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Flicker Noise Measurement of
HF Quartz Resonators

Enrico Rubiola, Jacques Groslambert, Michel Brunet, and Vincent Giordano

Abstract—The frequency flicker of quartz resonators can
be derived from the measurement of S'(f), i.e., the power
spectrum density of phase fluctuations '. The interfero-
metric method appears to be the best choice to measure
the phase fluctuations of the quartz resonators because of
its high sensitivity in the low power conditions, which is
required for this type of resonator. Combining these two
ideas, we built an instrument suitable to measure the fre-
quency flicker floor of the quartz resonators, and we mea-
sured the stability of some 10-MHz high performance res-
onators as a function of the dissipated power. The stability
limit of our instrument, described in terms of Allan devia-
tion �y(�), is of some 10�14.

I. Introduction

Quartz oscillators, as compared with other sources, ex-
hibit outstanding reliability, in conjunction with an

exceptionally good compromise among low noise, high sta-
bility, and a fairly low drift. For these reasons, they are the
most widely used reference frequency sources in electron-
ics and metrology; at the present time, they could hardly
be replaced with other ones, such as whispering gallery os-
cillators [1], because of reliability or drift [2]. Yet, in some
cases the short-term stability of quartz oscillators is still
insufficient. This occurs, for instance, with atomic fountain
frequency standards, which require ultrastable flywheel os-
cillators [3].

For metrological applications, frequency flicker of res-
onators and oscillators is our main concern. This type of
noise, often referred as the flicker floor, is independent of
the averaging time τ in the Allan deviation σy(τ) plot and
represents the ultimate stability limit. Commercially avail-
able oscillators exhibit a flicker floor of some 10−13 for τ
in the 0.2 to 30 s range. Selections are available with σy up
to 1 × 10−13, but for some special units, a floor as low as
7 × 10−14 can be expected [4]. For comparison, the drift of
these outstanding oscillators can be lower than 10−11/d,
or a few parts in 10−9/yr.

Whether the oscillator floor is due to the frequency fluc-
tuation of the quartz resonator or whether it comes from
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the phase flicker noise of the amplifier converted into fre-
quency flicker by the Leeson effect [5] depends on the par-
ticular circuit and resonator. But which is the main tech-
nological factor limiting the stability of the state-of-the-
art oscillators is still matter of discussion. To answer this
question, researchers have been measuring the frequency
stability of quartz resonators for at least 25 yr with var-
ious techniques, most of which are based on the double
balanced mixer as a phase-to-voltage converter [6]–[9]. In
addition, attempts have been recently made to model the
short-term stability of measuring systems for quartz res-
onators [10].

In this context, our attention is focused on measure-
ments. For best stability, the typical dissipated power Pd of
the quartz resonator is in the 10 to 100 µW range or even
lower. In this case, resonator time-domain stability can
approach parts in 10−14 in the flicker-of-frequency region,
and the conventional resonator stability measurement ap-
paratus does not support accurate measurements down to
this level. A method is being proposed in this paper, based
on frequency domain measurement of phase fluctuations,
that shows improved sensitivity. A measurement system
has been implemented and successfully used to measure a
few high stability 10-MHz quartz resonators, listed in Ta-
ble I. The flicker floor of the described prototype is close
to the 10−14 target, depending on the resonator driving
power.

II. Basics of the Proposed Method

When a quartz resonator is used in a passive phase
bridge, fluctuations in the resonant frequency induce cor-
responding phase fluctuation in the externally generated
carrier signal. Accordingly, the ultimate frequency flicker
floor of a quartz oscillator caused by the resonator stability
alone can be derived from the measurement of the power
spectrum density Sϕ(f) of the phase fluctuation ϕ(t) in-
duced on a carrier signal applied to the resonator.

All of the concepts we need to describe the frequency
and phase fluctuations, as well as the relationships among
the various noise representations, are well estabilished in
the literature and can be found in many references, such as
[11]. Details concerning the resonator and its RLC equiv-
alent circuit, together with the measurement methods, are
clearly explained in [12].

With reference to Fig. 1, let us assume that two identical
quartz resonators are inserted in a bridge driven by a noise-
free oscillator tuned at their series resonance frequency ν0.
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TABLE I
Quartz resonators being tested.

