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Determination of Phase Noise Spectra in
Optoelectronic Microwave Oscillators:

A Langevin Approach
Yanne Kouomou Chembo, Kirill Volyanskiy, Laurent Larger, Enrico Rubiola, and Pere Colet

Abstract—We introduce a stochastic model for the determi-
nation of phase noise in optoelectronic oscillators. After a short
overview of the main results for the phase diffusion approach in
autonomous oscillators, an extension is proposed for the case of
optoelectronic oscillators where the microwave is a limit-cycle
originated from a bifurcation induced by nonlinearity and
time-delay. This Langevin approach based on stochastic calculus
is also successfully confronted with experimental measurements.

Index Terms—Microwaves, optoelectronic oscillators, phase
noise, semiconductor lasers, stochastic analysis.

I. INTRODUCTION

O PTOELECTRONIC oscillators (OEOs) combine a non-
linear modulation of laser light with optical storage to

generate ultra-pure microwaves for lightwave telecommunica-
tions and radar applications [1], [2]. Their principal specificity
is their extremely low phase noise, which can be as low as

160 dBrad /Hz at 10 kHz from a 10 GHz carrier. Despite
some interesting preliminary investigations, the theoretical de-
termination of phase noise in OEOs is still a partially unsolved
problem. The qualitative features of this phase noise spectrum
can be recovered using some heuristical guidelines or rough ap-
proximations, but however, a rigorous theoretical background is
still lacking.

There are several reasons which can explain that absence of
theoretical background. A first reason is that before [3], there
was no time domain model to describe such systems, so that
stochastic analysis could not be used to perform the phase noise
study. Moreover, unlike most of oscillators, the OEO is a delay-
line oscillator, and very little has been done to study the effect
of phase noise on time-delay induced limit-cycles. Finally, the
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OEO is subjected to multiple noise sources, which are some-
times non-white, like the flicker (also referred to as “ ”) noise
which is predominant around the microwave carrier.

The objective of this work is to propose a theoretical study
where all these features are taken into account. The plan of
the article is the following. In Section II, we present the phase
diffusion approach in autonomous systems. It is a brief review
where the fundamental concepts of phase diffusion are recalled,
and where some important earlier contributions are highlighted.
Then, we derive in Section III a stochastic delay-differential
equation for the phase noise study. We show that for our pur-
pose, the global interaction of noise with the system can be de-
composed into two contributions, namely an additive and a mul-
tiplicative noise contribution. Section IV is devoted to the study
of the noise spectrum below threshold. It will appear that the
noise power spectrum below threshold is very important for the
validation of the stochastic model, but also for an accurate cali-
bration of additive noise. In Section V, we address the problem
of phase noise when there is a microwave output using Fourier
analysis, and we show that it is possible to have an accurate
image of the phase noise spectrum in all frequency ranges. The
last section concludes the article.

II. THE PHASE DIFFUSION APPROACH IN AUTONOMOUS

OSCILLATORS

A. Fundamental Concepts

For an ideal (noise-free) oscillator, the Fourier spectrum is
a collection of Dirac peaks, standing for the fundamental fre-
quency and its harmonics. The effect of amplitude white noise
is to add a flat background, while the peaks do keep their zero
linewidth; it is the effect of phase noise to widen the linewidth
of these peaks.

