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A frequency counter measures the input frequencyn̄ averaged over a suitable timet, versus the
reference clock. High resolution is achieved by interpolating the clock signal. Further increased
resolution is obtained by averaging multiple frequency measurements highly overlapped. In the
presence of additive white noise or white phase noise, the square uncertainty improves fromsn

2

~1/t2 to sn
2~1/t3. Surprisingly, when a file of contiguous data is fed into the formula of the

two-samplesAlland variancesy
2std=Eh 1

2sȳk+1− ȳkd2j of the fractional frequency fluctuationy, the
result is themodifiedAllan variance modsy

2std. But if a sufficient number of contiguous measures
are averaged in order to get a longert and the data are fed into the same formula, the results is the
snonmodifiedd Allan variance. Of course interpretation mistakes are around the corner if the counter
internal process is not well understood. The typical domain of interest is the the short-term stability
measurement of oscillators.© 2005 American Institute of Physics.fDOI: 10.1063/1.1898203g

I. BACKGROUND

Let vstd=sin 2pnt=sinf2pn00t+fstdg the input signal,
wherefstd is the phase fluctuation,n00=1/T00 is the nominal
frequencysthe double subscript “00”, as inn00, is used to
avoid confusion with the 0-th term of a time series; thus,n00

is the same asn0 commonly used in the literature, etc.d, and
nstd=n00+ḟ /2p is the instantaneous frequency. Finally, let
xstd=f /2pn00 the phase time fluctuation, i.e., the time jitter,
andystd=ḟ /2pn00=n−n00/n00 the fractional frequency fluc-
tuation. The notation used in this article is the same of the
general references about frequency stability and noise.1–5

Denoting withEh·j the expectation, thesclassicald vari-
ance ofy is sy

2=Ehfy−Ehyjg2j. In the presence of slow ran-
dom phenomena, the variance depends on the measurement
time and on the number of samples. This is related to the fact
that the algorithm used is a filter in the frequency domain,
whose lower cutoff frequency is set by the number of
samples. Other variances are to be used, based on the idea
that the estimator, clearly specified, has a lower cutoff fre-
quency that blocks the dc and long-term components of
noise. There results a variance which is a function of the
measurement timet. Table I shows the spectral properties of
the Allan variance and of the modified Allan variance, de-
fined underneath.

A. Allan variance „AVAR …

Originally, the Allan variance was introduced as a mea-
surement tool for the frequency fluctuation of atomic clocks.6

Given a stream of contiguous dataȳk averaged on a timet,
the simplest variance is thesclassicald variance evaluated on
two samples,sy

2std= 1
2fyk+1−ykg2. The estimated variance is

sy
2std = EH1

2
fȳk+1 − ȳkg2J, AVAR s1d

and, expanding the time average

sy
2std = EH1

2F1

t
E

sk+1dt

sk+2dt

ystddt −
1

t
E

kt

sk+1dt

ystddtG2J . s2d

The above can be rewritten as

sy
2std = EHFE

−`

+`

ystdwAstddtG2J , s3d

wA =5−
1

Î2t
0 , t , t

1
Î2t

t , t , 2t

0 elsewhere

sFig. 1d, s4d

ssee Fig. 1d which is similar to a wavelet variance. The
weight function differs from the Haar wavelet in that it is
normalized for power instead of energy. In fact, the energy of
wA is

EhwAj =E
−`

+`

wA
2stddt =

1

t
, s5d

while the energy of a wavelet isEh·j=1.
In the frequency domain, the AVAR is similar to a half-

octave bandpass filter with the peak at the frequency of 1/2t.

B. Modified Allan variance „MVAR…

Another type of variance commonly used in time and
frequency metrology is the modified Allan variance
modsy

