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Dynamic instabilities of microwaves generated
with optoelectronic oscillators
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We introduce a time-domain model to study the dynamics of optoelectronic oscillators. We show that, due to
the interaction between nonlinearity and time delay, the envelope amplitude of ultrapure microwaves gen-
erated by optoelectronic oscillators can turn unstable when the gain is increased beyond a given critical
value. Our analytical predictions are confirmed by numerical simulations and experiments. © 2007 Optical
Society of America
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Recent advances in ultrastable microwave oscilla-
tions have introduced novel architectures referred to
as optoelectronic oscillators (OEOs) [1]. Typically,
single-mode OEOs are able to produce radio-
frequency oscillations with extremely high spectral
purity in the microwave range at up to tens of GHz,
with sideband phase noise levels as low as
−160 dB rad2/Hz at 10 kHz from the carrier. This
performance is achieved through the use of an un-
usual energy storage principle based on a long optical
fiber delay line instead of the classical concept of
resonators. OEOs are therefore candidates for vari-
ous applications in spatial, light-wave, and radar
technologies.

However, theoretical description of these systems
has been done only through the implicit assumption
of a stationary amplitude of the microwave oscilla-
tion, despite the presence of strong nonlinearities. In
a completely different context, some optoelectronic
systems structurally similar to the OEO had already
been studied in the literature, and numerous insta-
bilities had been evidenced [2]. We propose here a
nonlinear dynamics approach to investigate analyti-
cally the stability properties of OEOs, and this ap-
proach predicts that the interplay of the delay and
the intrinsic nonlinearity gives rise to unsuspected
bifurcation-induced instabilities, in full agreement
with our experimental results.

The OEO under study is organized in a single-loop
architecture as depicted in Fig. 1. The oscillation loop
consists of the following: (i) A wideband integrated
optics LiNbO3 Mach–Zehnder (MZ) modulator,
seeded by a continuous-wave semiconductor laser
whose optical power P serves as a bifurcation param-
eter for scanning the OEO gain; the modulator is
characterized by a half-wave voltage V�=4.2 V,
which defines the amplitude scale required at the mi-
crowave MZ driving voltage V�t� for operation in the
nonlinear regime. (ii) A thermalized 4 km fiber per-
forms a time delay of T=20 �s on the microwave sig-

nal carried by the optical beam; the long delay is in-
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tended to support thousands of the microwave ring-
cavity modes; the free spectral range is �T /2�=1/T
=50 kHz. (iii) Next is a fast amplified photodiode
with a conversion factor S=2.2 V/mW. (iv) A narrow-
band microwave filter intended to select the fre-
quency range for the amplified modes follows; its cen-
tral frequency is �0 /2�=3 GHz, and the −3 dB
bandwidth is �� /2�=20 MHz. (v) A microwave am-
plifier with gain G closes the loop. All optical and
electrical losses are gathered in a single attenuation
factor �.

The dynamics of the microwave oscillation can
therefore be described in terms of the dimensionless
variable x�t�=�V�t� /2V�, whose dynamics obeys [3,4]

x + �
dx

dt
+

1

�
�

t0

t

x�s�ds = � cos2�x�t − T� + 	�, �1�

where �=��SGP /2V� is the normalized gain, 	
=�VB /2V� is the MZ offset phase, while �=1/�� and
�=�� /�0

2 are the characteristic time-scale param-
eters of the bandpass filter.