Some pioneering papers using stochastic calculus to study the
topic of phase noise in autonomous oscillators have been pub-
lished several decades ago [4]. In particular, it was demonstrated
that a general framework to study the problem of phase noise in
a self-sustained oscillator could be built on the base of two min-
imalist assumptions. The first point is that a strong nonlinearity
is an essential necessity in oscillators, in the sense that nonlin-
earity can not be regarded as small because it controls the oper-
ating level of the oscillator. The second important point is that
the phase is only neutrally stable, so that quasi-linear methods
which assume that fluctuations from some operating point are
small (linearization techniques) can not be applied directly.
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The phase is neutrally stable as a consequence of the phase-
invariance of autonomous oscillators. In other words, limit-cy-
cles are stable against amplitude perturbations, while there is no
mechanism able to stabilize the phase to a given value: hence,
phase perturbations are undamped, but they do not diverge expo-
nentially, though. In a noise-free oscillator, the “stroboscopic”
state point on the limit-cycle is immobile, but in the presence of
noise, it moves randomly along the limit-cycle: in other words,
the phase of the oscillator undergoes a diffusion process, in all
points similar to a one-dimensional Brownian motion. In the
most simple case, the random fluctuations of the phase are
referred to as a Wiener process, obeying an equation of the
kind [with ], where is a Gaussian white
noise with autocorrelation , while

is a parameter referred to as the diffusion constant. It can
be demonstrated that the phase variance diverges linearly as

, and the single-side band phase noise spectrum
(in dBc/Hz) explicitly reads , so that

is the unique parameter characterizing all the statistical and
spectral features of phase fluctuations.

B. The Unifying Theory of Demir, Mehrota and Roychowdhury

On the base of earlier works by Lax [4] and Kärtner [5],
Demir, Mehrota and Roychowdhury have proposed few years
ago a unifying theory of phase noise in self-sustained oscilla-
tors subjected to white noise sources [6]. Their approach, which
had later been extended by Demir to the case of colored noise
sources [7], relies on stochastic calculus. The principal point of
their contribution was the introduction of a decomposition of
phase and amplitude noise through a projection onto the peri-
odic time-varying eigenvectors (the so called Floquet eigenvec-
tors; also see [8]), and they proved that it provides the correct
solution to the problem.

Demir et al. have shown that if the sources of noise are
Gaussian and white, the phase noise around the fundamental
peak (and its harmonics) has a Lorentzian lineshape, and there-
fore is fully determined by an “effective” diffusion constant

which is the unique parameter needed for phase noise
determination. However, if the Demir et al. theory has the great
and essential advantage of mathematical rigorousness, its prin-
cipal drawback is that exactitude is obtained at the expense of
simplicity: the calculation of is very complex, as it requires
an accurate determination of all the time-varying eigenvectors
related to the autonomous flow. In general this task can only
be performed numerically using quite complicated algorithms,
and this lack of flexibility explains why this method is scarcely
used in the phase noise studies available in the literature. The
key challenge for the study of phase noise in OEO would be to
provide an accurate description of the phase noise spectrum,
while avoiding the determination of Floquet eigenvectors,
which is an extremely complicated task in delayed system.

III. APPLICATION OF THE PHASE DIFFUSION APPROACH TO

OEOS: STOCHASTIC DELAY-DIFFERENTIAL EQUATIONS

The OEO under study is organized in a single-loop archi-
tecture as depicted in Fig. 1. The oscillation loop consists
of the following. 1) A wideband integrated optics LiNbO
Mach–Zehnder (MZ) modulator, seeded by a continuous-wave

Fig. 1. Experimental setup.

semiconductor laser of optical power ; the modulator is
characterized by a half-wave voltage V. 2) A thermal-
ized 4 km-long fiber performing a time delay of s
on the microwave signal carried by the optical beam; the
corresponding free spectral range is
kHz. 3) A fast photodiode with a conversion factor . 4) A
narrow band microwave radio-frequency (RF) filter, of central
frequency GHz, and dB bandwidth of

MHz; 5) A microwave amplifier with
gain . 6) A variable attenuator, in order to scan the gain. 7) All
optical and electrical losses are gathered in a single attenuation
factor .

