[
E
{
α2
iα

2
j

}
− E

{
α2
i

}
E
{
α2
j

}]
.

Isserlis’s theorem [19]–[21] states that, for centered and jointly
Gaussian random variables z and w

E
{
z2w2

}
− E

{
z2
}
− E

{
w2

}
= 2 [E {zw}]2 .

Assuming that x is a Gaussian process and that αi, αj are two
centered jointly Gaussian random variables, it comes

V
{
σ̂2(τ)

}
=

2

M2

M−1∑

i=0

M−1∑

j=0

[E {αiαj}]2 . (21)

The derivation of E {αiαj} is given in Section V-C.

C. EDF of PVAR

From (13), we can calculate

E {αiαj}=
72

m4τ2
E
{[

m−1∑

k=0

(
m−1

2
−k

)
(xi+k−xi+m+k)

]

×
[
m−1∑

l=0

(
m−1

2
−l

)
(xj+l−xj+m+l)

]}

which expands as

E {αiαj} =
72

m4τ2

m−1∑

k=0

m−1∑

l=0

(
m− 1

2
− k

)(
m− 1

2
− l

)

{2Rx[(i+ k − j − l)τ0]

−Rx[(i+ k − j −m− l)τ0]

−Rx[(i+m+ k − j − l)τ0]} . (22)

Thanks to (21) and (22), we can calculate the variance of PVAR
from the autocorrelation function Rx(τ). For example, in the
case of white PM noise we find

V
{
σ̂2
P (τ)

}
=

9h2
2

70π4τ6

[
23

m

M
− 12

(m

M

)2
− 175

m

M2

]

(23)
and

ν =
35

23m/M − 12(m/M)2 − 175m/M2
. (24)

D. Numerical Evaluation of the EDF

The EDF can be evaluated by substituting (22) into (21),
and then (21) into (19). In turn, thanks to the Wiener Khinchin
theorem, stationary ergodic processes state that Rx(τ) can be
obtained as the inverse Fourier transform of the PSD. Since the
PSD is real and even [22], [23], we get

Rx(τ) =

∫ +∞

0
Sx(f) cos(2πτf) df. (25)
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TABLE II
AUTOCORRELATION FUNCTION OF THE PHASE-TIME FLUCTUATION

fL and fH are the highpass and lowpass cutoff frequencies which set the process bandwidth. Ci(x) and Si(x)
are the cosine and sine integral functions.

Fig. 6. Numerical computation of the PVAR EDF for the common noise types.
The right-hand plot is a crop of the left one.

Replacing Sx(f) with the polynomial law from white PM
to random walk FM (f−4 PM), we get the results shown in
Table II. The derivation is rather mechanical, and done by
a symbolic algebra application (Wolfram Mathematica). For
numerical evaluation—unless the reader understanding the
computer code in depth—we recommend the approxima-
tions lim→0 Ci(x) = C + ln(x)− x2/96, where C ≈ 0.5772
is the Euler–Mascheroni constant, limx→∞ Ci(x) = 0,
limx→0 Si(x) = x− x3/9, and limx→∞ Si(x) = π/2.

As an example, we take a data record of N = 2048,
τ0 = 1 s, high cut-off frequency fH = 1

2τ0
(equal to the

Nyquist frequency), low cut-off frequency fL = 1
256Nτ0

Fig. 7. Comparison of the EDF calculated analytically (24), by numerical com-
putation (Section V-D), and assessed by Monte Carlo simulation (Section V-E).

(see [23] for the physical meaning of fL), and τ ∈
{τ0, 2τ0, 4τ0, . . . , 1024τ0}. Fig. 6 shows the EDF for the com-
mon noise types. Zooming in (Fig. 6 right), we see that the plots
do not overlap.

