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Abstract—Their article reports on the measurement of phase
noise and amplitude noise of direct digital synthesizers (DDS),
ultimately intended for precision time and frequency applications.
The DDS noise S'(f) tends to scale down as 1/⌫2

0 , until the
noise hits the limit due to the output stage. The spurs, however
disturbing in general, sink power from the white noise. Voltage
noise can be more critical in the digital power supply than in the
analog supply. Temperature fluctuations are an issue at 10�3. . . 1
Hz Fourier frequency. Passive stabilization (thermal mass) proves
to be useful. Other paramours affect the phase noise, like the
clock frequency and power. The amplitude 1/f noise is of the
order of �110 dB(V2/V2)/Hz in some reference (typical)
conditions.

Owing to the page and file size limitations, only a small part
of the available data can be published here. An extended and
free version of this article is available on http://rubiola.org and
on http://arxiv.org.

I. INTRODUCTION

After the original article [1] published more than 40 years
ago, the DDS is now a mature piece of technology. The devel-
opment has been pushed by the semiconductor technology and
by applications. The DDS owes its success to the frequency
range (dc to GHz and beyond), to the high resolution (µHz),
to the fast frequency switching (sub-µs), to the small size and
power, and to the suitability to almost-all-digital single-chip
implementation. The newcomer can refer to a technical tutorial
[2] and to two books [3], [4].

With the availability of single-chip DDSs in the 1980s,
phase noise and spurs were on the stage (see for instance
[5], [6], [7], [8]), and an exact and computationally efficient

Figure 1. DDS scheme.

solution for spurs was found [9]. However, a number of
experimental issues of phase noise are not addressed properly
in the literature, and amplitude noise is totally absent. We
target filling this gap.

A. Notation

Following the general notation of frequency metrology (see
for example [10], [11]), the clock signal is written as v(t) =
V0 [1 + ↵(t)] cos [2⇡⌫0t + '(t)], where ↵(t) is the random
fractional amplitude, and '(t) is the random phase. As usual,
we describe such noise in term of S↵(f) and S'(f), i.e., the
single-sided power spectral densities of ↵(t) and '(t). The
spectra are approximated with the polynomial law, using S↵ =P

i hif i and S' =
P

i bif i.

II. DDS OPERATION

Referring to the block diagram of Fig. 1 and to the state
representation of Fig. 2, the DDS is governed by

nk = (nk�1 + N ) mod D , (1)

Figure 2. DDS state variable, and its relationships to the output phase.
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where nk is the state variable at the integer time, D = 2m is
the modulo, m is the number of bits of the phase accumulator
(D register), t = k/⌫s is the time, and ⌫s is the clock
frequency. At each clock rising edge, the accumulator is
incremented by the value N of the control word, and the carry
is discarded when the accumulator overflows. This mechanism
gives the output frequency

⌫0 =
N
D ⌫s . (2)

The sampling theorem requires that ⌫0  1
2⌫s, or ⌫0 / 0.4⌫s

accounting for the rolloff of a real lowpass. Higher frequency
operation is allowed, selecting an alias with a bandpass.

The state variable n is converted into sinus and cosine
by the look-up table, and further converted into the output
analog signals by the two DACs. The look-up table is
functionally a read-only memory, though the implementation
is quite different. The design is generally determined by the
high speed, made possible by the low normalized slew rate of
the sinusoid (2⇡), which makes small the difference between
contiguous data.

a) Frequency resolution: Since the control word N can
be set with the resolution of one, the frequency resolution is

⌫res =
1

D ⌫s . (3)

For example, a 48 bit DDS has D = 2m = 2.8⇥1014, thus
a resolution of 3.6 µHz at 1 GHz clock frequency. Such
resolution is sufficient for virtually all practical applications,
and also gives the opportunity to implement accurate phase
or frequency modulation. Owing to the low cost and power
of the digital circuits, there are little reasons to choose a
significant smaller value of m. For instance, with m = 32
bits the resolution would be of 233 mHz at 1 GHz clock. So,
most DDSs have m = 48 bits, while 32 bits is reserved to
extremely-high frequency implementations, or then the power
is a critical issue. Other values are seldom encountered.