The dynamics of the microwave oscillation can there-
fore be described in terms of the dimensionless variable

whose dynamics obeys [3]

(1)

where is the normalized loop gain,
is the Mach–Zehnder offset phase, while

and are the characteristic timescale parame-
ters of the bandpass filter. Since we are interested in single-mode
microwave oscillations, the solution of (1) can be expressed
under the form

(2)

where is the slowly varying ampli-
tude of the microwave . We can significantly simplify the
right-hand side term of (1) because the cosine of a sinusoidal
function of frequency can be Fourier-expanded in harmonics
of . In other words, since is nearly sinusoidal around ,
then the Fourier spectrum of will be sharply
distributed around the harmonics of using the relationship

and the Jacobi-Anger expansion

(3)

where is the th order Bessel function of the first kind.
Hence, since the filter of the feedback loop is narrowly reso-
nant around , it can be demonstrated that discarding all the
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spectral components of the signal except the fundamental is an
excellent approximation, so that (1) can be rewritten as

(4)

In order to include noise effects in this equation, we will con-
sider two main noise contributions in this system.

The first contribution is an additive noise, corresponding to
random environmental and internal fluctuations which are un-
correlated from the eventual existence of a microwave signal.
The effect of this noise can be accounted for as a Langevin
forcing term, to be added in the right-hand side of (4). This ad-
ditive noise can be assumed to be spectrally white, and since we
are interested in its intensity around the carrier frequency , it
can be explicitly written as

(5)

where is a complex Gaussian white noise, whose auto-
correlation is , so that the corre-
sponding power density spectrum is .

The second contribution is a multiplicative noise due to a
noisy loop gain. Effectively, the normalized gain parameter ex-
plicitly reads

(6)

If all the parameters of the system are noisy [i.e., we replace by
by , etc.], then the gain may be replaced

in (4) by , where is the overall gain fluctuation.
We therefore introduce the dimensionless multiplicative noise

(7)

which is in fact the relative gain fluctuation. In the OEO config-
uration, we have . This noise is in general spectrally
complex, as it is the sum of noise contributions which are very
different (noise from the photodetector, from the amplifier, etc.).
In agreement with the usual noise spectra of amplifiers and pho-
todetectors, we will here consider that this multiplicative noise
is flicker (i.e., varies as ) near the carrier, and white above
a certain knee-value. We therefore assume the following empir-
ical noise power density

(8)

where is the low corner frequency of the flicker noise, while
is the high corner frequency. More precisely, we consider

that the noise is white below and above , while it remains
flicker in between. Typically, we may consider Hz
and kHz, so that the flicker noise is extended over
a frequency span of more than 4 orders of magnitude.

To avoid the integral term of (4) which is complicated to
manage analytically, it is mathematically convenient to use the
intermediate integral variable

(9)

which is also nearly sinusoidal with a zero mean value. Using
(4), (5) and (7), it can be shown that the slowly-varying ampli-
tude obeys the stochastic equation

(10)

where c.c. stands for the complex conjugate of the preceding
term. Since is varying at a much slower rate than the car-
rier frequency , we can use the slowly varying approxima-
tion and assume that and (see
[3], [9], [10]). The relationship therefore gives

, so that we can finally derive from (10)
the following stochastic equation for the slowly varying enve-
lope

(11)

where is the first order Bessel cardinal
function of the first kind. The phase condition has been set to

, so that the dynamics of interest is restricted to
the case . The key parameters of this equation are

(12)

where is the quality factor of the RF
filter. Since , we may simply consider that
and . The complex term is a kind of “filter
operator”, which can be equated to the half-bandwidth
when the -factor of the filter is sufficiently high, as it was done
in [3]. It is also noteworthy that in the complex amplitude (11),
the initial multiplicative noise remains a real variable, while the
additive noise becomes complex.

We had recently shown, in agreement with the experiment,
that the OEO has three fundamental regimes for low to mod-
erate feedback gain values (that is, typically for ) [3]. For

, the system does not oscillate and the trivial fixed point is
stable; for , the system sustains a pure microwave
oscillation, with a constant amplitude, frequency and phase; and
at last, for , the system enters into a regime where the
amplitude of the microwave is unstable, and turns to be nonlin-
early modulated. We can consider that this phenomenology is
still correct as long as . With the aid of the stochastic
delay-differential equation ruling the dynamics of , we may
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now derive analytically the power spectrum density of the oscil-
lator, below and above threshold. However, it should be stressed
that in all cases, stochastic variables should be manipulated with
respect to the rules of stochastic calculus when an integral/dif-
ferential transformation is applied to them [11].