E. Monte Carlo Simulations

Another way to assess the EDF is by simulated time series.
We generated 10 000 sequences of N = 2048 samples for
each type of noise using the bruiteur noise simulator [24],
which is based on filtered white noise. This code is a part
of the SigmaTheta software package, available on the URL
given by [24]. It has been validated by more than 20 years of
intensive use at the Observatory of Besancon. Again, the EDF
are calculated using (19).
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TABLE III
COMPARISON OF THE EDF OF AVAR, MVAR, AND PVAR FOR THE COMMON NOISE TYPES

In the end, we compared three methods, the autocorrelation
function Rx(τ) with (21) and (22), the Monte Carlo simula-
tion with bruiteur code, and the analytical solution (24), the
latter only with white noise. Fig. 7 compares the EDF obtained
with these three methods. The results match well, with a dis-
crepancy of a few percent affecting only the first two points
(τ ≤ 2τ0). The reason is that, with such a small τ/τ0 ratio, the
wy weight function is a poor approximation of the parabola of
the Ω counter (see [9]).

Table III and Fig. 8 compare the EDF of PVAR to AVAR
and MVAR. MVAR is limited to τ = 682 because the wavelet
support (span) is 3τ instead of 2τ .

VI. DETECTION OF NOISE PROCESSES

Running an experiment, we accumulate a progressively
larger number N of samples xk. As N gets larger, we fill up
the σ̂2

y (τ) plot adding new points at larger τ . Besides, at smaller
τ , the error bars shrink because the number of degrees of free-
dom increases. Looking at the log–log plot, we find the fast
processes on the left and the slow processes on the right. This
is due to the nearly polynomial law τk of Table I. Having said
that, we address the question of which variance is the most effi-
cient tool at detecting a slower process “SP” in the presence of
a faster process “FP” as illustrated in Fig. 9. The criterion we
choose is the lowest level of the SP that can be detected:

1) with a probability of 97.5% (i.e., two sigma upper bound);
2) in the presence of the faster process FP of given level;
3) using a data record of given length N .
Our question about the most efficient tool relates to relevant

practical cases detailed underneath.
Our comparison is based on a simulation with N = 2048

samples uniformly spaced by τ0 = 1 s. So, the lowest τ is equal
to 1 s, and the largest τ is equal to Nτ0/2 = 1024 s for AVAR
and PVAR, and to Nτ0/3 = 682 s for MVAR.

For fair comparison, we renormalize the variances for the
same response to the SP process. For example, the response

to white FM noise Sy(f) = h0 is h0/2τ for the AVAR, h0/4τ
for the MVAR, and 3h0/5τ for the PVAR. Accordingly, a coef-
ficient of 2, 4, or 5/3 is applied, respectively. Of course, this
renormalization makes sense only for comparison, and should
not be used otherwise.

The results are shown in Fig. 10, and discussed in
Sections VI-A to VI-C. Each simulation is averaged on 104

runs. All plots show AVAR (blue), MVAR (green), and PVAR
(red) for the FP process, with the two-sigma uncertainty bars,
and the SP process (gray). We set the reference value of the
SP process at the lowest level that PVAR can detect with a
probability of 97.5%, i.e., at the upper point of the two-sigma
uncertainty bar at τ = 1024 s. This is highlighted by a gray
circle at τ = 1024 s.

A. Noise Detection in the Presence of White PM Noise
[Fig. 10(a) and (b)]

White PM noise is a limiting factor in the detection of other
noise processes because it is the dominant process in the front-
end of most instruments used to assess the frequency stability.
We show the effect of white PM in two opposite cases, white
FM noise and frequency drift. The former is present in all
atomic standards, while the latter is present in all oscillators
and standards, except in the primary standards. Frequency drift
is a severe limitation in cavity stabilized lasers, and in other
precision oscillators based on the mechanical properties of an
artifact.

The classical AVAR is clearly a poor option because of
its τ−2 response to white PM, versus the τ−3 of the other
variances. This is confirmed in our simulations.

It is seen in Fig. 10(a) and (b) that in both cases MVAR can-
not detect the slow process. The lowest value of MVAR (green
plot) at 97.5% confidence (gray circle at τ = 682 s) exceeds the
reference gray line.

The conclusion is that PVAR exhibits the highest detection
sensitivity in the presence of white PM noise.



620 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 63, NO. 4, APRIL 2016

Fig. 8. Comparison of the EDF of AVAR, MVAR, and PVAR for the different types of noise. All noise sequences were simulated with a unity coefficient noise,
2048 samples, and a sampling frequency of 1 Hz.

Fig. 9. Concept of noise process detection. The process SP is barely visible in
A (<50% probability), detected with a probability of 97.5% in C (threshold of
nearly certain detection), and detected with >97.5% probability in B.

