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On the 1/f Frequency Noise in Ultra-Stable
Quartz Oscillators

Enrico Rubiola, Member, IEEE, and Vincent Giordano

Abstract—The frequency flicker of an oscillator, which
appears as a 1�f3 line in the phase noise spectral den-
sity, and as a floor on the Allan deviation plot, originates
from two basic phenomena, namely, (1) the 1�f phase noise
turned into 1�f frequency noise via the Leeson effect, and
(2) the 1�f fluctuation of the resonator natural frequency.
The discussion on which is the dominant effect, thus on how
to improve the stability of the oscillator, has been going on
for years without giving a clear answer. This article tackles
the question by analyzing the phase noise spectrum of sev-
eral commercial oscillators and laboratory prototypes, and
demonstrates that the fluctuation of the resonator natural
frequency is the dominant effect. The investigation method
starts from reverse engineering the oscillator phase noise in
order to show that if the Leeson effect was dominant, the
resonator merit factor Q would be too low as compared to
the available technology.

I. Introduction and Summary

In the domain of ultra-stable quartz oscillators used in
the most demanding applications, such as space and

atomic fountain clocks, we notice that the frequency flicker
is often the most critical parameter. The required stabil-
ity is sometimes in the upper 10−14 (Allan deviation) at
1–30 s or so, which can be achieved only in the lower HF
band (5–10 MHz), and after selection. In such cases, iden-
tifying the dominant flicker mechanism is far from being
trivial. Whereas some authors strongly suggest that the
amplifier noise can be the parameter that limits the fre-
quency stability, rather than the flickering of the resonator
natural frequency [1], [2], the general literature seems not
to give a clear answer. This conclusion results from a set
of selected articles, which include the measurement of the
frequency stability [3], [4] and the interpretation of the
flicker noise of crystal resonators [5], [6]; the design fun-
damentals of the nowadays BVA resonators [7]; some pi-
oneering works on the low-frequency noise in quartz os-
cillators [8], [9]; more recent articles focusing on specific
design solutions for ultra-stable oscillators [10]–[14]; and,
as a complement, a thorough review of the quartz crystal
for the resonator fabrication found in [15]. Conversely, in
everyday-life oscillators, which span from the low-cost XOs
to the OCXOs used in telecommunications and instrumen-
tation, the relative simplicity of the low-noise electronics
required indicates that the frequency flicker is chiefly the
1/f fluctuation of the resonator.
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In a previous work [16], now extended to more commer-
cial products and laboratory prototypes, we analyzed the
phase noise spectrum of some oscillators, aiming at un-
derstanding the internal mechanisms and parameters. We
looked at the phase-noise spectrum from the right hand to
the left, hence from the higher Fourier frequencies to the
lower, matching theory, technology, and physical insight.
In this way, we acquired information on the sustaining am-
plifier on the output buffer, on the Leeson effect and on
the resonator.

In this article, we first explain the phase noise mech-
anisms in amplifiers. Then we introduce the Leeson ef-
fect, which consists of the phase-to-frequency conversion
of noise below the resonator cutoff (Leeson) frequency
fL = ν0/2Q, where Q is the resonator merit factor in
actual (loaded) conditions. Finally, we analyze the phase
noise spectral density Sϕ(f) of a few oscillators. The con-
clusion that the resonator natural frequency is the main
cause of frequency flickering is based on experimental facts.
After taking away the effect of the output buffer, we cal-
culate the frequency f ′′

L at which the oscillator f−3 line
crosses the f−1 line of the sustaining amplifier. Provision-
ally assuming that f ′′

L is the the Leeson frequency, we ob-
serve that the resonator merit factor Qs = ν0/2f ′′

L thereby
calculated is far too low for a high-tech resonator. Con-
versely, under any reasonable assumption about the true
merit factor, the Leeson effect is found at a frequency
fL � f ′′