IV. NOISE POWER DENSITY SPECTRUM BELOW

THRESHOLD

In general, no interest is paid to the study of the noise power
density spectrum below threshold in OEOs. This lack of interest
can be explained by the fact that there is no oscillation in this
regime, and the system randomly fluctuates around the trivial
equilibrium. However, as we will further see, this regime is par-
ticularly interesting because it enables to understand how the
noise interacts with the system.

From the stability theory of delay-differential equations with
complex coefficients, the deterministic solution of (11) below
threshold is the trivial fixed point . After linearization
around this solution, (11) can simply be rewritten as

(13)

where we have used (definition by continuity).
This equation indicates that the multiplicative noise has no
significative influence below threshold, because the product

is a second-order term. Therefore, the noise power
below threshold is essentially determined by additive noise.

Equation (13) is linear with constant coefficients: hence, the
power density spectrum can be directly obtained as

(14)

One can determine the total output power below threshold due
to the white noise fluctuations in the system through the formula

(15)

where is the output impedance (in our case, ),
while the brackets and the overbar indicate time-averaging. The
dimensionless power can not be calculated analyti-
cally for : it can nevertheless be determined either by
numerical simulation of (13), or through a numerical computa-
tion of the integral , where is
given by (14).

However, in the open-loop configuration , the noisy
output power can be analytically determined as

(16)

through the use of the Fourier integral, or using fundamental
results from stochastic calculus since (13) degenerates to the
well-known Orstein-Uhlenbeck equation. Therefore, knowing
the bandwidth of the RF filter and the half-wave voltage

of the MZ interferometer, an open-loop measurement of the
output power can directly give an experimental value for the
white noise power density through (16).

In our system, we have experimentally measured
nW (or dBm), which corresponds to

Fig. 2. Variation of the RF noise output power �� as a function of the normal-
ized gain, under threshold. The solid line is the theoretical prediction of (15)
with� � ������ rad /Hz, and the symbols represent the experimentally
measured data. The gain was varied through attenuation in the electric branch
of the loop.

rad /Hz. This value for the power can
also be obtained by other means [see Appendix A]. The curve
displaying the power variation as a function of the normalized
gain under threshold is shown in Fig. 2, and there is an excellent
agreement between the experimental data and our analytical
formula of (15). It may be interesting to note that the noise
power apparently diverges at . In fact, one should not
forget that this result is obtained using (13), which is only valid
for . When , the amplitude of increases and
the higher order terms of the Bessel cardinal function are not
negligible anymore, so that (13) and (14) are no more valid.
Hence, divergence of the noise power is prevented by the
nonlinear terms of (11) which become predominant in a very
narrow range just below the threshold. A noteworthy study on
this topic of noisy oscillators near threshold is [12].

It is also noteworthy that for , the noise spectrum fol-
lows the spectral shape of the RF filter. However, when is
increased (still below threshold), a first qualitative difference
emerges, since the spectrum still follows the spectral shape of
the filter, but its fine structure is composed by a collection of
peaks which are the signature of microwave ring-cavity modes,
as it can be seen in Figs. 3 and 4.

V. PHASE NOISE SPECTRUM ABOVE THRESHOLD

Above threshold, the amplitude of the microwave obeys the
nonlinear algebraic equation . Using this
steady-state relationship, we can neglect the second-order am-
plitude fluctuations and rewrite (11) under the form

(17)

We should now look for an equation for the phase in order to
find its power density spectrum .