B. Detection of Flicker FM Noise in the Presence of White FM
Noise [Fig. 10(c)]

The detection of frequency flicker in the presence of white
FM noise is a typical problem of passive atomic standards.
Such standards show white FM noise originated from the

signal-to-noise ratio, and in turn from beam intensity, optical
contrast, or other parameters depending on the physics of the
standard. Generally, after the white FM noise rolls off, σ2

y (τ)
hits the flicker floor. Cs clocks are a special case because they
do not suffer from random walk and drift. So, flicker of fre-
quency is the ultimate limitation to long-term stability, and in
turn to timekeeping accuracy. In commercial standards, flicker
FM exceeds the white FM at approximately 1-day integration
time. Thus, fast detection of flicker enables early estimation of
the long-term behavior, and provides a useful diagnostic.

We see in Fig. 10(c) that the three variances show similar
performances, with a small superiority of AVAR and PVAR.
Again, MVAR suffers from the wider support of the wavelet,
3τ instead of 2τ . AVAR has a distinguished history of being the
favorite tool of time keepers.

C. Detection of Slow Phenomena [Fig. 10(d)–(f)]

It is often useful to detect the corner where random walk
or drift exceed the flicker floor, or where the drift exceeds
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Fig. 10. Corner detection for the most common noise types (gray circles). The 97.5% upper bounds of the confidence intervals over the variance estimates are
figured by dashed lines (blue for AVAR, green for MVAR, and red for PVAR). The lowest detected noise or drift by PVAR is represented as a solid black line.
(a) White FM in white PM. (b) Drift in white PM. (c) Flicker FM in white FM. (d) Random walk in flicker FM. (e) Drift in flicker FM. (f) Drift in random walk.

the random walk. This problem is typical of Rb clocks and H
masers, and also of precision oscillators based on mechanical
properties of a resonator. Our simulation shows that AVAR is
superior, but PVAR has a detection capability close to AVAR.
Conversely, MVAR is the poorest choice.

VII. DISCUSSION AND CONCLUSION

PVAR is wavelet-like variance broadly similar to AVAR and
MVAR, and intended for similar purposes. It derives from
AVAR and MVAR after replacing the Π and Λ counter with
the Ω counter, in turn based on the LR on phase data [9].

On closer examination, we notice that AVAR and MVAR
address different problems. In the presence of white PM noise,
MVAR has a dependence as 1/τ3 instead of 1/τ2. This is a
good choice in microwave photonics and in other applications
where the measurement of short-term stability is important. The

problem with MVAR is that the wavelet spans over 3τ instead
of 2τ . Hence, AVAR is preferred for the measurement of long-
term stability and in timekeeping, where the largest value of τ
on the plot is severely limited by the length of the available data
record. PVAR on the other hand is a candidate replacement for
both because it features the 1/τ3 dependence of MVAR and the
2τ measurement time of AVAR.

PVAR compares favorably to MVAR because it provides
larger EDF, and in turn a smaller confidence interval. The
objection that PVAR gives a larger response to the same noise
level (right-hand column of Table I) is irrelevant because the
response is just a matter of normalization. It is only in the
region of fast processes that AVAR has higher EDF than PVAR
(Fig. 8), but this happens where AVAR is certainly not the
preferred option.

The best of PVAR is its power to detect and identify weak
noise processes with the shortest data record. We have seen in
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Section VI that PVAR is superior to MVAR in all cases, and
also superior to AVAR for all short-term and medium-term pro-
cesses, up to flicker FM included. AVAR is just a little better
with random walk and drift.

In conclusion, theory and simulation suggest that PVAR is
an improved replacement for MVAR in all cases, provided the
computing overhead can be accepted. Whether or not AVAR is
preferable to PVAR for timekeeping is a matter of discussion.
AVAR renders the largest τ with a given data record. This is the
case of random walk and drift. By contrast, PVAR is superior at
detecting the frequency flicker floor, which is the critical param-
eter of the primary frequency standards used in timekeeping.
These standards are supposed to be free from random walk and
drift. Otherwise, when rendering the largest τ is less critical,
PVAR is until now the best option.
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