L. Therefore the Leeson f−3 line on the Sϕ(f)
plot is well hidden below the resonator fluctuation.

II. Phase Noise Fundamentals

Let the quasi-perfect oscillator sinusoidal signal of fre-
quency ν0

v(t) = V0 [1 + α(t)] cos [2πν0t + ϕ(t)] , (1)

where α(t) is the fractional amplitude noise, and ϕ(t) is
the phase noise. The AM noise is not essential to this work.
The phase noise is best described in terms of Sϕ(f), i.e.,
the one-sided power spectral density of ϕ(t), as a func-
tion of the Fourier frequency f ; or equivalently in terms
of L(f), which is defined as L(f) = (1/2)Sϕ(f). However,
L(f) is more widely used than Sϕ(f); we prefer Sϕ(f)
because it refers to the SI unit of radians, and because it
makes the conversion to Sy(f) and to σ2(τ) more straight-
forward. In addition to f , we use the angular frequency ω
for both carrier-related frequencies (ω = 2πν) and Fourier
frequencies (ω = 2πf) without need of introducing it, and
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the normalized frequency fluctuation y = (ν −ν0/ν0). The
quantities ν, f , and y refer to one-sided transforms, ω to
two-sided transforms. Frequency fluctuations are described
in terms of Sy(f), related to Sϕ(f) by

Sy(f) =
f2

ν2
0
Sϕ(f). (2)

A model that has been found useful in describing the
oscillator noise spectra is the power law

Sy(f) =
2∑

i=−2

hif
i ⇔ Sϕ(f) =

0∑
i=−4

bif
i. (3)

Our main concern is the frequency flickering term b−3f
−3,

which is related to the Allan variance by

σ2
y = 2 ln(2)h−1 = 2 ln(2)

b−3

ν2
0

, (4)

a constant, i.e., independent of the measurement time.
Finally, the general background on phase noise and

frequency stability is available from numerous references,
among which we prefer [17]–19], and [20, Vol. 1, Chap-
ter 2]. An IEEE standard is also available [21].

III. Phase Noise in RF (and Microwave)

Amplifiers

A. White Noise

The equivalent noise spectrum density at the amplifier
input is N = FkT0, where F is the noise figure and kT0 is
the thermal energy. This type of noise is additive, which
means that F does not change when a carrier is added.
In the presence of a carrier of power P0, the phase noise
spectral density is

Sϕ(f) = b0f
0 (constant) (5)

with

b0 =
FkT0

P0
. (6)

When amplifiers are cascaded, the noise contribution of
each stage is divided by the gain of all of the preceding
stages (Friis formula [22]). Accordingly, in most practical
cases the total noise figure is chiefly the noise figure of the
first stage. Consequently, by virtue of (6), the white phase
noise originates mostly in the first stage.

B. Flicker Noise

Understanding the close-in noise starts from the obser-
vation that the output spectrum is of the white type—flat
in a wide frequency range—when the carrier power is zero,
and that noise shows up close to the carrier only when a
sufficiently large carrier power is present at the amplifier

output. The obvious consequence is that the close-in flick-
ering results from a parametric effect by which the near-dc
flicker noise modulates the carrier in amplitude and phase.

The simplest way to understand the noise up-conversion
is to model the amplifier signal as a nonlinear function
truncated to the 2nd order

v0(t) = a1vi(t) + a2v
2
i (t) + . . . , (7)

in which the complex input signal

vi(t) = Vie
jω0t + n′(t) + jn′′(t) (8)

contains the carrier and the internally generated near-dc
noise n(t) = n′(t) + jn′′(t). Rather than being an easy-
to-identify voltage or current, n(t) is an abstract random
signal that also accounts for the efficiency of the modu-
lation process. Combining (7) and (8) and selecting the
terms close to the carrier frequency ω0, we get

v0(t) = Vi {a1 + 2a2 [n′(t) + jn′′(t)]} ejω0t. (9)

It is worth observing that the use of the complex exponen-
tial ejω0t in nonlinear systems is not always allowed, and
requires care, because it hides the frequency difference in
beat processes. Nonetheless, the linear ω0 term in (9) is
correct. Hence, by virtue of (9), the random fluctuations
are