Using the Itô rules of stochastic calculus [see Appendix B],
we derive the following time-domain equation for the phase dy-
namics

(18)
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Fig. 3. Theoretical power density spectrum � ������ of the microwave noise
signal below threshold, with � � ���� �� rad /Hz and � � ���, using
(14). The semi-logarithmic scale is adopted because it enables to see at the same
time the fine structure of regularly spaced ring-cavity peaks, and the global vari-
ation shaped by the RF filter bandwidth. This spectrum is divided into two areas:
a quasi-flat area within bandwidth, and a�	� dB/dec decrease outside the band-
width.

Fig. 4. Experimental power density spectra of the microwave noise below
threshold. The spectrum has been scaled to its maximum (reference at �0 dB).
(a) Spectrum in a 200 MHz window, showing how the noisy power density is
profiled by the RF filter. (b) Zoom-in with near the 10 GHz central frequency
in a 500 kHz window, showing the noisy ring-cavity peaks.

where is a real Gaussian white noise of correlation
[same variance as ]. We

Fig. 5. Theoretical phase noise spectrum above threshold in a 500 MHz
window, with � � ��� � �� rad /Hz, � � 
 � �� rad /Hz,
� � ��� kHz and � � � Hz. The dimensionless amplitude of the
microwave oscillation is �� � � ����, corresponding to a power of 10.5 dBm.

can use (18) to obtain the Fourier spectrum of the phase
, and then its power density spectrum following

(19)

Note that here, the influence of gain on phase noise is not explicit
anymore: it is implicitly contained in . Fig. 5 displays the
phase noise spectrum explicitly expressed by (19), and we can
now analyze how the spectrum behaves according to the various
frequency ranges.

A. Phase Noise Close to the Carrier

Here, we consider the spectrum for frequencies which are rel-
atively close to the carrier (with , however). Qualita-
tively, this corresponds to the frequencies that are much smaller
than the high corner value of the multiplicative flicker noise.
In this region, flicker noise is stronger than white noise, so that

. On the other hand, we can also con-
sider that . Therefore, taking into account the
fact that , (19) can be simplified into

(20)

Some remarks can be made at this stage. First, The Leeson effect
[13] is here very explicit: the phase noise spectrum decreases as

due to the flicker noise. Secondly, phase noise is in-
versely proportional to . Thirdly, phase noise is practically
independent of the microwave amplitude , as long as mul-
tiplicative noise is stronger than additive noise near the carrier.
Finally, phase noise decreases as , therefore justifying the
need for very long delay-lines to reduce phase noise close to the
carrier. This dependence was also recovered analytically by Yao
and Maleki, using another theoretical approach [1]. Hence, in
first approximation there are three ways to reduce phase noise
close to the carrier: reduce the power of flicker noise, in-
crease the delay or increase the factor of the RF filter.
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B. Phase Noise in the Spurious Peaks Range

The frequencies of concern are here those which are well
within the bandwidth, but not too close from the carrier. This
range typically lies between 50 kHz and few MHz, and contains
the parasite ring-cavity peaks. It is also an area where the mul-
tiplicative and additive noises are both white [in the sense that
in that range, and are both constant].

The local minima of the spectrum in that area are obtained
for , so that the floor of phase noise after the flicker
decrease is

(21)

when is sufficiently high. This level is 6 dB below the additive
white noise power density scaled to the power of the microwave.
The recipe for a low phase noise floor is then quite simple, and
also quite conventional: low additive noise , and high power

for the microwave signal. The bandwidth does not play
any role in this case, as long as the multiplicative noise is not
too strong.