2std.7,8 This variance was introduced in the domain of

optics9 because it divides white phase noise from flicker
phase noise, which the AVAR does not. This is often usefuladElectronic mail: enrico@rubiola.org; www.rubiola.org
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in fast measurements. MVAR is also related to the sampling theorem and to the aliasing phenomenon10,11 because the trigger
samples the input process at a rate 1/t0 ssee belowd. The MVAR is defined as

modsy
2std = EH1

2F1

n
o
i=0

n−1S1

t
E

si+ndt0

si+2ndt0

ystddt −
1

t
E

it0

si+ndt0

ystddtDG2J MVAR with t = nt0. s6d

The above is similar to a wavelet variance

modsy
2std = EHFE

−`

+`

ystdwMstddtG2J , s7d

in which the weight function fort0!t, or equivalently for
n@1, can be written as

wM =5
−

1
Î2t2

t 0 , t , t

1
Î2t2

s2t − 3d t , t , 2t

−
1

Î2t2
st − 3d 2t , t , 3t

0 elsewhere

sFig. 1d. s8d

Once again, the weight function differs from a wavelet in
that it is normalized for power instead of energy

EhwMj =E
−`

+`

wM
2 stddt =

1

2t
. s9d

Interestingly, it holds thatEhwMj= 1
2EhwAj. This is related to

the fact that the AVAR response to white frequency noise
Sysfd=h0 is sy

2std=h0/2t, while the response of MVAR to
the same noise is modsy

2std=h0/4t.

II. HIGH-RESOLUTION FREQUENCY COUNTERS

In this section the phase noisefstd, and therefore the
frequency noiseystd, is provisionally assumed to be a zero-
mean stationary process. This hypothesis will no longer nec-
essary for the direct measurement of the Allan variance.

A. Classical reciprocal counters

Traditionally, the uniform average over a suitable time
interval t is used as an estimator of the frequencyn. The
expectation ofn is therefore

Ehnj =E
−`

+`

nstdwPstddt P estimator, s10d

wPstd = H1/t 0 , t , t

0 elsewhere
, s11d

E
−`

+`

wPstddt = 1 normalization. s12d

Inside, the counter measures the time intervalt= tN− t0 be-
tween two zero crossings ofvstd spaced byN periodssFig.
2d. Thus Ehnj= n̄=N/t. The averaging timetU selected by
the user is rounded tot=NTùtU by stopping the measure-
ment at the first zero crossing after thattU has elapsed. A
variety of interpolation techniques12 can be exploited to
avoid of the uncertainty 1/tnc that results from the bare
count of clock pulses at the frequencync. The measurement
of t is affected by the errorx0−xN that results from the
trigger noise and from the clock interpolator. Here, the ref-
erence clock is assumed ideal. Thus it holds that
y=sxN−x0d /t. With a state-of-the-art counter, the resolution
of the interpolator in a single-event time interval measure-
ment can be of 10−11 s. Let us assume thatx0 and xN are
independent and have identical statistical properties, and de-
note with sx

2 the variance of each. Under this assumption,
which will be justified afterward under more stringent con-
ditions, the variance oft is 2sx

2. Accordingly, the variance of
the fractional frequency fluctuation is

sy
2 =

2sx
2

t2

classical

variance
. s13d

The lawsy
2~1/t2 is a property of theP estimator, i.e., of the

uniform average, in the presence of white phase noise.

TABLE I. Noise types, power spectral densities, and Allan variances.

Noise
type Sfsfd Sysfd Sf↔Sy sy

2std modsy
2std

White PM b0 h2f2 h2= b0/ n0
2 fs3fHh2d / s2pd2dgt−2 for 2ptfH@1 fs3fHt0h2d / s2pd2gt−3

Flicker PM b−1f−1 h1f h1= b−1/ n0
2 f1.038+3 lns2pfHtdg3 fh1/ s2pd2gt−2 0.084h1t

−2 for n@1
White FM b−2f−2 h0 h0= b−2/ n0

2 s1/2dh0t
−1 s1/4dh0t

−1

Flicker FM b−3f−3 h−1f−1 h−1= b−3/ n0
2 2 lns2dh−1 s27/20d lns2dh−1

Random walk FM b−4f−4 h−2f−2 h−2= b−4/ n0
2 fs2pd2/6gh−2t 0.824fs2pd2/6gh−2t

Frequency driftẏ=Dy s1/2dDy
2t2 s1/2dDy

2t2

Heren00 is replaced withn0 for consistency with the general literature.fH is the high cutoff frequency, needed for the noise power to be finite. The columns
sy

2std and modsy
2std are from Ref. 5, p. 79sadaptedd.
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B. Enhanced-resolution counters

