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Abstract—The Three-Cornered Hat is a widely used method
to measure the oscillator stability (variance) by comparing three
statistically independent units. The Grolambert (two-sample)
Covariance (GCOV) is an alternate and equivalent approach,
which has the advantage of rejecting the instrument PM noise.
This method, left aside in the early time when the time-domain
analysis was used only for slow phenomena, is now of renewed
interest for recent oscillators (sapphire and photonic oscillators,
and femtosecond combs) which exhibit the highest stability at
short term.

We revisit the Groslambert Covariance, we compare it to the
Three-Cornered Hat, and we show analytically and experimen-
tally its appealing properties.

Keywords—Phase noise, Stability analysis, Time-domain anal-

ysis, Covariance.

I. INTRODUCTION

The Three-Cornered Hat method addresses the problem of
estimating the variance �2

A, �2
B and �2

C of three oscillators,
based on three measures �2

ab, �2
bc and �2

ca, each involving two
clocks [1]. The solution is
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bc
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�2
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ca � �2
ab

�

Two obvious hypotheses are required, that the oscillators are
statistically independent, and that the three measures overlap in
time. This is a textbook case with classical variances, and also
applies to Allan variance (AVAR), modified Allan variance
(MVAR), parabolic variance (PVAR), and other two-sample
variances. For this reason, the Three-Cornered Hat is the
standard method for comparing oscillators, when a reference
(more stable) oscillator is not available.

The weakness of the Three-Cornered Hat is that the phase
noise of the instruments (chiefly white and flicker PM) biases
�2
ab, �2

bc and �2
ca by a positive amount. Negative values of

�2
A, �2

B and �2
C are sometimes seen for this reason. Until

recently this weakness had small relevance because the AVAR
is generally used for timekeeping and for long-term applica-
tions (⌧ & . . . 1000 s), where the instrument phase noise is
negligible. In fact, in the presence of white and flicker of phase,
AVAR rolls off proportionally to 1/⌧2. By contrast, the two-
sample variances are progressively being used for the short-
term stability of photonic oscillators and femtosecond combs,
with ⌧ sometimes even below 1 ms.

A different approach was proposed by Groslambert &
al. [2], [3] in 1981, based on the two-sample covariance.

In this way, the instrument PM noise is not squared in the
calculation of �2

A, �2
B and �2

C , and therefore the measure is
not biased. Unfortunately, this method received little attention
in the 1980’s, and was soon forgotten. The reason is, again, that
the two-sample variances were used for long-⌧ analysis, while
spectral methods were preferred for fast noise phenomena.

We revisit the two-sample Covariance, proving analytically
its noise properties and providing experimental evidence of its
advantageous features, compared with the Three-Cornered Hat.

Whereas this method could have been called the Allan
Covariance and was used by Groslambert as the Cross-
Variance by analogy to the Cross-Spectrum, we recommand
to denominate it Groslambert Covariance (GCOV) in tribute
to Jacques Groslambert (1938–2012).

II. STATEMENT OF THE PROBLEM AND NOTATIONS

A. Measurement principle

We consider the measurement process described in figure 1.
We assume that the noises coming from the measuring device
(Time Interval Counter, phasemeter, . . . ) are uncorrelated. As
well, we assume that the clocks are uncorrelated.

B. Notations

In the following, we will denote:

• xIk the time error (phase) of clock I at time tk (I 2

{A,B,C})

⇠

clock A

xA

⌫0
start

TIC / 'M ab

⇠ab

�ab

⇠

clock B

xB

⌫0
start

TIC / 'M bc

⇠bc

�bc

⇠

clock C

xC

⌫0
start

TIC / 'M ca

⇠ca

�ca
stop

stop

stop

Fig. 1. Measurement principle. TIC stands for Time Interval Counter and
'M for phasemeter.
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• yIk the frequency deviation of clock I averaged over
[tk�1, tk]:

yIk =
xIk � xIk�1

⌧
(1)

where ⌧ is the sampling period

• zIk the time differential zIk = yIk � yIk�1

Similarly, let’s define:

• ⇠ijk the phase-time noise induced by the measuring
device ij at time tk (i, j 2 {a, b, c})

•  ijk the related fractional frequency noise averaged
over ⌧ , i. e. the time derivative of ⇠ijk,  ijk =
⇠ijk�⇠ijk�1

⌧ (i, j 2 {a, b, c})

• ⇣ijk the time differential ⇣ijk =  ijk �  ijk�1.