III. NOISE AND SPURS

A. The Egan model for phase noise

Figure 3 shows a model for phase noise in frequency
synthesis, inspired to the Egan’s article on digital dividers [12].
Assuming that the synthesizer core is noise free, the input
phase-time x — i.e., the time jitter — is transferred from the
input to the output as it is. Since the unit of angle scales up
as D/N , S'(f) scales down as (N/D)

2. Of course, this also
applies to the noise of the input stage. Below a given ⌫0, the
input noise scaled down hits the phase noise of the output
stage, set by the SNR (white) and by the up-conversion of
near-dc noise (flicker and temperature fluctuations).

However, there is a significant difference between the simple
digital divider and the DDS. The divider samples the phase
noise at the rising edges of the output, at the rate ⌫0 = ⌫s/D
(the divider has N = 1). In the cases of white noise this
increases S'(f) by a factor of D, hence overall S'(f) scales
down as 1/D instead of 1/D2. Conversely, the DDS samples
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Figure 3. Phase noise model for a frequency synthesizer.

the output at the full clock rate ⌫0. Therefore S'(f) scales
down as 1/D2.

B. Quantization noise

Assessing the resolution, we notice that the number q of
DAC bits is the most severe technical limitation, related to the
sampling frequency. For reference, at 1 GHz maximum clock
we find 14 bit converters (Analog device AD9912).

The voltage associated to the least significant bit is VLSB =
VFSR/2q , where FSR is the (peak-to-peak) dynamic range.
The symbols VLSB and VFSR are consistent with the technical
literature. If q is large enough (at least 8 bits) and the signal
uses the dynamic range efficiently, the quantization noise has
rectangular distribution in ± 1

2VLSB. This is granted by the
Wiener-Khintchine theorem for stationary ergodic systems,
which states that the statistical properties can be calculated
interchangeably in the ensemble or in the time domain. The
variance is �2 = 1

12V 2
LSB = V 2

FSR/(12⇥22q). Assuming that the
quantization noise is a true random process with no structure,
by virtue of the sampling theorem the noise spectrum is uni-
formly distributed from 0 to the Nyquist frequency B = 1

2⌫s.
The Parseval theorem states that the power calculated in the
time domain and in the spectrum is the same. Denoting the
white noise level with N , the Parseval theorem gives

N =
V 2

FSR
6 ⇥ 22q ⌫s

. (4)

The signal power is 1
8V 2

FSR. Thus, the white phase noise b0 =
N/P0 turns into

b0 =
4

3

1

22q ⌫s
rad2/Hz . (5)

The results discussed in this paragraph derive from a seminal
article by Bennet [13], adapted to phase noise. For example,
a 14 bit coverer at the sampling frequency ⌫s = 400 MHz
yields a white noise of �169 dBrad2/Hz.

C. DAC resolution

Given the 32–48 bit resolution of the phase accumulator,
it is obvious that the DAC resolution cannot be that high.
The DAC has a number q of bits that is determined by the
frequency and by the available technology. Accordingly, the
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Figure 4. A simulation shows a reduction in the noise floor related to the
presence of some spurs.

state variable must be truncated by discarding the appropriate
number m � p of bits. The minimum number p of bits at
the input of the look-up table is determined by the need of
preserving the DAC resolution, and estimated using the fact
that the slew rate of the sinusoid, normalized to ⌫s and to the
full-scale range VFSR is equal to ⇡. Hence, the digital resolution
at the look-up table input must be pmin = q+log2(⇡), rounded
to pmin = q + dlog2(⇡)e = q + 2. The value p = q + 5 is
often encountered.

b) Truncation and spurs: Deriving Eq. (4), we assumed
that the quantization noise is white, as it happens in most
data acquisition systems. The DDS is more complex because
the truncation of the state variable (p < m) introduces a
deterministic error governed by the arithmetic of reminders
in Eq. (1).