More sophisticated counters make use of theL estimator
sFig. 3d, which consists of a triangular-weight average. The
counter takes a series ofn measuresn̄i =N/ti delayed by
it0= iDT, whereti = tN+iD − tiD, i P h0,… ,n−1j is the time in-
terval measured from thesiDd-th to the sN+ iDd-th zero
crossings. The expectation ofn is evaluated as the average

Ehnj =
1

n
o
i=0

n−1

n̄i wheren̄i = N/ti . s14d

Equation s14d can be written as an integral similar to Eq.
s10d, but for the weight functionwP replaced withwL

Ehnj =E
−`

+`

nstdwLstddt L estimator. s15d

For t0!t, wL approaches the triangular-shape function

wLstd = 5t/t 0 , t , t

2 − t/t t , t , 2t

0 elsewhere

s16d

E
−`

+`

wLstddt = 1 normalization. s17d

Nonetheless the integrals15d is evaluated as the sums14d
because the time measurements take place at the zero cross-
ings. The measuresn̄i are independent because the timing
errorsxk, kP h0,… ,n−1j are independent, as explained un-
derneath. The counter noise is due to the interpolator noise,
and to the noise of the input trigger. The samples of the
interpolator jitter are independent because the interpolator is
restarted every time it is used. The trigger noise spans from
dc to the trigger bandwidthB, which is at least the maximum
switching frequency of the counter. With modern instru-
ments,B is hardly lower than 100 MHz, hence white noise is

dominant. The autocorrelation function of the trigger noise is
a sharp pulse of durationTR<1/B. On the other hand, the
delay t0 is lower bounded by the periodT00 of the input
signal and by the conversion time of the interpolator. The
latter may take a few microseconds. Hence in practice it
holds thatt0@TR, and therefore the timing errors are inde-
pendent. Accordingly, the variance of the fractional fre-
quency fluctuation is

sy
2 =

1

n

2sx
2

t2

classical

variance
. s18d

At low input frequency, there is no reason for the delayt0

between overlapped measuresn̄i and n̄i+1 to be longer than
T00, i.e., one period. ThusD=1, t0=T00, and n=N=n00t.
Hence Eq.s18d is rewritten as

sy
2 =

1

n00

2sx
2

t3

classical

variance
. s19d

At high input frequency, the minimum delayt0 is set by the
conversion time of the interpolator. Hence the measurement
rate is limited tonI measures per second, the numbern of
overlapped measures isn=nItøn00t, and Eq.s18d turns into

sy
2 =

1

nI

2sx
2

t3

classical

variance
. s20d

The laws2~1/t3, either Eqs.s19d or s20d, is a property of
theL estimator in the presence of white noise. This property
is the main reason for having introduced theL estimator in
frequency counters. Yet it is to be made clear that the en-
hanced resolution is achieved by averaging on multiple mea-
surements, even though overlapped, and that the measure-
ment of a single event, like a start-stop time interval, cannot
be improved in this way.

FIG. 1. Weight functions for the two-sample variance and for the modified
Allan variance.

FIG. 2. Rectangular averaging mechanism in simple frequency counters.

FIG. 3. Triangular averaging mechanism, implemented in some high-
resolution frequency counters.
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C. Understanding technical information

Searching through the instruction manual of frequency
counters and through the manufacturer web sites, one ob-
serves that the problem of the estimation is generally not
addressed. When the counter is of theP type, the measure-
ment mechanism is often explained with a figure similar to
Fig. 2. On the other hand, the explanation for the overlapped
measurements inL-type counters is not found in the techni-
cal documentation. As a further element of confusion, both
counters provide one value everyt seconds when pro-
grammed to measure over the timet. This can lead the ex-
perimentalist to erroneously assume that the estimation is
always of theP type.

The internal estimation mechanism can be understood
from the formula for the “frequency error,” often given in the
technical documentation. These formulas are of the form

sPd sy =
1

t
Î2sdtdtrigger

2 + 2sdtdinterpolator
2 , s21d

or

sLd sy =
1

tÎn
Î2sdtdtrigger

2 + 2sdtdinterpolator
2 s22d

n = Hn0t n00 ø nI

nIt n00 . nI
,

wherenI is of the order of 200 kHz. The actual formulas may
differ in that uncertainty and noise of the reference frequency
may be included or not; in that the factor 2 in the interpolator
noise does not appear explicitely; and in other details.