At time tk, the output of the instrument ij connected to
the clocks I and J delivers the phase-time measurement �ijk:

�ijk = xJk � xIk + ⇠ijk. (2)

from which we can derive, as we did for (1), the measured
frequency deviation of the two clocks ⌘ijk:

⌘ijk =
�ijk � �ijk�1

⌧
. (3)

From (2) and (3), it comes:

⌘ijk = yJk � yIk +  ijk. (4)

Finally, let us define �ijk, the time differential of ⌘ijk:

�ijk = ⌘ijk � ⌘ijk�1 = zJk � zIk + ⇣ijk. (5)

C. Neglecting the measurement noises

If we provisionally drop the measurement noises {⇠, , ⇣},
we may either verify the convergence of the Three-Cornered
Hat method or the Groslambert Covariances.

Let us denote �̂2
I (⌧) the estimate of the Allan variance of

clock I obtained by using the Three-Cornered Hat method.
For example, for the Three-Cornered Hat method, the Allan
variance of clock B may be estimated from:

�̂2
B(⌧) =

1

2

⇥

�2
ab(⌧) + �2

bc(⌧)� �2
ca(⌧)

⇤

(6)

with

�2
ab(⌧) =

1

2
E[�2ab] =

1

2

�

E[z2B ] + E[z2A]� 2E[zBzA]
 

.

Since the clocks are uncorrelated, it comes:

�2
ab(⌧) = �2

B(⌧) + �2
A(⌧).

Similarly, �2
bc(⌧) = �2

C(⌧) + �2
B(⌧) and �2

ca(⌧) = �2
A(⌧) +

�2
C(⌧). From these relationships, we can easily verify that (6)

is valid.

On the other hand, the Groslambert Covariance of clocks
A and B is defined as:

GCOVA,B(⌧) =
1

2
E[zAzB ]. (7)

Let us denote �̃2
I (⌧) the estimate of the Allan variance of clock

I obtained by using the Groslambert Covariance method. The
use of this covariance relies on:

�̃2
B(⌧) = �GCOVab,bc(⌧) = �

1

2
E[�ab�bc] (8)

with synchronous measurements of the counters ab and bc.
It must be highlighted that this condition is essential for
the Groslambert Covariances whereas the Three-Cornered Hat
method can skip this condition under the assumption of sta-
tionarity.

Neglecting the ⇣ terms in (5), it comes:

�̃2
B(⌧) = �

1

2

�

�E
⇥

z

2
B

⇤

+ E [zBzC ]

�E[zAzC ] + E[zAzB ]} . (9)

Since the clocks are uncorrelated:

�̃2
B(⌧) =

1

2
E
⇥

z

2
B

⇤

= �2
B(⌧).

III. INFLUENCE OF THE MEASUREMENT NOISES

A. The Three-Cornered Hat method

Let’s resume (6) without neglecting the measurement noise:

�2
ab(⌧) =

1

2
E[�2ab] =

1

2
E
n

[zB � zA + ⇣ab]
2
o

Since the clocks and the measurement noise are uncorre-
lated, only the quadratic terms have a mathematical expectation
which is not 0:

�2
ab(⌧) =

1

2

�

E
⇥

z

2
B

⇤

+ E
⇥

z

2
A

⇤

+ E
⇥

⇣2ab
⇤ 

. (10)

Similarly,

�2
bc(⌧) =

1

2

�

E
⇥

z

2
C

⇤

+ E
⇥

z

2
B

⇤

+ E
⇥

⇣2bc
⇤ 

(11)

and

�2
ca(⌧) =

1

2

�

E
⇥

z

2
A

⇤

+ E
⇥

z

2
C

⇤

+ E
⇥

⇣2ca
⇤ 

. (12)

From (6) it comes:

�̂2
B(⌧) =

1

2
E
�

z

2
B

�

+
1

4

⇥

E
�

⇣2ab
�

+ E
�

⇣2bc
�

� E
�

⇣2ca
�⇤

.