α(t) = 2
a2

a1
n′(t) and ϕ(t) = 2

a2

a1
n′′(t). (10)

Deriving (10), the statistical properties of n′(t) and
n′′(t) are not affected by the carrier power. This accounts
for the experimental observation that the amplifier phase
noise given in rad2/Hz is about independent of power in a
wide range [23]–[25]. Thus

Sϕ(f) = b−1f
−1 b−1 ≈ constant. (11)

Of course, some dependence on P0 remains. We ascribe it
to terms of order higher than 2 in (7), and to the effect
of the large signal regime on the dc bias, which in turns
affects n′ and n′′. In the case of bipolar amplifiers used in
HF/VHF amplifiers, b−1 is in the range of 10−12 to 10−14

rad2/Hz (−120 to −140 dBrad2/Hz).
When m amplifiers are cascaded, the The Friis formula

does not apply. Instead, the phase noise adds

(b−1)cascade =
m∑

i=1

(b−1)i. (12)

This occurs because the 1/f phase noise is about inde-
pendent of power. Of course, the amplifiers are supposed
independent.

C. Phase Noise Spectrum

Combining white noise (5) and flicker noise (11), there
results the spectral density Sϕ(f) shown in Fig. 1. It is im-
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Fig. 1. Typical phase noise spectral density of an amplifier.

portant to understand that the white noise term b0f
0 de-

pends on the carrier power P0, but the flicker term b−1f
−1

does not. Accordingly, the corner frequency fc at which
b−1f

−1 = b0 is a function of P0, thus fc should not be
used to describe noise. The parameters b−1, F , and P0
should be used instead.

IV. Phase Noise in Feedback Oscillators

A. The Leeson Effect

Fig. 2 shows a model for the feedback oscillator and its
equivalent in the phase space. All signals are the Laplace
transform of the time-domain quantities, as a function of
the complex frequency s = σ + jω. The oscillator transfer
function is derived from Fig. 2(A) according to the basic
rules of linear systems

H(s) =
1

β(s)
1

1
Aβ(s)

− 1
=

A

1 − Aβ(s)
. (13)

Stationary oscillation occurs at the angular frequency
ω0 at which Aβ(jω) = 1; thus |Aβ(jω)| = 1 and
arg[Aβ(jω)] = 0. This is known as the Barkhausen condi-
tion for oscillation. At s = jω0, the denominator of H(s)
is zero; hence oscillation is sustained with zero input sig-
nal. Oscillation starts from noise or from the switch-on
transient if �{Aβ(s)|s=jω0} > 1 (yet only slightly greater
than 1 for practical reasons). When the oscillation reaches
a threshold amplitude, the loop gain is reduced to 1 by
saturation. The excess power is pushed into a harmonics
multiple of ω0, and is blocked by the resonator. For this
reason, at ω0 the oscillator operates in quasi-linear regime.

In most quartz oscillators, the sustaining amplifier takes
the form of a negative resistance that compensates for the
resonator loss. Such negative resistance is interpreted (and
implemented) as a transconductance amplifier that senses
the voltage across the input and feeds a current back to
it. Therefore, the negative-resistance oscillator loop is fully
equivalent to that shown in Fig. 2.

Fig. 2. Oscillator model and its phase-space equivalent. For the sake
of simplicity, all of the dependence on s is moved to β(s); hence the
gain A is assumed constant. The scheme emphasizes the amplifier
phase noise. Amplitude noise is not considered.

In 1966, D. B. Leeson [26] suggested that the oscillator
phase noise is described by

Sϕ(f) =
[
1 +

1
f2

ν2
0

4Q2

]
Sψ(f) (Leeson). (14)

This formula calls for the phase-space representation of
Fig. 2(B), which deserves the following comments.