The terms inside the square root of Eqs.s21d and s22d
come from independent white noise processes, as explained
in Secs. II A. Thus, one can match Eq.s21d to Eq. s13d, and
Eq. s22d to Eq. s18d. Consequently, the presence of a termt
in the denominator reveals that the counter is of theP type,
while the presence of the termtÎn or tÎt reveals that the
counter is of theL type.

D. Examples

Two instruments have been selected with the sole criteria
that the author is familiar with them, and that they are well
suitable to show how to theP and theL estimators can be
identified in the instruction manual.

1. Stanford research systems SR-620 „P estimator …

In the instruction manualsRef. 13, p. 27d, the rms uncer-
tainty is called resolution and given by the formula

3 rms

resolution

sin Hzd
4 =

frequency

gate time
Îs25 psd2 + FSshort term

stability
D 3 Sgate

time
DG2

+ 2 3 Ftrigger

jitter
G2

N
. s23d

The above Eq.s23d matches our notation with

rms resolution sn = n00sy sclassical varianced
frequency n00

gate time t

.

The numerator inside the square root is the square single-
shot time deviation 2sx

2. It includes the inherent resolution of
the counter 25 ps ascribed to the interpolator; the phase noise
of the frequency standard; and the equivalent input noise
ssignal plus triggerd divided by the input slew rate. The de-

nominator “N” is the number of measurement averaged, not
to be mistaken forN of our notation. If the measurement
time is equal to the gate time, it holds that N=1. Equation
s23d divided byn00 and squared is of the same form of Eq.
s13d, thus of Eq.s21d, with sy

2~1/t2. This indicates that the
counter is of theP type.

2. Agilent technologies 53132A „L estimator …

The instruction manualfRef. 14, pp. 3–5 to 3-8g reports
the rms resolution given by the formula

F rms

resolution
G = Sfrequency

or period
D 3 F4 3 Îstresd2 + 2 3 strigger errord2

sgate timed 3 Îno. of samples
+

tjitter

gate time
G ,

tres= 225 ps,

tjitter = 3 ps,

s24d
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number of samples =Hsgate timed 3 sfrequencyd for f , 200 kHz

sgate timed 3 2 3 105 for f ù 200 kHz
.

The above Eq.s24d matches our notation with

rms resolution sn = n00sy or sT = T00sy sclassical varianced
frequency n00

period T00

gate time t

no. of samples n

.

The termtjitter / sgate timed of Eq. s24d is due to some internal
phenomena not analyzed here, for we provisionally neglect
it. The numerator inside the square brackets is the single-shot
time deviation 2sx

2. After squaring and normalizing, Eq.s24d
is of the same form of Eq.s18d, thus of Eq.s22d. The counter
switches averaging mode at the input frequency ofnI

=200 kHz. In fact, it holds that

n = Hn00t n00 , 200 kHz

t 3 2 3 105 n00 ù 200 kHz
.

Accordingly, Eq.s24d turns into Eq.s19d for n,23105 Hz,
and into Eq.s20d beyond 23105 Hz. The variance issy

2

~ 1/ t3 in both cases, for the counter is of theL type.

3. Remarks
The resolution enhancement of theL average can only

be used with stationary phenomena, not with single events.
This is easily seen in the table underneath. This table com-
pares the two counters SR-620 and 53132A under the sim-
plified assumptions that the reference clock is ideal, and that
the high slew rate makes the trigger noise negligible.

counter
type

single-event start-stop
time interval TI=1 s

frequencyn00=100 kHz
averaged ont=1 s

SR–620 s=2.5310−11 sy=2.5310−11

53132A s=9310−10 sy=5.8310−12

The superior resolution of the SR620 interpolator provides
higher resolution for the measurement of a single event in
start-stop mode. On the other hand, the highest resolution is
obtained with the 53132A in the measurement of stationary
signals, due to theL estimator.

III. FREQUENCY STABILITY MEASUREMENT

Let us first observe that it holds

wAstd =
1
Î2

fwPst − td − wPstdg sFig. 4d , s25d

wMstd =
1
Î2

fwLst − td − wLstdg sFig. 4d s26d

as shown in Fig. 4.