Device No. Rs,Ω L,H Q0 (unloaded) Cv, pF T, ◦C

AT 1 57.5 1.25 1.37×106 26.2 48
premium 2 58.2 1.25 1.35×106 21.5 51

AT 1 59.0 1.21 1.28×106 19.9 52.5
swept 2 57.8 1.20 1.31×106 24.8 48
QAS 1 70.0 1.37 1.23×106 24.9 67

2 71.9 1.44 1.26×106 27.7 72
BVA 1 105 2.22 1.33×106 18.0 80

2 106 2.24 1.33×106 19.0 80

Fig. 1. Bridge quartz measurement scheme.

Not to alter the usual formulas related to spectral purity,
we provisionally assume that one resonator flickers and
the other one is perfectly stable. Regarding the relative
frequency deviation yq = ν−ν0

ν0
of the quartz as the in-

put signal and the measured phase ϕm as the output, the
quartz is equivalent to a low pass filter characterized by the
cutoff frequency fL = ν0

2Q . With the 10-MHz resonators we
measured, fL is of the order of 5 Hz, limited by the loaded
merit factor Q. For reference, the unloaded merit factor Q0
can be of the order of 1.5× 106 at that frequency. Hence,
the frequency-to-phase conversion can be rewritten as

Sϕm(f) =
1/f2

L

1 + f2/f2
L

ν2
0Syq(f) (1)

where Syq(f) denotes the power spectrum density of the
relative resonant frequency yq and Sϕm(f) is the corre-
sponding spectrum density of the phase fluctuations in-
duced on the carrier signal passing through the resonator.
Fig. 2 reports the Sϕm(f) plot thereby expected in the
case of pure frequency flicker noise. The f−1 proportion-
ality within the resonator bandwidth (f < fL) is obvious
because it comes from the quasistatic behavior of the res-
onator that responds with ϕm = 2Qδν/ν0 to a frequency
fluctuation δν. For f > fL, the quartz filters its own fre-
quency fluctuations, yielding the f−3 phase slope. For un-
explained reasons, this was not observed in the early ex-
periments [6] but was reported later [7], [8].

With frequency flicker, representated as Sy(f) =
h−1f

−1, it holds σ2
y(τ) = 2 ln 2 h−1. Combining these re-

lationships we get

Sy(f) =
1

2 ln 2
1
f
σ2
y(τ). (2)

Fig. 2. Expected Sϕm(f). Frequency flicker only is considered and is
characterized by Sy(f) = h−1f−1.

The latter, inserted in (1), yields

σ2
yq(τ) =

2 ln 2
4Q2

(
1 +

f2

f2
L

)
fSϕm(f). (3)

To derive σ2
yq(τ), we measure Sϕm(f) for f � fL; accord-

ingly, we get

σ2
yq(τ) =

2 ln 2
4Q2 f Sϕm(f). (4)

The Allan deviation σyq(τ) thus obtained is the stability
of the device resonant frequency, i.e., the time-domain sta-
bility of an oscillator in which that resonator is the only
source of frequency instability.

There are two reasons to derive σ2
yq(τ) from the mea-

surement of Sϕm(f) in quasistatic conditions, i.e., f � fL.
First, higher Sϕm(f) relaxes noise specification for the
phase detector, and, second, the slope f−1 yields lower
spectrum analyzer uncertainty than the slope f−3. Never-
theless, the f−3 slope, together with the corner at f = fL,
is a useful diagnostic tool. Obviously, only the part of
Sϕm(f) where the frequency flicker is the dominant pro-
cess must be taken into account.

Finally, letting both resonators flicker, a first estimate
of the variance of each resonator is one-half of that stated
by (3) or (4) for a measured Sϕm(f). At a deeper sight, the
stability of two otherwise equal resonators can be different.
Accordingly, the measurement of three or more resonators
of the same type is required to find the actual stability of
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each device. This type of analysis is beyond the aim of this
paper.