The Laplace transform of the phase of a sinusoid is prob-
ably the most common mathematical tool in the domain
of phase-locked loops (PLLs) [27]–[30]. Yet it is unusual in
the analysis of oscillators. The phase-space representation
is interesting in that the phase noise turns into additive
noise, and the system becomes linear. The noise-free am-
plifier repeats the input phase, for it shows a gain exactly
equal to one, with no error. The resonator transfer func-
tion, i.e., the Laplace transform of the impulse response, is

B(s) =
1

1 + sτ
τ =

2Q

ω0
. (15)

The inverse time constant is the low-pass cutoff angular
frequency of the resonator

ωL =
1
τ

=
ω0

2Q
. (16)

The corresponding frequency

fL =
ωL

2π
=

1
2πτ

=
ν0

2Q
(17)

is known as the Leeson frequency. Eq. (15) is proved in
two steps:
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Fig. 3. Oscillator phase noise spectra, not accounting for the output
buffer.

• Feed a Heaviside step function κU(t) in the argument
of the resonator input sinusoid. The latter becomes
cos [ω0t + κU(t)].

• Linearize the system for κ → 0. This is correct
in low-phase noise conditions, which is certainly our
case. Accordingly, the input signal becomes cos(ω0t)−
κ sin(ω0t)U(t).

• Calculate the Laplace transform of the step response,
and use the property that the Laplace transform maps
the time-domain derivative into a multiplication by
the complex frequency s. The Dirac function δ(t) is
the derivative of U(t).

The full mathematical details of the proof are available in
[16, Chapter 3].

Applying the basic rules of linear systems to Fig. 2(B),
we find the transfer function

H(s) =
Φ(s)
Ψ(s)

=
1

1 − B(s)
=

1 + sτ

sτ
; (18)

thus

|H(jω)|2 =
1 + ω2τ2

ω2τ2 . (19)

The Leeson formula (14) derives from (19) by replacing

ω = 2πf and τ =
Q

πν0
. (20)

The transfer function H(s) has a pole in the origin
(pure integrator), which explains the Leeson effect, i.e.,
the phase-to-frequency noise conversion at low Fourier
frequencies. At high Fourier frequencies it holds that
H(jω) = 1. In this region, the oscillator noise is largely
caused by the noise of the sustaining amplifier.

The amplifier phase noise spectrum contains flicker and
white noise, i.e., Sϕ(f) = (b−1)amplif

−1+(b0)ampli. Feeding
such Sϕ(f) into the Leeson formula (14), the oscillator
Sϕ(f) can only be one of those shown in Fig. 3. Denoting
with fc the corner frequency at which flicker noise equals
white noise, we often find fL < fc in HF/VHF high-Q
oscillators, and fL > fc in microwave oscillators. In ultra-
stable HF quartz oscillators (5–10 MHz), the spectrum is
always of the type A (fL < fc).

B. Output Buffer

The phase noise Sψb(f) of the output buffer adds to the
oscillator phase noise

Sϕo(f) =
[
1 +

1
f2

ν2
0

4Q2

]
Sψ(f) + Sψb(f). (21)

This is a consequence of the flicker noise mechanism ex-
plained in Section III-B, and inherent in the model of
Fig. 2(B).

C. Resonator Stability

The oscillator frequency follows the random fluctuation
of the resonator natural frequency. However complex or
tedious the formal proof for this statement can be, the
experimentalist is familiar with the fact that the quartz
oscillator can be frequency-modulated by a signal of fre-
quency far higher than the Leeson frequency. For example,
a 5-MHz oscillator based on a Q = 2×106 resonator shows
a Leeson frequency of 1.25 Hz (see Table I), while it can be
modulated by a signal in the kilohertz region. Addition-
ally, as a matter of fact, the modulation index does not
change law from below to beyond the Leeson frequency.
This occurs because the modulation input acts on a var-
actor in series to the quartz, whose capacitance is a part
of the motional parameters.