If we denote �2
 ij(⌧) the Allan variance of the noise of the

instrument ij, it comes:

�̂2
B(⌧) = �2

B(⌧) +
1

2

⇥

�2
 ab(⌧) + �2

 bc(⌧)� �2
 ca(⌧)

⇤

. (13)

Therefore, this estimation of �2
B(⌧) is affected by the

noise of the measuring devices.
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B. The Groslambert Covariance

Resuming (8) without neglecting the measurement noise
leads to:

�̃2
B(⌧) = �

1

2
E [(zB � zA + ⇣ab) (zC � zB + ⇣bc)] (14)

Since the clocks and the measurement noises are uncor-
related, only the products whose factors are the same have a
mathematical expectation which is not 0:

�̃2
B(⌧) =

1

2
E
⇥

z

2
B

⇤

= �2
B(⌧). (15)

Therefore, the estimation of �2
B(⌧) by using the

Groslambert Covariance is not affected by the noise of
the measuring devices.

C. Estimating the noise of each counter

Generalizing (13) and (15) to all clocks, it comes:
8

<

:

2
⇥

�̂2
A(⌧)� �̃2

A(⌧)
⇤

= �2
 ab(⌧)� �2

 bc(⌧) + �2
 ca(⌧)

2
⇥

�̂2
B(⌧)� �̃2

B(⌧)
⇤

= �2
 ab(⌧) + �2

 bc(⌧)� �2
 ca(⌧)

2
⇥

�̂2
C(⌧)� �̃2

C(⌧)
⇤

= ��2
 ab(⌧) + �2

 bc(⌧) + �2
 ca(⌧).

Adding each pair of equations of this system leads to:
8

<

:

�2
 ab(⌧) = �̂2

A(⌧)� �̃2
A(⌧) + �̂2

B(⌧)� �̃2
B(⌧)

�2
 bc(⌧) = �̂2

B(⌧)� �̃2
B(⌧) + �̂2

C(⌧)� �̃2
C(⌧)

�2
 ca(⌧) = �̂2

C(⌧)� �̃2
C(⌧) + �̂2

A(⌧)� �̃2
A(⌧)

(16)

Thanks to (16), it is then possible to estimate the Allan
variance of the noise of each counter.

D. The closure

Adding the frequency deviations obtained from each
counter at a given time tk leads to a very useful closure
relationship:

⌘abk + ⌘bck + ⌘cak = yBk � yAk +  abk

+yCk � yBk +  bck

+yAk � yCk +  cak

=  abk +  bck +  cak. (17)

The Allan variance of the closure, i.e. the Allan variance of
the sum of the frequency deviations measured by the counters,
is given by:

�2
cls(⌧) = �2

 ab(⌧) + �2
 bc(⌧) + �2

 ca(⌧). (18)

In addition to (16), the closure relationship (18) gives
another way of estimating the sum of the Allan variances of
the counter noises.

E. Uncertainty assessment

From these derivation, we can obtain a quick assessment
of the variance estimation. A rigorous method providing con-
fidence interval will be developed in a future paper.

1) Three cornered hat method: From (6), we see that the
variance estimate �̂2

B(⌧) is the sum and difference of the three
Allan variance estimates of the clock intercomparison. Each
intercomparison Allan variance estimate is �2-distributed with
a number of Equivalent Degrees of Freedom (EDF) which
depends on the integration time ⌧ . For the shortest integration
times, the EDF number is high enough to approximate the �2

distribution to a Laplace-Gauss law. The sum and difference
of 3 Gaussian estimate is then also a Gaussian estimate. Let us
denote by �ab, �bc and �ca the uncertainties of, respectively,
�̂2
ab(⌧), �̂

2
bc(⌧) and �̂2

ca(⌧). The uncertainty over �̂2
B(⌧) is then:

�B =
p

�ab2 +�bc2 +�ca2. (19)

In some cases, �B may be greater than �̂2
B(⌧) causing

negative estimates.

2) Groslambert Covariance method: Replacing the math-
ematical expectations of (14) by finite averages yields:

�̃2
B(⌧) = �

1

2
h[zB � zA + ⇣ab]⇥ [zC � zB + ⇣bc]i

=
1

2

⌦

z

2
B

↵

�

1

2
{hzAzBi+ hzBzCi � hzCzAi}

�

1

2
{�hzA⇣bci+ hzB⇣bci � hzB⇣abi+ hzC⇣abi}

�

1

2
h⇣ab⇣bci . (20)

Only the first term is �2 distributed, the other ones are centered
Bessel probability laws [4].