The spurious ring-cavity peaks are localized around integer
multiples of the round-trip frequency kHz.
More precisely, a fourth order Taylor expansion of the denom-
inator of (19) shows that around these resonance frequencies,
phase noise can be expressed as

(22)

where is the order of the ring-cavity peak. By finding the
minima of this Taylor-expanded denominator, it can be shown
that the spurious peaks are in fact frequency-shifted according
to

kHz (23)

Then, their height relatively to the phase noise floor can also be
calculated as

dB dB (24)

It appears that the level of the spurious peaks increases with
the RF bandwidth and with the delay: therefore, a large delay
may lead to a lower phase noise near the carrier [see (20)], but
it also leads to a higher level for the spurious peaks, so that an
optimal trade-off has to be found. It is also noteworthy that this
level is independent of the power densities or . In our
case, the height of the first spurious peak relatively to the floor
is theoretically equal to 120 dB, in excellent agreement with the
experimental results of Fig. 6, where a height of 119.5 dB has
been measured. It can also be shown from (22) that the dB
linewidth of the spurious peaks is

mHz (25)

Fig. 6. (a) Experimental phase noise spectrum in a 100 kHz window, showing
a noise floor around���� dBrad /Hz for a microwave power of 10.5 dBm. (b)
Enlargement of the spectrum around the first spurious peak at the frequency
� � �������� kHz. The maximum of this spurious peak is at �����
dBrad /Hz [height of the peak:������ dB], and its�� dB linewidth is around
40 mHz. All these experimental data are in excellent agreement with the theory.
Note that the height of the peak in (a) is not indicative because of insufficient
resolution. Also note that the peak at 50 Hz is a parasite peak originating from
the electric mains supply.

an extremely small value which is experimentally confirmed
with the results of Fig. 6(b), which displays a linewidth approx-
imately equal to 40 mHz for . In comparison, these spu-
rious peaks typically have a linewidth higher than 1 kHz below
threshold (see Fig. 3), but their linewidths sharply narrow as

.

C. Phase Noise Outside the Bandwidth

Here, the term progressively becomes negligible
in the denominator of (19) as is increasing, so that the ring-
cavity peaks excited by white noise become strongly damped
(for being outside the RF bandwidth). In this case, the phase
noise decays as

(26)

However, the phase noise does not decrease monotonically as
up to infinity: in fact, for , there is a second phase

noise floor induced by the coupling between phase fluctuations
and amplitude fluctuations (second-order effect, see [4]).
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VI. CONCLUSION

This article has presented a theoretical study of phase noise
in OEOs. Our approach has consisted in a Langevin formalism,
that is, in adding noise sources to a core deterministic model for
the microwave dynamics. We have found an excellent agree-
ment between the main predictions of the model and the ex-
perimental results. There is also a good agreement between this
theory and the results that are known from the literature, or from
our earlier works.

The main advantage of this approach is that it enables within
the same framework to understand the behavior of the system
under and above threshold, as the same model continuously ac-
counts for all the observed features independently of the value
of the gain. It also provides an accurate understanding of phase
noise spectra in the whole frequency range. For example, this
formalism enables to predict the exact location (that is, the fre-
quency shift) of the spurious microwave ring-cavity peaks, as
well as their heights and their linewidths. We have also shown
how additive white noise in the system could be related to the
open-loop output power, and to the phase noise floor.

However, we have not taken into account in this first model
the noise generated by the filter (noisy and ), and the delay
time (noisy ). Fluctuations associated to these parameters
may induce interesting stochastic features, that will be adressed
in future work. Another line of investigation is to achieve a
better spectral and statistical fitting of the multiplicative noise

, which is an essential variable for the determination of
phase noise spectra. Future work will also emphasize on phase
noise reduction methods, such as multiple-loop architectures,
or quadratic crossed nonlinearities [14]. Finally, this Langevin
approach can also be extended to the case of whispering gallery
mode OEOs ([15] is a noteworthy reference along that line),
and our purpose would therefore be to derive explicit formulas
for the corresponding phase noise spectrum.

APPENDIX

A. Determination of the Output Noise Power for

In the open-loop configuration, the total output power can
also be obtained using some quantum electronics formulas.