D. Other Effects

The sustaining amplifier of a quartz oscillator always in-
cludes some kind of feedback; often the feedback is used to
implement a negative resistance that makes the resonator
oscillate by nulling its internal resistance. The input admit-
tance Yi seen at the amplifier input can be represented as

Yi = Y
(v)
i + Y

(r)
i , (22)

that is, the sum of a virtual term (v) plus a real term
(r). The difference between “virtual” and “real” is that in
the case of the virtual admittance the input current flows
into the feedback path, while in the case of the real admit-
tance the input current flows through a grounded dipole.
This is exactly the same concept of virtual impedance rou-
tinely used in the domain of analog circuits [31, Chapter 1].
The admittance Y

(r)
i also includes the effect of the pulling

capacitance in series to the resonator, and the stray ca-
pacitances of the electrical layout. As a consequence, the
fluctuation δY

(v)
i is already accounted for in the amplifier

noise, hence in the model of Fig. 2, while the fluctuation
δY

(r)
i is not. On the other hand, Y

(r)
i interacts with the

resonator parameters; thus δY
(r)
i yields frequency fluctua-

tions not included in the Leeson effect. The hard assump-
tion is made in our analysis, that |δY (r)

i |2 � |δY (v)
i |2. In

other words, we assume that the fluctuations of the elec-
tronics are chiefly due to the gain mechanism of the ampli-
fier. Whereas the variety of circuits is such that we cannot
provide a proof for this hypothesis, common sense suggests
that electronics works in this way.
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TABLE I
Estimated Parameters of Some Ultra-Stable Oscillators.

Oscillator ν0 (b−3)tot (b−1)tot (b−1)amp f ′
L f ′′

L Qs Qt fL (b−3)L R Ref.

Oscilloquartz1
5 −124.0 −131.0 −137.0 2.24 4.5 5.6 × 105 1.8 × 106 1.4 −134.1 10.1 [14], [32]

8600
Oscilloquartz1

5 −128.5 −132.5 −138.5 1.6 3.2 7.9 × 105 2 × 106 1.25 −136.5 8.1 [14], [32]
8607
CMAC2

5 −132.0 −135.5 −141.1 1.5 3 8.4 × 105 2 × 106 1.25 −139.6 7.6 [12], [13], [33]
Pharao

FEMTO-ST3
10 −116.6 −130.0 −136.0 4.7 9.3 5.4 × 105 1.15 × 106 4.3 −123.2 6.6 [34]

LD protot.
Agilent4

10 −103.0 −131.0 −137.0 25 50 1 × 105 7 × 105 7.1 −119.9 16.9 [35]
10811
Agilent5

10 −102.0 −126.0 −132.0 16 32 1.6 × 105 7 × 105 7.1 −114.9 12.9 [36]
prototype
Wenzel6

100 −67.0 −132? −138? 1800 3500 1.4 × 104 8 × 104 625 −79.1 15.1 [37]
501-04623

dB dB dB dB
unit MHz Hz Hz (none) (none) Hz dB

rad2/Hz rad2/Hz rad2/Hz rad2/Hz

Notes
1Data are from specifications, full options about low noise, and high stability.
2Measured by CMAC on a sample. CMAC confirmed that 2 × 106 < Q < 2.8 × 106 in actual conditions. See Fig. 5.
3LD cut, built, and measured in our laboratory, yet by a different team. All design parameters are known, hence Qt.
4Measured by Hewlett Packard (now Agilent) on a sample.
5Implements a bridge scheme for the degeneration of the amplifier noise. Same resonator of the Agilent 10811.
6Data are from specifications. See Fig. 6.

V. Analysis of the Oscillator Phase Noise

This section addresses the core question, whether the
1/f3 noise observed on the oscillator Sϕ(f) plot is due to
the Leeson effect, or it originates in the resonator. The
interpretation method is shown in Fig. 4, and discussed
below.

• We start from the spectrum, measured or taken from
the oscillator specifications. The first step is to remove
the residual of the mains (50 or 60 Hz and multiples)
and other stray signals, and to fit the spectrum with
the power law (3). This process is called parametric es-
timation of the spectrum. With a pinch of experience,
sliding old-fashion squares on an A4-size plot gives un-
expectedly good results. Otherwise, the mathematical
methods explained in [38], [39] are useful. After this,
the spectrum looks like that of Fig. 4(A).