• Short integration times: In this case, each product
is averaged over a large number of terms m and,
thanks to the Central Limit Theorem, the average
of centered Bessel random variables may be likened
to a centered Gaussian with a standard deviation
equal to the product of the standard deviation of
the factors divided by the square root of m. For
instance, hzAzBi = 1

2m

Pm
i=1 zAizBi may be assumed

as a centered Gaussian random variable of standard
deviation �A(⌧)�B(⌧)p

m
.

On the other hand, 1
2

⌦

z

2
B

↵

is a �2 random variable
with m degrees of freedom. Since m is large for
short integration times, the �2

m may be likened as
a Gaussian random variable of mean �2

B(⌧) and of
standard deviation 2�2

B(⌧)/
p

m [5].
Thus, the uncertainty over �̃2

B(⌧) may be assessed by:

�B =
1

p

m

⇥

4�4
B(⌧) + �2

A(⌧)�
2
B(⌧)

+�2
B(⌧)�

2
C(⌧) + �2

C(⌧)�
2
A(⌧)

+�2
A(⌧)�

2
 bc(⌧) + �2

B(⌧)�
2
 bc(⌧)

+�2
B(⌧)�

2
 ab(⌧) + �2

C(⌧)�
2
 ab(⌧)

+�2
 ab(⌧)�

2
 bc(⌧)

⇤1/2
. (21)

• Large integration times: In this case, the counter noise
is negligible and the Allan variance estimate obtained
by the Groslambert Covariance is very close to the
one obtained by the Three-Cornered Hat method.
Therefore, the uncertainty assessment described in §

III-E1 may be used.
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F. Efficiency of the Groslambert Covariance method

From (21), we can estimate the efficiency of the Groslam-
bert Covariance method. If we assume that the last term
is prevailing and that �2

 ab(⌧) ⇡ �2
 bc(⌧) = �2

 (⌧), the
uncertainty may be simplified as �B = �2

 (⌧)/
p

m. The
limit of efficiency of the method is then reached if �B is of
the order of magnitude of �2

B(⌧). This leads to the following
inequality:

�2
 (⌧) <

p

m�2
B(⌧). (22)

For instance, if the number of frequency deviation samples
is N = 10000, the number of terms in the Allan variance
computation for ⌧ = ⌧0 is m = N � 1 and it is possible to
estimate �2

B(⌧) even if it is 100 times lower than the counter
noise Allan variance.

IV. APPLICATION TO REAL MEASUREMENTS

We used this method for measuring ultra-stable signal
sources, as the ones of three Cryogenic Sapphire Oscillators
(CSO) at Femto-ST and the ones generated by an Optical
Frequency Comb (OFC) at INRIM.

A. Application to stability measurement of Cryogenic Sapphire
Oscillators

We used this method for measuring the stability of 3
Cryogenic Sapphire Oscillators (CSO). Fig. 2 shows the Allan
Deviation plot of one of the 3 CSO. The advantage of using
the Groslambert Covariance is clearly visible on the first
measurements (for ⌧ < 10 s). Obviously, this method is very
useful when the measurement noise is not negligible regarding
the oscillator noise, i.e. at short term and very short term: the
more the sampling rate increases, the more the gain of the
Groslambert Covariance is conspicuous.

However, for long term, neither method is able to measure
the Allan variance of CSO 1 because it is significantly lower
than those of the other CSO, causing negative AVAR estimates,
i.e. imaginary ADEV estimates (see § III-E).

Using (16) and (18), we notice that the Allan variances of
the counter noise of the different channels are oddly scattered:

8

<

:

�2
 CSO1,CSO2(⌧) = 0.71�2

cls(⌧)
�2
 CSO2,CSO3(⌧) = 0.22�2

cls(⌧)
�2
 CSO3,CSO1(⌧) = 0.07�2

cls(⌧).

This discrepancy of the channel noise levels explains that
the three cornered hat method failed in computing the Allan
variance of CSO3 for short integrations times (see Figure 2
below):

�̂2
CSO3(⌧) = �2

B(⌧) +
1

2
(�0.71 + 0.22 + 0.07)�2

cls(⌧)

= �2
B(⌧)� 0.21�2

cls(⌧).

For ⌧ = 0.4 s, �̃2
CSO3(⌧) = 1.3 · 10�30 (i.e. �̃CSO3(⌧) = 1.1 ·

10�15), �2
cls(⌧) = 6.1 · 10�29 (i. e. �2

cls(⌧) = 7.8 · 10�15) and
then �̂2

CSO3(⌧) = �1.2·10�29 (i. e. �̂CSO3(⌧) = 3.4·10�15i).
Thus, �̂2

CSO3(⌧) is negative and �̂CSO3(⌧) is imaginary.