Effectively, the output power can be explicitly expressed as

(27)

where is the total gain of our two cascaded amplifiers (22.5
and 22.3 dB at 10 GHz), dB is the noise figure of the
first amplifier, K is the room temperature, is the
Boltzmann constant, is the electron charge, mA
is the photodiode current, is the equivalent load
impedance for the photodiode, and MHz is the band-
width of the RF filter. The formula gives nW, while
we have measured 20.0 nW. The combination of (16) and (27)
therefore gives a method to determine following

(28)

This formula enables to determine without any need for mea-
surements some key performances of the OEO [such as for ex-
ample the phase noise floor, see (21)] from the specifications
of the various optoelectronic components used in the oscillation
loop.

B. Derivation of the Stochastic Phase Equation

We use Itô chain rules to derive the stochastic differential
equation for the phase. We first rewrite (17) under the differ-
ential form

(29)

where is a differential Wiener
process. Note that the real and imaginary parts of the differential
Wiener process are uncorrelated , have a
zero mean value , and have equal
variances . The fact that

explains why the differential terms of
second order should be taken into account in stochastic calculus,
so that usual differentiation and chain rules do not generally
apply. As far as second-order terms are concerned, one may
consider , and discard higher-
order terms since for .

We set , where
is an auxiliary variable. At order , we have

(30)

Note that from the definition of the differential Wiener process
given just below (29), we can consider that

and . Assuming
second-order fluctuations for the amplitude (that is,

), we are led to

(31)

where is a real Gaussian
white noise with zero mean and variance .
Since , we have

so that finally

(32)

This result is also the one we may have recovered through the
usual rules of differential calculus (however, it is not so for the
equation ruling the power variable ). Note that this equation is
valid only as long as the approximation of neglecting in (10)
is valid. Also note that the effective phase diffusion coefficients
associated to the additive and multiplicative noises are equal
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Fig. 7. Oscillator phase noise transfer function (with � � �� ).

to and respectively (in the white
noise frequency range).

C. An Alternative Paradigm for Phase Noise Analysis

It is possible to gain a different physical insight into the
phase noise problem in OEOs, using an alternative method-
ology related to the conventional theory of feedback oscillators.
We hereafter briefly sketch the main lines of this heuristical
approach.

The oscillator consists of an amplifier of gain (constant)
and of a feedback path of transfer function in closed loop.
The function selects the oscillation frequency, while the
gain compensates for the feedback loss. This general model is
independent of the nature of the amplifier and of the frequency
selector. We assume that the Barkhausen condition

for stationary oscillation is verified at the carrier frequency
through a gain-control mechanism. Under this hypothesis, the
phase noise is modeled by the scheme shown in Fig. 7, in which
all signals are the phases of the oscillator loop [16]. The main
reason for describing the oscillator in this way is that we get
rid of the non-linearity, pushing it in the loop-gain stabilization.
The ideal amplifier “repeats” the phase of the input, as it has a
gain exactly equal to 1 in the phase noise model. The real am-
plifier introduces the random phase in the loop.
In this representation, the phase noise is always additive noise,
regardless of the physical mechanism involved. This eliminates
the mathematical difficulty inherent in the parametric nature of
flicker noise and of the noise originated from the environmental
fluctuations.

The feedback path is described by the transfer function
of the phase perturbation. In the case of the delay-line oscil-
lator, the feedback path is a delay line of delay followed by
a selector filter. The latter is necessary, otherwise the oscillator
would oscillate at any frequency multiple of , with no pref-
erence. Implementing the selector as a bandpass filter (a res-
onator) of group delay , the phase-perturbation response of
the feedback path is

(33)

We assume that all the phase perturbations in the loop are col-
lected in the random function , regardless of the
physical origin (amplifier, photodetector, optical fiber, etc.). De-
noting with the oscillator output phase, the os-
cillator is described by the phase-perturbation transfer function

. By inspection on Fig. 7, and using

the basic equations of feedback, the oscillator transfer function
reads

(34)

and the oscillator phase noise spectrum would be given by
.
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