• The term b0f
0 is chiefly due to the sustaining ampli-

fier; hence the amplifier input power can be calculated
using (6):

P0 =
FkT0

b0
. (23)

In the absence of information, it is wise to take F =
1.26 (1 dB). To the extent of our analysis, estimating
P0 is only a check of plausibility.

• Feeding the oscillator b−3 term into (4), we calculate
the floor of the Allan deviation σy. We check on the
consistency between the calculated value and specifi-
cations or measures, if available.

• At first sight, the cutoff frequency f ′
L [Fig. 4(A)] can

be taken for the Leeson frequency because there the
slope changes from f−3 to f−1. Yet the term b−1f

−1

contains the flicker of the sustaining amplifier and of
the output buffer, which add (12) and (21). For this
reason, f ′

L cannot be the Leeson frequency.
• Actual oscillators have 2–4 buffer stages, the main pur-

pose of which is to isolate the feedback loop from the
environment in order to ensure frequency stability and
to prevent injection locking. Owing to the Leeson ef-
fect, a wise designer will spend the lowest-noise tech-
nology in the sustaining amplifier, rather than in the
buffer. Thus, we assume that the buffer contributes
3/4 of the total noise, and that the sustaining ampli-
fier contributes 1/4 (−6 dB). Accordingly, we plot the
line b−1af−1 in Fig. 4(B), 6 dB below the total flicker.

• After taking away the buffer noise, the continuation
of the b−3f

−3 line meets the b−1af−1 line at f = f ′′
L.

The latter is a new candidate for the Leeson frequency.
Feeding f ′′

L into (17), we calculate the resonator merit
factor Qs (the subscript s stands for “spectrum”)

Qs =
ν0

2f ′′
L

. (24)

• Technology suggests a merit factor Qt (the subscript t
stands for “technology”) significantly larger than Qs,
even in actual load conditions. Feeding Qt into (17),
we calculate fL based on the actual merit factor

fL =
ν0

2Qt
, (25)
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Fig. 4. Interpretation of the phase noise in quartz oscillators.

as shown in Fig. 4(C). There follows a phase noise term
(b−3)L, which accounts for the Leeson effect alone.

• Given Qt � Qs, thus fL � f ′′
L, the Leeson effect is

hidden. Consequently, the oscillator f−3 phase noise is
chiefly due to the fluctuation of the resonator natural
frequency.

We introduce the stability ratio R, defined as

R =
(σy)oscill
(σy)Leeson

(floor), (26)

Fig. 5. Phase noise of the CMAC Pharao 5-MHz quartz OCXO.
Courtesy of CMAC. Interpretation and mistakes are the authors’.

and related to the other oscillator parameters by

R =

√
(b−3)tot
(b−3)L

=
Qt

Qs
=

f ′′
L

fL
. (27)

This can be demonstrated from the b−3 term of the Leeson
formula (14), using (4) and (17). The parameter R states
how high the frequency flicker of the actual oscillator is, as
compared to the same oscillator governed only by the Lee-
son effect, with the resonator fluctuations removed. Thus,
R = 1 (0 dB) indicates that the oscillator f−3 phase noise
comes from the Leeson effect. Equal contribution of res-
onator and Leeson effect yields R =

√
2 (3 dB), whereas

R �
√

2 is found when resonator instability is the main
cause of f−3 phase noise. In all cases we have analyzed,
discussed in the next Section, we find R of the order of
10 dB, with a minimum of 6.6 dB. This means that the
Leeson effect is hidden below the frequency fluctuation of
the resonator.

Coming back to the estimation of the 1/f noise of the
sustaining amplifier, it is to be remarked that if the 1/f
noise of this is lower than 1/4 of the total flicker, f ′′

L is
further pushed to the right in Fig. 4(B) and (C), which
reinforces the conclusion that the resonator is the main
cause of frequency fluctuation.