Resonators being tested also convert the frequency fluc-
tuations yo(t) of the driving oscillator into phase fluctua-
tions ϕm(t) in the same way as they do with the fluctu-
ations of their own resonance frequency. That oscillator,
based on a quartz crystal, is usually less stable than the
resonators we are testing. Yet, because of circuit symme-
try, a large portion of the phase fluctuations caused by the
oscillator instability, occurring within the resonator band-
width, cancel. Accordingly, for f � fL, the instrument
noise floor is

σ2
y 0(τ) � (Q1 −Q2)2

Q2
1 +Q2

2
σ2
yo(τ) (5)

where Q1 and Q2 refer to the individual resonators. A Q
mismatch within 10% warrants an oscillator noise rejec-
tion of 20 dB. If this is not sufficient with the available
oscillator, the circuit must be symmetrized by means of a
variable resistor that damps the higher Q resonator.

Quartz resonators show a power-induced frequency bias
∆ν/ν0 = kaPd known as amplitude-frequency effect or
anisochronism [13]. The coefficient ka is independent of
the resonator type (BVA, QAS, etc.), but it depends on
mechanical and energy trapping parameters. For the high
stability resonators we are interested in, the coefficient ka
is of some 10−9/µW [14]. Obviously, the power-induced
frequency fluctuations cannot be divided from the res-
onator instability. Yet, the bridge scheme can make this
effect negligible. In fact, the power fluctuation originates
in the driving oscillator, and, therefore, it affects the latter
and the two resonators being tested in the same way. But
the bridge scheme is sensitive to the anisochronism mis-
match of the two resonators only, and the driving oscilla-
tor is affected by the anisochronism of a single resonator.
Fortunately, with equal resonators, ka is about the same,
with an expected mismatch of the same order of magni-
tude of the mismatch of the motional parameters; from
Table I, a mismatch of parts in 10−2 can be inferred. Ac-
cordingly, if the flicker floor of the driving oscillator is
of some 10−13, and only a fraction of this is due to the
power fluctuation, no anisochronism effect is expected for
the 10−14 measurement target. Nonetheless we measured
the anisochronism of one quartz pair, the BVAs, and we
observed ka � 9.8 × 10−10/µW, almost equal for the two
units.

Phase detection turns out to be a critical point because
high sensitivity must be achieved with low power, which
are mutually exclusive constraints. In fact, although details
of state-of-the-art oscillators are not published, we expect
that in a 10-MHz quartz crystal, the loaded Q is in the
7 × 105 to 106 range and the dissipated power is of the
order of 10 µW. Taking Q = 7 × 105 as a conservative
value, a measurement noise floor σy0(τ) = 10−14 implies
that the instrument noise specified in terms of Sϕ(f) does
not exceed Sϕm0(1 Hz) = −155.5 dBrad2/Hz.

A double balanced mixer used as the phase detector
could offer the desired low noise, provided it is driven with

sufficient power, i.e., 10 dBm or more. Hence, the small
signal available at the quartz output must be amplified.
Yet, according to our experience, commercially available
radio frequency amplifiers do not meet the phase flicker
requirement when they deliver some 10 dBm. For com-
parison, the best prototype built in our laboratory shows
a phase noise Sϕm0(1 Hz) = −140 dBrad2/Hz when the
quartz dissipated power is Pd = 50 µW. Still under the
assumption of Q = 7×105 and νc = 10 MHz, the reported
noise is equivalent to a measurement limit corresponding
to a stability σy0(τ) = 4 × 10−14 referred to each quartz
of a pair. This is suitable to most resonators, but still not
sufficient for our purposes. The amplifier and mixer noise
can be rejected by means of a correlation scheme derived
from [15] in which four amplifiers and two mixers are used
[9]. Yet, we opted for quite a different solution.

III. Interferometric Measurement System

The proposed measurement scheme, shown in Fig. 3,
is basically an interferometric phase detector modified for
quartz resonators. This kind of detector, first proposed as
method for microwave measurements [16], has been ame-
liorated and adapted to lower frequencies [17]. In short,
phase noise is regarded as a sideband pair that carries in-
formation. Hence, after adjusting the phase γ′ and the at-
tenuations �1 and �2 for best circuit symmetry, the carrier
is suppressed at the input of the amplifier, but this mech-
anism has no effect on the noise sidebands originated by
the resonator fluctuation. Thus, the amplifier amplifies the
noise sidebands only. Properly setting the phase shift γ′′,
the mixer down converts to baseband the phase noise side-
bands, rejecting amplitude noise. Consequently, the volt-
age v(t) available at the fast Fourier transform (FFT) an-
alyzer input is proportional to the instantaneous value of
ϕm(t).