For the sake of heuristic reasoning, we assume that the phase
error is determined only by p. letting aside the relationship
between p and q. For example, a 48 bit DDS (m = 48) may
have p = 16. Accordingly, two contiguous values of the analog
output are separated by 2m�p � 1 = 248�16 � 1 ' 4.3⇥109

invisible values of n.
The rotating vector (angle ✓k of Fig. 2) gives a sawtooth-

like phase error distributed in ± ⇡
2m�p , and sampled at the

frequency ⌫s. Such sawtooth contains harmonics beyond the
Nyquist frequency, which are aliased down and brought into
the output bandwidth. This phenomenon gives rise to a bunch
of spurs which change suddenly as N is changed. The struc-
ture introduced by the spurs breaks the hypothesis that the
quantization noise is white. The most amazing consequence
is that the power of such spurs comes at expenses of the
floor, and therefore the floor is lower than the value given by
Eq. (5). This concept is confirmed by the simulation shown in
Fig. 4, based on the parameters of the AD9854 in the same
configuration of some experiments.

Interestingly, the spurs are generally not seen at the low
resolution of a regular spectrum analyzer, but they show
up when observed at the high frequency-resolution usually
achieved in phase noise measurements. The sawtooth-like
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Figure 5. AD9854 phase noise measured at different output frequencies.
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Figure 6. AD9912 phase noise measured at different output frequencies.

phase error has a long period referred to as the grand repetition
rate GRR = D

gcd(N ,D)
1
⌫c

.

D. Nonlinearity

The DAC nonlinearity generates harmonics, integer multi-
ples of ⌫0. The harmonics that exceed the Nyquist frequency
1
2⌫s are brought to the output bandwidth by aliasing.

IV. PHASE NOISE

A. Experimental method

We experimented on three samples, an AD9854 demo board,
an AD9912 demo board, and a home made AD9854 board.
Our board gives flexibility in the configuration of the output
stage. We used a traditional saturated mixer, and also the
Symmetricom TSC5120A and TSC5125A test sets. The
latters can compare the phase of two signals at different
frequencies, and rejects the background noise by correlation
and averaging on multiple spectra.

B. Phase noise

Figures 5 and 6 show the phase noise of the two DDSs,
measured at different output frequencies. We see that the
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Figure 7. Phase noise of the output stage, measured by comparing the phase
difference between the I output and the Q output.

Figure 8. AD9854 phase noise measured at different output amplitudes

flicker noise scales down as the output frequency (�6 dB
per factor-of-two), until it hits the noise of the output stage.
Unfortunately, both figures suffer from noise in the supply
line, which was fixed later.

The AD9854 has two outputs in quadrature, which we
exploit to measure the phase noise of the output stage. In
fact, the I � Q phase noise contains only the noise of the
two DACs, including their own clock circuits, and the output
buffer. Looking at Fig. 7, the flicker is generally 10 dB lower
than that of the whole DDS, but it hits the same value at low
output frequency. This confirms our conclusion that the lowest
flicker in Figures 5 and 6 is that of the output stage.

Unfortunately, this experiment does not reveal the DDS
white noise. This happens because the measurement was done
with an AD8002 output buffer instead of a RF amplifier. This
choice was made for different purposes, because the AD8002
provides kHz output, at the cost of large white noise.

Figure 8 shows the AD9854 phase noise measured at
different output amplitude levels. While the flicker is constant,

Figure 9. Phase noise spectra with a small change in the control word.

File: dds-AD9912-voltage-coefficient
Source: AD9912_1.8V-Sensitivity vs nu0.pdf

Figure 10. Power-supply rejection of the AD9912 1.8 V line, measured by
switching the supply voltage by ±5% around the nominal value.

the white noise scales up by 6 dB per factor-of-two as the
amplitude decreases. This is a consequence of the AD9854
specific architecture, which uses digital multiplication to set
the output level. So, a lower level is obtained by sending
smaller integers to the DAC, which is equivalent to using less
bits.

Most of the spectra we measured show steep slope at Fourier
frequencies below 1 Hz. This is due to thermal fluctuations,
discussed further in this article.

Figure 9 shows two phase noise spectra observed with a
small change in the control word. As expected, the flicker is
the same and the spurs change dramatically. The floor, lower
than the prediction of Eq. (5) relates to the fact that the noise
is not white, and the spurs introduce a structure.

C. Power supply rejection

The AD9912 has two supply voltages, 1.8 V for digital cir-
cuits and 3.3 V for analog circuits. We measured a coefficient
of 15 ps/% for the 1.8 V fluctuations (Fig. 10). The constant
time shift, independent of the output frequency, is the signature
of a threshold issue. Converted in radians, this effect becomes
dramatic at high output frequencies. For instance, 15 ps/% is
equivalent to approximately 0.1 rad/V for the 1.8 supply at 25
MHz output. The effect of the fluctuations of the 3.3 V supply
is a factor-of-100 lower, thus negligible.