VI. Experimental Data and Discussion

Fig. 5 shows the phase noise spectrum of a 5-MHz os-
cillator, out of a small series intended as the flywheel for
the space cesium fountain clock Pharao [40], [41]. In this
plot, the reader can follow the interpretation process ex-
plained in Section V, and illustrated in Fig. 4. Guessing on
technology, the merit factor was estimated to be 2 × 106.
Afterwards, the manufacturer confirmed [42] that Qt is be-
tween 2 × 106 and 2.2 × 106 in actual load conditions for
that series of oscillators, and that the flicker noise of the
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sustaining amplifier is less than 1/4 (−6 dB) of the total
flickering. This confirms our assumptions, and in turn vali-
dates the conclusion that the oscillator noise is mostly due
to the resonator instability.

Table I shows the results of our analysis on some oscil-
lators. The ability to estimate the resonator merit factor
is necessary to understand the oscillator inside. Experi-
ence indicates that the product ν0Q is a technical con-
stant of the piezoelectric quartz resonator, in the range
from 1 × 1013 to 2 × 1013. As a matter of fact, the highest
values are found in the 5-MHz resonators. In load condi-
tions, the resonator merit factor is somewhat lower. The
actual value depends on frequency, on the designer skill,
and on the budget for implementation. A bunch of data
are available from [1], [6], [43], and from our early at-
tempts to measure the resonator frequency stability [4].
The oscillators we have analyzed exhibit the highest avail-
able stability, for we are confident about published data.
The Agilent 10811 (hence the Agilent prototype) is closer
to the routine production, and probably closer to the cost-
performance tradeoff, as compared to the other ones; thus
understanding the oscillator on the inside is more difficult.
Nonetheless, in this case the value of Qs is so low that
there is no doubt that it cannot be the resonator merit
factor.

In the case of the Oscilloquartz 8607, the f−3 noise
is too low for it to be extracted from the Sϕ(f) spec-
trum available on data sheet, which starts from 1 Hz.
Yet, we can use the device specifications Sϕ(f)|1 Hz =
−127 dBrad2/Hz, Sϕ(f)|10 Hz = −142 dBrad2/Hz, and
Sϕ(f)|1 kHz = −153 dBrad2/Hz. In fact, looking at the
spectrum and at the Allan variance, it is clear that at
f = 1 Hz and f = 10 Hz the terms b−3f

−3 and b−1f
−1

determine Sϕ(f), with at most a minor contribution of
b0. It is also clear that Sϕ(f)|1 kHz � b0. Thus b−3 and
b−1 are obtained by solving a system of two equations like
Sϕ(f) = b−3f

−3 + b−1f
−1 + b0, at 1 Hz and 10 Hz.

In the case of the Wenzel 501-04623 oscillator (Fig. 6),
the specifications available on the manufacturer web site
consist of a few points, but the whole spectrum is not pub-
lished. Experience indicates that in the case of 100 MHz
oscillators the f−1 line tends to be hidden by the frequency
flickering. That said, we can only guess that the f−1 noise
of the sustaining amplifier is similar to that of other os-
cillators. This is sufficient to estimate f ′′

L, and to notice
that the merit factor Qs is far too low as compared to the
state of the technology, and to conclude that the f−3 phase
noise is due to the fluctuation of the resonator natural fre-
quency. It is to be remarked that the power at the ampli-
fier input is of the order of 10–20 µW in all other cases,
and of 1 mW here. In addition, the 100 MHz resonator is
smaller in size than the other resonator. A relatively high
frequency flicker is therefore not surprising.

The examples shown above indicate that, under the as-
sumption of Sections III–IV, the oscillator frequency flick-
ering is chiefly due to the fluctuation of the resonator nat-
ural frequency.