Under the assumption of �1 = �2 = 0 dB, the overall
phase detector gain is

Kϕ =
Sv(f)
Sϕm(f)

=
gPcR0

�h�m
(6)

for one quartz. g is the amplifier gain, Pc is the carrier
power at the quartz output, and R0 is the mixer output
impedance. �h is the loss of the 180◦ hybrid used as the
power combiner in which the carrier is suppressed, not
including the 3-dB intrinsic loss caused by energy con-
servation. �m is the mixer loss, which includes the 3-dB
intrinsic loss caused by conversion into upper and lower
bands. These definitions of �h and �m are those commonly
used in most component databooks.

Eq. (6) is derived and discussed in [17]. Nonetheless,
some commments can be useful here. A first interpretation
of the interferometer operation is that the carrier suppres-
sion is a means to increase the modulation index of the
phase fluctuations induced by the quartz crystal instabil-
ity. This interpretation is correct in principle, but it could
induce the wrong belief that a certain amount of residual
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Fig. 3. Interferometric measurement system.

carrier is necessary, otherwise no modulation index could
be recognized. A better interpretation is that even though
the carrier is suppressed, the crystal-induced phase mod-
ulation sidebands are not, and their power is independent
of the suppression ratio. Thus the noise sidebands are am-
plified and down converted to baseband by the mixer as
they would be in a syncrodyne receiver. The mixer intro-
duces a 3-dB gain caused by the overlapping of upper and
lower sideband, which compensates for the 3-dB intrinsic
loss of the 180◦ hybrid in which the carrier suppression
takes place.

The main reason to chose the interferometric scheme
is its suitability to low Fourier frequency measurements
in low power conditions, where an amplifier is needed. In
fact, radio frequency amplifiers flicker because their near-
dc parameters flicker, and these fluctuations are up con-
verted by the device nonlinearity [18], [19]. Yet, in the
interferometric scheme, the amplifier works in small signal
regime, warranted by the carrier suppression mechanism,
and the effect of nonlinearity becomes negligible. There-
fore, for lowest flicker, the carrier should be suppressed as
much as possible. Reference [17] provides more details on
the carrier suppression requirements, together with general
design guidelines.

With the described prototype, the amplifier gain is
g = 43 dB, the hybrid loss is �h � 0.3 dB, and the mixer
loss is �m � 6 dB, which means Kϕ � 4 dBV2/rad2 with
Pc = 10 µW. After proper adjustment, residual carrier
does not exceed −25 dBm at the amplifier output, which
is some 40 dB below the maximum deliverable power of
that device, specified as the 1-dB compression point.

The white phase noise of the instrument is limited by
the amplifier input noise FkBT0, where F is the noise fig-
ure of the amplifier, kB = 1.38× 10−23 J/K is the Boltz-
mann constant, and T0 = 290 K is the reference tem-
perature, close to room temperature. Hence, the expected
phase noise is Sϕm0(f) = 2�hFkBT0/Pc, ascribed to a sin-
gle quartz, or

Sϕm0(f) =
�hFkBT0

Pc
(7)

for each quartz of a pair. Then, Sϕm0(f) can be expressed
as a function of the quartz dissipated power Pd = Rs

R0
Pc,

where R0 = 50 Ω is the input impedance of the power
combiner in which the carrier is suppressed.

Fig. 4. Phase detector noise for some values of the dissipated power.
Upper curve Pd = 12 µW, middle curve Pd = 50 µW, and lower
curve Pd = 200 µW.

Fig. 4 shows the measured noise floor of the phase de-
tector for some values of the power Pd. Obviously, for this
type of measurement the resonator is replaced with a re-
sistor equal to the motional resistance Rs, which is 50 Ω in
this case. Because of the available software package, results
are reported in terms of L(f) = 1

2Sϕ(f). The noise floor is
in agreement with the value predicted by (7), within 1 dB.