Of course, the estimate �̃2
CSO3(⌧), obtained by using the

Groslambert Covariance method, is not affected by this effect.

Fig. 2. Allan Deviation plot of the 3 CSO obtained with the classical Three-
Cornered Hat (blue) and with the Groslambert Covariances (green). The curves
captioned as “Complex values” shows negative Allan variance estimates and
then note measurable variances. For CSO3, the short term stability is only
measurable with the Groslambert Covariance because the noise levels of the
3 counters are completely different. For CSO1, its long term instabilities are
significantly lower than those of the other CSO and are not measurable by
any of the 2 methods.
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Fig. 3. Allan deviation plot of the comb, the reference Hydrogen Masers
and the closure obtained with the Groslambert Covariance method. The curves
denoted “-HM3” (cyan) and “-HM4” (magenta) show negative variance values
(i.e. imaginary deviation values) resulting from the inability of the method to
detect the H-Maser instabilities, completely negligible compared to those of
the OFC.

B. Application to stability measurement of an Optical Fre-
quency Comb

We characterized the 100 MHz signal generated by a
MENLO OFC referred to a 1542 nm ultra-stable laser with
respect to four active hydrogen masers [6]. The instrument we
used is a 6-channel synchronous phasemeter that implements
the tracking DDS technique. The single-channel residual phase
noise with respect to the internal reference is 2.1 · 10�14@1 s
(fh = 10 Hz, flicker phase noise).

The signal at the output of the comb was split to feed
two channels, because the noise of the comb was expected
to be of the same order of the single channel one and we
intended to take full advantage of the 2-sample covariance.
The masers, instead, were connected without splitting, being
their noise higher. Here, for brevity, we consider only the two
best masers we have: CH1-75A from Kvarz [7] here referred
as HM3 and iMaser 3000 from T4Science [8], indicated as
HM4.

The results of the Groslambert Covariance method are
presented on Figure 3. For large integration times, the Allan
variance estimates, whatever the method (i.e. 3-cornered hat
as well as GCOV) of the H-Masers becomes negative because
their instabilities are far below the ones of the comb. Therefore,
the large uncertainties over the AVAR estimates can lead to
negative values when (6) is applied (see § III-E).

Moreover, Figure 3 shows that, for short integration times,
the closure Allan variance is of the order of magnitude of
the OFC AVAR and significantly lower than the ones of the
Hydrogen Masers. Here also, applying (16) shows that the
measurement noises are quite different from one channel to
the other:

8

<

:

�2
 HM4,OFC(⌧) = 0.485�2

cls(⌧)
�2
 OFC,HM3(⌧) = 0.515�2

cls(⌧)
�2
 HM3,HM4 ⇡ 0.

Fig. 4. Enlargement of the Allan deviation plot of the comb for the
shortest time integrations obtained with the classical Three-Cornered Hat
(blue) and with the Groslambert Covariances (green). The difference between
the estimates of the Allan variance of the comb obtained by these two methods
is the Allan variance of the closure divided by 2.

This is due to the measurement scheme which is different from
the one described in this paper: with a 5-channel scheme,
it is not possible to discriminate the instrument noise from
the oscillator one (if only one channel per oscillator is used)
and so HM4-HM3 appears to be measured with a noiseless
instrument.

As a consequence, the Allan variance of the OCF obtained
by using the Three-Cornered Hat method is equal to the Allan
variance of the OCF obtained by using the GCOV method plus
half of the Allan variance of the closure (see Figure 4):

�̂2
OCF (⌧) = �̃2

OCF (⌧) +
1

2

⇥

�2
 HM4,OFC(⌧)

+�2
 OFC,HM3(⌧)� �2

 HM3,HM4

⇤

= �̃2
OCF (⌧) +

1

2
[0.485 + 0.515� 0]�2

cls.

Thus, the estimation using GCOV is better because the con-
tribution of the instrument noise averages to zero.

V. CONCLUSION

The Groslambert Covariance presents the advantage of
rejecting the measurement noise and then optimizes short term
stability measurements. This method is not more difficult to
implement than the Three-Cornered Hat but must respect the
simultaneous measurements of all channels of the measuring
instrument. Whenever this is possible, it is then highly recom-
mended to use the Groslambert Covariances.
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