Fig. 6. Phase noise of the Wenzel 501-04623 100-MHz quartz
OCXO [37].
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R. Petit, “Ultra stable oscillators,” in Proc. Europ. Freq. Time
Forum, Warszawa, Poland, Mar. 10–12, 1998, pp. 345–351.

[13] V. Candelier, P. Canzian, J. Lamboley, M. Brunet, and G.
Santarelli, “Ultra stable oscillators,” in Proc. Europ. Freq. Time
Forum Freq. Contr. Symp. Joint Meeting, Tampa, FL, May 4–
8, 2003, pp. 575–582.

[14] K. K. Thladhar, G. Jenni, and J. Aubry, “Improved BVA
resonator-oscillator performances and frequency jumps,” in
Proc. Europ. Freq. Time Forum, Neuchâtel, Switzerland, Mar.
4–7, 1997, pp. 273–280.

[15] J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys.,
vol. 57, pp. 105–146, Jan. 1985.

[16] E. Rubiola, “The Leeson effect,” Document
arXiv:physics/0502143v1, web site arxiv.org, Feb. 2005.

[17] J. Rutman, “Characterization of phase and frequency in-
stabilities in precision frequency sources: Fifteen years of
progress,” Proc. IEEE, vol. 66, pp. 1048–1075, Sep. 1978.

[18] CCIR Study Group VII, “Characterization of frequency and
phase noise, Report no. 580-3,” in Standard Frequencies and
Time Signals. vol. VII, (annex) of Recommendations and Re-
ports of the CCIR, pp. 160–171, Geneva, Switzerland: Interna-
tional Telecommunication Union (ITU), 1990.

[19] V. F. Kroupa, Ed. Frequency Stability: Fundamentals and Mea-
surement. New York: IEEE Press, 1983.

[20] J. Vanier and C. Audoin, The Quantum Physics of Atomic Fre-
quency Standards. Bristol, UK: Adam Hilger, 1989.

[21] J. R. Vig (chair.), IEEE Standard Definitions of Physical Quan-
tities for Fundamental Frequency and Time Metrology-Random
Instabilities (IEEE Standard 1139-1999). New York: IEEE,
1999.

[22] H. T. Friis, “Noise figure of radio receivers,” Proc. IRE, vol. 32,
pp. 419–422, July 1944.

[23] D. Halford, A. E. Wainwright, and J. A. Barnes, “Flicker noise
of phase in RF amplifiers: Characterization, cause, and cure,” in
Proc. Freq. Contr. Symp., Apr. 22–24, 1968, pp. 340–341, Ab-
stract only is published.

[24] F. L. Walls, E. S. Ferre-Pikal, and S. R. Jefferts, “Origin of
1/f PM and AM noise in bipolar junction transistor ampli-
fiers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44,
pp. 326–334, Mar. 1997.

[25] A. Hati, D. Howe, D. Walker, and F. Walls, “Noise figure vs. PM
noise measurements: A study at microwave frequencies,” in Proc.
Europ. Freq. Time Forum Freq. Contr. Symp. Joint Meeting,
May 5–8, 2003.

[26] D. B. Leeson, “A simple model of feed back oscillator noise spec-
trum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.

[27] J. Klapper and J. T. Frankle, Phase-Locked and Frequency-
Feedback Systems. New York: Academic, 1972.

[28] F. M. Gardner, Phaselock Techniques. New York: Wiley, 1979.
[29] R. Best, Phase-Locked Loops. New York: McGraw-Hill, 1999.
[30] W. F. Egan, Phase-Lock Basics. New York: Wiley, 1998.
[31] S. Franco, Design with Operational Amplifiers and Analog Inte-

grated Circuits. 2nd ed. Singapore: McGraw-Hill, 1997.
[32] http://www.oscilloquartz.com/.
[33] http://www.cmac.com/.
[34] S. Galliou, F. Sthal, J. Jacques Boy, and M. Mourey, “Recent re-

sults on quartz crystal LD-cuts operating in oscillators,” in Proc.
IEEE Ultrason., Ferroelect., Freq. Contr. Joint Conf., Montréal,
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