To account for flicker, we replace F with F (f). Inspect-
ing Fig. 4, we observe that the 1-Hz noise is 5 dB higher
than the floor level; combining this piece of information
with the noise figure F = 1.7 dB of the available ampli-
fier, we get F (1 Hz) = 6.7 dB. The noise floor thereby
calculated is σy0(τ) = 6.6 × 10−17/

√
Pc. With the high

performance, 10-MHz resonators we measured on, the mo-
tional resistance is in the 50 to 110 Ω range (see Table I).
Thus, the Pd/Pc ratio spans from 0 to 3.5 dB in the re-
ported conditions. Hence, for the sake of simplicity, we
account for the spread of Rs with a 3-dB margin instead
of including Rs in the sensitivity model. Accordingly, we
take σy0(τ) = 10−16/

√
Pd as a conservative estimate of the

measurement stability limit.

IV. Technical Aspects and Design Guidelines

Some technical problems, discussed subsequently, had
to be solved before making the instrument function prop-
erly and achieve the desired stability.
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The variable attenuators and phase shifters responsible
for the carrier suppression are critical devices in the pro-
posed circuit because their fluctuation contributes to the
measured Sϕm(f), limiting sensitivity. Selecting an atten-
uator requires some attempts and a pinch of good luck.
This occurs because the flicker noise of the attenuators is
not specified by the manufacturer. Even worse, in our ex-
perience, low flicker is not necessarily related to other good
quality parameters, such resolution, accuracy, or mechani-
cal ruggedness, nor to the cost. Hence, we advise testing all
of the available units before considering other solutions. As
for phase shifters, searching through many data sheets, we
still have not been able to find any suitable device. When
we designed the system, we decided to avoid the electri-
cally tuned phase shifters, which would otherwise consti-
tute the smartest solution, because of the varactor noise;
nevertheless, these devices could be reconsidered after the
results published in [20]. Surprisingly, even the microwave
line stretchers we tested turned out not to be sufficiently
stable when used at low frequencies in the HF band. As
a provisional solution, we decided to build our own phase
shifters, based on a low Q resonator that can be slightly
detuned. Obviously, these resonators must be designed for
the specific quartz frequency. The narrow dynamic range
of the detuned resonator, of some ±5◦ for reasonably con-
stant amplitude, is not a problem. This occurs because
we use the quartz at the resonance frequency, where it is
equivalent to a resistor, and, consequently, only a small
phase adjustment is needed.

Most of the commercially available amplifiers and mix-
ers suitable to the HF band show a wide bandwidth, typ-
ically of 1 to 500 MHz or so. Hence, strong harmonic dis-
tortion is present at the mixer LO input because of the
saturation of the latter; because of the mixer symmetry,
odd harmonics only are relevant. As a consequence, the
mixer down converts the amplifier noise around 3νc, 5νc,
etc. other than the desired signal. The suggested solution
is the insertion of at least one bandpass filter along the
amplifier chain. For best stability, a low Q filter must be
selected.

Each resonator is temperature stabilized close to its
turning point by means of an oven of the same type as
those used for high performance oscillators. For best me-
chanical stability, all of the circuit is screwed on a 4-mm
copper plate, which also serves as a ground plane, and put
on a 120-mm thick sand layer. A type of sand, originally in-
tended for children’s games, proved to be the best choice
because it is clean and shows good damping properties,
probably because of the relatively large grain size.

Unfortunately, a shielded chamber was not available,
while the computer network of the entire laboratory works
at 10 MHz, the same frequency of our resonators. For this
reason, after some attempts, the prototype was enclosed in
a nearly sealed iron box that also contained the lead-acid
batteries that supply all of the circuits. Only one cable
connects the instrument output to the FFT spectrum an-
alyzer, carrying a relatively high level signal. In addition,
it was necessary to disconnect from the network and to

switch off all of the computers present in the experiment
room; only the computer used to collect and average spec-
trum data was on.

Finally, some of the reported measurements could be
done only in the late afternoon, when most people were
out.