Assuming a monomode microwave oscillation of
frequency �0 and complex amplitude A= �A �ei
 for
the variable x�t�, it is then possible to find an equa-
tion for the slowly varying complex envelope ampli-
tude, owing to the fact that the nonlinear feedback
term in Eq. (1) is reduced to the first-order Bessel
Fig. 1. (Color online) Experimental setup.
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function J1 through the Jacobi–Anger expansion
eiz cos �=�n=−�

+� inJn�z�ein�. Discarding the harmonics
that are outside the bandwidth, we finally obtain the
following delay-differential equation for the dynam-
ics of the microwave’s complex envelope:

Ȧ = − �A − 2�
e−i�Jc1�2�AT��AT, �2�

where 
=� sin 2	 is the effective gain, �=�� /2 is
the half-bandwidth of the filter, �=�0T is the round-
trip phase shift of the microwave, while the Bessel
cardinal function defined as Jc1�x�=J1�x� /x is the rel-
evant nonlinearity for the envelope dynamics. Note
that the Bessel cardinal function is qualitatively
similar to the sinus cardinal function, but its abso-
lute maximum is 1/2 instead of 1.

The advantage of dealing with an envelope equa-
tion is that the stationary states of the system are
fixed points, which are solutions of A�1
+2
e−i�Jc1�2 �A � �	=0. The phase matching condition
ei�= ±1 has to be fulfilled for an oscillation to be sus-
tained, and here we set ei�=−1 and 
�0 without loss
of generality.

The trivial fixed point A�t�
0 corresponds to the
nonoscillating solution, and to check for its stability,
we track the evolution of a perturbation �A with

�Ȧ = − ��A + �
�AT. �3�

A sufficient stability condition for this delayed varia-
tional equation is found to be 
�1.

At 
=1, a bifurcation occurs between the solution
A�t�=0 and the nontrivial fixed point A�t�=Ao�0,
which corresponds to the envelope of the rising mi-
crowave oscillation. From Eq. (2), it can be deduced
that its amplitude obeys the equation Jc1�2 �Ao � �
=1/ �2
�, which has a unique solution for 1�

�15.52.

Beyond the existence of this solution, we still have
to check for its stability through the perturbation
equation

�Ȧ = − ��A + 2�
�Jc1�2�Ao�� + 2�Ao�Jc1��2�Ao��	�AT,

�4�

whose stability is ensured for amplitudes �Ao� fulfill-
ing the condition

�1

2
+

�Ao�Jc1��2�Ao��

Jc1�2�Ao�� � �
1

2
, �5�

corresponding to values of 
 belonging to the interval
[1, 2.31]. Therefore, the theory predicts that a pure
single-mode solution emerges at 
=1, stable up to

cr=2.31. Beyond 
cr, the system undergoes a super-
critical Hopf bifurcation, as the fixed point Ao loses
its stability while a limit cycle Ao+ao exp�i�Ht�
emerges. This Hopf bifurcation therefore leads to an
amplitude modulation of the microwave signal x�t�,
that is, to the emergence of deterministic modulation
side peaks in the radio-frequency Fourier spectrum.
On the one hand, it can be demonstrated from the

classical theory of Hopf bifurcations that the modula-
tion amplitude �ao� initially grows as �
−
cr�1/2. On
the other hand, it is also possible to determine ana-
lytically the frequency �H of the Hopf-induced ampli-
tude modulation. Effectively, the time-varying com-
ponent ao exp�i�Ht� is initially very small and can be
treated as a perturbation, which should obey Eq. (4):
�H is thus determined by the transcendental equa-
tion �H=−� tan��HT�, whose physical solution �H
� 1

2�T corresponds to a modulation period TH=2T
=40 �s.

Numerical simulations fully confirm the theoreti-
cal analysis. In Fig. 2, various time traces obtained
through the simulation of Eq. (2) are displayed.
When 
=2.2, the system converges toward its stable
fixed point, but only after some oscillatory transients.
When the gain is further increased to 
=2.4, the sys-
tem has yet undergone the supercritical Hopf bifur-
cation at 
cr=2.31. As a consequence, the amplitude
is modulated, and the modulation period is twice the
delay time as predicted. Numerical simulations are
therefore in perfect agreement with the theory, both
quantitatively and qualitatively.