A. P-type counters

1. AVAR

Let us get a stream of dataȳk
s1d from the output of a

P-estimator counter, measured over a base time slottB with
zero dead time. The superscript “s1d” refers to the averaging
time 13tB. Feeding this stream into Eq.s1d, one gets Eq.s2d
with t=tB. Then, after averaging contiguous data in groups
of m, one gets a smaller file ofȳk

smd, averaged over the time
mtB. Feeding this new file into Eq.s1d, one gets Eq.s2d with
t=mtB. This is exactly what one expects. It is a common
practice to plot ofsy

2std in this way, using a single data
stream andm in powers of 2.

2. MVAR
The data fileȳk

s1d can also be fed in Eq.s6d. In this case
the measurement timetB of the counter is the delayt0 of Eq.
s6d. The variance is evaluated att=ntB set by the choice of
n. Yet, it is desirable thatn@1.

B. L-type counters

The attention of the reader is now to be drawn to a
subtilty in the use of aL estimator to measure the Allan
variance. While the counter provides one value ofn̄ everytB

seconds, two contiguous windowswLstd and wLst−tBd are
overlapped bytB. That is, the falling side ofwLstd overlaps
the rising side ofwLst−tBd. Thusn̄k+1− n̄k, henceȳk+1− ȳk, is
the frequency averaged with thewM window. The practical
consequence is that, feeding the file of suchȳk

s1d into Eq. s1d

FIG. 4. Relationships between the weight functions.
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sAVAR d, one getsexactlyEq. s6d with t=tB. That is, MVAR
instead of AVAR.

A longer measurement timet is obtained by averaging
contiguous data in groups ofm. This process yields a smaller
file of ȳk

smd, averaged overmtB. Yet the measurements are
overlapped, for the weight function, which is the trianglewL

for m=1, turns into an isosceles trapezium form.1, and
asymptotically into the rectanglewP for largem. A graphical
proof is proof is given in Fig. 5. The practical consequence is
that, feeding the file ofȳk

smd into Eq. s1d, one gets an “odd”
variance for with smallm.1, i.e., a variance that is neither
AVAR or MVAR; and again the AVAR for largem.

Unfortunately, the conversion betweenP and L esti-
mates is impossible without combining a large number of
data. It is therefore impossible to measure the AVAR with a
L-type counter without increasingt, that is,t=mtB with a
sufficiently large value ofm.

Finally, we focus the attention to two asymptotic classes
of measurement, namely, short-term stability and long-term
stability, analyzed underneath.

1. Long-term stability
These measurements are characterized by a large value

of m. Hence the averaging function converges towP, thus the
data file ȳk

smd can be fed into the AVAR formulas1d without
mistakes. This is a fortunate outcome for two reasons,
namely,

1. AVAR is preferable to MVAR because, for a given du-
ration of the time record, it provides a more accurate
estimate at larget,

2. The rejection of white phase noise of the MVAR is not
necessary in long term measurements.

2. Short-term stability
The experimentalist interested in short-term stability ap-

preciates the rejection of white noise of the MVAR, while the
longer duration of the experiment, as compared to the mea-
surement of the AVAR at the samet is not disturbing. In this
case, the bare mean cannot be used to combine contiguous
values in order to gett=mtB. The values must be weighted
proportionally to the triangular staircase sequence
h1,2,… , dm/2e ,… ,2 ,1j, so that the equivalent weight func-

tion is an isosceles triangle of width 2t. A file of such mea-
sures fed into Eq.s1d gives the MVAR evaluated att=mtB.
The nuisance is that this triangular-shape average is only
possible for oddm.

C. Other methods

For long-term measurements, thetotal varianceTotVar15

is progressively being used as an estimator of the AVAR. The
importance of the TotVar resides in that, given a record if
measured data, it exhibits higher accuracy at largert. Yet
TotVar is based on rectangular averages. Consequently, the
raw readout of aL estimator can not be fed in the formula
for TotVar without interpretation mistakes.

Another useful method, often calledpicket-fence, con-
sists of the absolute timing of the zero crossings versus a
free-running time scale. In this case, there is no preprocess-
ing inside the counter, for there can be no ambiguity in the
result interpretation. Absolute-time data can be used to cal-
culate AVAR, MVAR, TotVar, and other variances. The con-
cept of picket-fence was proposed in Ref. 1, Eq.s79d. Then,
it was studied extensively as an independent method for the
measurement of AVAR and MVAR.16,17
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