V. Tuning and Calibration

For proper operation, the instrument first needs to be
tuned. The suggested procedure is described subsequently.
• Detection Phase γ′′. Both resonators are initially re-

moved and replaced with resistors equal to the highest of
the two motional resistances Rs. The variable capacitors
C1 and C2 are removed along with the quartzes. γ′′ must
be tuned with arm 1 alone because the latter has no ad-
justable phase. Accordingly, �1 is set to 0 dB, and �2 is set
to its maximum, so that arm 2 is nearly isolated. Obvi-
ously, no carrier suppression takes place with this condi-
tion.
γ′′ is now adjusted for the mixer input signals to be

in quadrature, so that the mixer can properly detect the
phase noise. This condition can be easily recognized ob-
serving the dc voltage at the mixer output, which must be
zero. For best adjustment accuracy, the attenuator �4 must
be set for the mixer RF power to be some 6 to 10 dB lower
than the LO power. With lower RF power, the mixer sensi-
tivity is poor; on the other hand, higher power causes a dc
offset in the mixer, because of residual diode asymmetry,
and the mixer input signals are no longer in quadrature
when γ′′ is set at zero output dc voltage. For reference,
in our prototype, the LO power is +10 dBm, and the RF
power is 0 dBm, when the quartz dissipated power Pd is
−10 dBm and �4 is set to 30 dB.
• Symmetry Phase γ′. The instrument must now be

tuned for the mixer to detect phase noise from arm 2. To
do this, the rôle of the two arms must be interchanged,
setting �2 to 0 dB and �1 for isolation. Then, γ′ must be
tuned for the quadrature condition at the mixer inputs,
which is detected observing zero dc voltage at the mixer
output.

Because of the residual interaction between the two
arms, reiteration of steps 1 and 2 may be necessary be-
fore going to the next step.
• Insertion of the Quartz Resonators. The resonators,

together with the variable capacitors, are now inserted in
the instrument. To compensate for the Q mismatch with
the variable resistor Rv, the resonator with lower Rs must
be put in the arm 1.
• Tuning C1 and C2. For frequency tunability, quartz

resonators show a residual inductance at the nominal fre-
quency to be compensated by an external capacitor of
specified value; the latter is referred as Cv in Table I. C1
is tuned first, isolating arm 2. Accordingly, �1 is set to
0 dB, and �2 is set for isolation. Acting on C1, the overall
impedance of C1 and the quartz 1 turns into a pure re-
sistance when the nominal value is reached. Once again,
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the good condition is detected from the zero dc voltage at
the mixer output. Afterward, the rôle of the two arms is
exchanged, and this step is repeated with C2.
• Carrier Suppression. As a result of the previous steps,

the two phases are almost equal. Hence, in principle, only
amplitude asymmetry still remains. In practice, this is no
longer true, but amplitude should be adjusted first, acting
on �1 or �2; these attenuators are initially set to 0 dB.
To suppress the carrier, the residual power at the output
of the first amplifier stage must be monitored by means
of a spectrum analyzer. Power monitoring requires that
the amplifier works in its linear regime. For this reason,
�4 must be initially set to an appropriately high value,
30 dB in our prototype, and reduced to 0 dB when the
residual power is sufficiently low. The carrier power must
be suppressed as much as possible, which requires some
iterations of fine amplitude and phase tuning.

Provided the phases were precisely set as described in
A and B, the small phase change required here has a
negligible effect on the detection. In fact, an error δγ,
where γ is either γ′ or γ′′, affects Sϕm(f) with an error
δSϕm(f)/Sϕm(f) not greater than 1− cos2(δγ).

Calibration is much simpler than tuning. The gainKϕ is
first measured by injecting through the appropriate direc-
tional coupler a known sideband of power Ps at fs = 1 Hz
apart from νc; fs must be lower than fL, so that the quartz
filter action is negligible. This sideband is equivalent to a
sinusoidal phase modulation of rms value ϕ =

√
Ps/(2Pc),

which causes a voltage vo at the mixer output. The gain
thereby obtained is Kϕ = (vo/ϕ)2. The rejection of the
driving oscillator noise can be checked in the same way. In
both cases a sideband is preferable to white noise because
it can be measured more accurately.

The calculation of σyq(τ) requires the knowledge of the
loaded Q in actual circuit conditions. This can be ob-
tained from the cutoff frequency fL, measured by inject-
ing white noise through the directional coupler in series
to each quartz and measuring the output by means of the
FFT analyzer.

The driving power has a negligible effect on the phase
and attenuation of the circuit, and, consequently, it is not
necessary to repeat the tuning procedure each time Pd is
changed. Carrier suppression only must be refined because
it results from imperfect compensation of two equal quan-
tities, and, consequently, it is impaired by small symmetry
changes. Otherwise, it is negligible. In principle, the gain
Kϕ as a function of the driving power can be obtained
from a single measurement. Nevertheless, we repeated the
measurement for each value of Pd.