The experimental evidence of this Hopf-induced
amplitude modulation is presented in Fig. 3. Before
the bifurcation, the amplitude is constant and there
is a single peak in the microwave Fourier spectrum.
Exactly at the onset of the bifurcation, the amplitude
starts to be modulated with the Hopf frequency
�H /2�=�T /4�=25 kHz: two modulation side peaks
appear beside the carrier at the frequencies ±�H /2�.
Careful measurement of the corresponding critical
value of the gain has given the experimental value of

̃cr=2.42, which is very near the analytical value 
cr
=2.31. Note that the lowest Hopf critical value was
obtained after adjusting the MZ bias, most probably
due to thermal drifts induced by the increasing radio-
frequency power. After the bifurcation, the amplitude
is strongly square-wave modulated with the same
frequency �H, and the modulation side peaks become
stronger. This experimental phenomenology is there-
fore in perfect agreement with the analytically pre-
dicted scenario.

The bifurcation diagrams for the microwave vari-
able x�t� are displayed in Fig. 4. In fact, removing the
periodic fast-scale oscillation at �0 is geometrically
equivalent to represent the dynamics on a Poincaré
section: therefore, at 
=1, the amplitude variable
A�t� undergoes a pitchfork bifurcation (from the

Fig. 2. Numerical simulations of Eq. (2) for various values
of the effective feedback gain 
, with �=��mod 2�� and 	
=� /4. (a) 
=2.2�
cr: the amplitude converges to a con-
stant value. (b) 
=2.4�
cr: the amplitude is modulated

with a period equal to 2T=40 �s.
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trivial fixed point to another fixed point), while the
corresponding microwave variable x�t� undergoes a
Hopf bifurcation (from a fixed point to a limit cycle);
and at 
=
cr, A�t� undergoes a Hopf bifurcation,
while x�t� undergoes a Neimark–Sacker bifurcation,
that is, a bifurcation from a limit cycle to a torus.

In conclusion, we have proposed a dynamic model
for the study of single-mode optoelectronic oscilla-
tors. This model, whose variable is the complex enve-
lope amplitude of the microwave, takes into account
the intrinsic features of OEOs, which are a strong

Fig. 3. Experimental evidence of the Hopf-induced ampli-
tude modulation, as the gain is increased; a1, b1, and c1
are time traces, and a2, b2 and c2 are the Fourier spectra of
the corresponding reconstructed envelopes (relatively to
the carrier at �0 /2�=3 GHz). (a1), (a2) Before the bifurca-
tion, (b1), (b2) at the onset of the bifurcation, (c1), (c2) after
the bifurcation.

Fig. 4. Bifurcation diagrams for the microwave variable
x�t� revealing unexpected nonlinear effects (to be compared
with Fig. 4 in [6]). (a) Theoretical, (b) experimental.
nonlinearity on the one hand and a very large delay
on the other. As the gain is increased, the model pre-
dicts a supercritical Hopf bifurcation, that is, an am-
plitude modulation inducing the emergence of robust
parasite side peaks in the radio-frequency Fourier
spectrum. To our knowledge the reported bifurcation
phenomena have not been reported in the already
published literature on the OEO, and we anticipate
that many other phenomena might arise from this
nonlinear dynamics approach, for example multi-
mode oscillations or phase noise stabilization/
destabilization.

Extensions of this work are numerous. A particular
interest of this model is also that it can easily be
adapted to a wide class of oscillators derived from the
OEO, such as coupled, dual-loop, tunable, or photonic
filters OEOs. Along the same line, this modeling may
improve the performance of these oscillators for other
technological applications [5]. Finally, the principal
interest of OEOs is their ultralow phase noise [6,7]:
hence, it may be particularly interesting to derive a
stochastic model of OEOs, based on the deterministic
model we are proposing. For this purpose, if we con-
sider a noisy gain 
�1+�m�t�� and an additive noise
term �a�t� in Eq. (2), we can derive a stochastic differ-
ential equation for the phase 
�t� of the microwave.
This would be an interesting challenge that would
couple a new theoretical problem to a plethora of ap-
plications.
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