VI. Experimental Results and Discussion

The adjustment and tuning process just described was
repeated for all of the resonators of Table I before measur-
ing their phase noise.

Fig. 5 and 6 report an example of measurements taken
with the BVA pair, each one dissipating a power Pd = 200
µW. Injecting white noise in series to one quartz, we ob-

Fig. 5. Transfer function |H(f)| of a BVA resonator.

Fig. 6. Phase noise of a BVA resonator pair.

tain the frequency response of Fig. 5, from which the cutoff
frequency can be individuated at fL = 4.5 Hz. Accord-
ingly, the loaded merit factor is Q = ν0

2fL
= 1.1 × 106.

From Fig. 6, we get the phase noise value Sϕm(1 Hz) =
−131 dBrad2/Hz. The latter, inserted in (4), yields a
flicker floor σy(τ) = 10−13 for each quartz.

Results of all of the stability measurements are shown
in Fig. 7, together with the instrument limit. The effect of
Pd on the flicker floor is evident with the QAS resonators,
and it also appears with the BVA units for Pd > 50 µW.

The QAS resonators come from two oscillators that
were explicitly disassembled for this purpose. Comparing
these oscillators with one another, the flicker floor turned
out to be σy(τ) � 1.7 × 10−13 for each unit, and the dis-
sipated power was Pd � −13 dBm. Comparing those data
with our measurements (Fig. 7), the flicker floor of the
quartz alone is 1.5 dB lower than that of the whole oscil-
lator.

The theoretical background and the experience achieved
until now can be exploited to assess the expected limita-
tions and suitability of the proposed method to other fre-
quencies of great interest, and particularly ν0 = 5 MHz
and ν0 = 100 MHz.

Many commercially available modules (amplifiers, hy-
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Fig. 7. Allan deviation of some quartz resonators deduced from phase
noise measurements.

brids, directional couplers, etc.) show a wide bandwidth
of some 1 to 500 MHz or more; in addition, the motional
resistance and the dissipated power of the resonators in
the 1 to 100 MHz range are of the same order of those of
the 10-MHz devices we tested. This means that the only
required change concerns the filters; all other electronic
circuits can be reused as they are. Moreover, the same
sensitivity Sϕm0(f) is expected in the same power condi-
tions.

A widely accepted rule of thumb states that the high-
est achievable unloaded merit factor of quartz resonators
is Q0ν0 = b, where b is an empirical constant whose value
is in the 1×1013 to 2×1013 Hz range. Because the instru-
ment sensitivity given by (4) is related to Q instead of Q0,
we can replace Q = (Q/Q0)(b/ν0) in that equation; the
ratio Q/Q0, that can be typically 0.5 to 0.8, accounts for
the loading effect of the measurement circuit. Thus, un-
der the hypothesis of two equal resonators, the instrument
sensitivity is

σy0(τ) =
Q0

Q

√
ln 2
2b

√
Sϕm0(1 Hz)ν0 (8)

where Sϕm0(1 Hz) = fSϕm0(f) is the flicker noise of the
instrument extrapolated to 1 Hz.

Fig. 8 reports the sensitivity derived from (8) evalu-
ated for a reference situation, in which b = 1.4 × 1013

and Q/Q0 = 0.7. Each line refers to a particular value
of the extrapolated flicker Sϕm0(1 Hz), and it is labeled
with the minimum dissipated power with which that value
of Sϕm0(1 Hz) can be obtained according to the reported
experience. The flicker floor of some high performance os-
cillators is also reported for reference.

As ν0 increases, resonators exhibit lower Q, which pro-
portionally impairs the instrument sensitivity. On the
other hand, the flicker floor of the complete oscillator in-
creases with the same law. This is not surprising because
the sensitivity of the measurement instrument and the sta-
bility of the quartz oscillator depend on the loaded Q with
the same law. Therefore, no additional difficulty is ex-
pected to extend the proposed instrument to the whole

Fig. 8. Expected performances of the noise measurement system as a
function of the carrier frequency. For reference, the stability of some
oscillators is also reported.

frequency range of actual interest, from 1 to 200 MHz or
more.
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