780



AD9912
400 MHz clock, 25 MHz out

INRIM
DDS

1.8-V fluctuations 
converted into S!

Figure 11. The supply-voltage noise impacts on the DDS phase noise.

Experience suggests that voltage regulators commonly used
for digital circuits are rather noisy. In some experiments we
used a LM1117MP-1.8 1.8 V regulator with a noise of 250
nV/

p
Hz, a bump at 30 kHz, and rolling off beyond. The

effect, shown in Fig. 11, shows up at about 1 kHz, and
becomes dominant at 10 kHz and above. We also come in
trouble with Ta capacitors. The AD9854 has similar poor
immunity to supply-voltage noise. Optimal filtering of the
supply lines is of paramount importance for low phase noise
applications, and the digital circuits are surprisingly more
critical than the analog circuits.

D. Thermal effects on the output phase

We measured the temperature sensitivity of the AD9912
in two ways, by heating the card in a temperature controlled
oven, and through the self-heating induced by a square wave
added to the supply voltage. The phase step is due to the
voltage fluctuation already discussed. Two thermal constants
are clearly identified in the transient, 10 s and 1 m, likely
due to the DDS chip and to the heat sink. After the transient,
the phase shift is due to the induced temperature change. The
reason is that the oven heats the whole board and cables, while
the self-heating acts only on the DDS chip. The results are in a
fair agreement for the two methods. Therefore, the additional
sensitivity due to the card and cables is smaller than that of
the DDS chip.

The AD9912 temperature coefficient (Fig. 12) is constant
vs. frequency (�2 ps/K) above 20 MHz, and shows a 1/⌫3

0

slope below. This is the signature of the fluctuation of a digital
threshold at high frequency, and likely of some kind of drift
in the analog electronics at low frequency.

The thermal resistance and capacitance of the heat sink
impact on the temperature fluctuations below 1 Hz, and in
turn on phase noise. Figure 13 shows the phase noise of a
AD9854 with two different heat sinks, a 0.64 cm3 Al cube,
and 150 cm3 fin heat sink originally intended for Peltier cells.
The combined effect of the 160 g mass and the low gradient
due to the conductance stabilizes the junction temperature,
and reduces the phase fluctuations. Below 2 Hz, and until
approximately 1 mHz, the large heat sink reduces the phase

Figure 12. Thermal coefficient of the AD9912 vs. the output frequency.
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Figure 13. Effect of the heat sink on the phase noise spectrum.

noise by some 10 dB/dec or more. Below 1 mHz, both heat
sinks are driven by the room temperature and the stabilization
effect vanishes.

E. Clock frequency and power.

The sampling theorem suggests that the white phase noise is
proportional to the reciprocal of the clock frequency, as stated
by Eq. (4) and (5). Besides, the integrated-circuit technology
sets a bound to the minimum and maximum clock frequency.
For example, the AD9912 must operated in the 200–1000 MHz
range. A significant degradation in the flicker noise shows
up at 50 MHz and 100 MHz clock. Conversely, the AD9912
seems to be tolerant to the clock amplitude in a range of at
least 15 dB, with no degradation of phase noise (Fig. 14). This
exceeds most practical needs.

V. APLITUDE NOISE

We measured the AM noise with the scheme of Fig. 15,
giving special attention to flicker. The method resorts to two
previous articles [14], [15]. The former describes the problems
specific to the measurement of AM noise, and the latter reveals
secrets and subtleties of the cross-spectrum method. In short,
since for small fluctuations the fractional amplitude noise is
equal to half the power fluctuation, the Schottky-diode power
detector proves to be a suitable transducer. The cross-spectrum
method is necessary because, unlike for PM noise, we cannot
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Figure 15. Scheme for the measurement of AM noise.

assess the background noise by removing the DUT because
relevant noise phenomena would vanish when the input signal
was set to zero. The cross spectrum provides accurate results
with easy implementation and calibration because under nor-
mal conditions the measured AM noise is not influenced by
the PM noise.

Figure 16 shows the AM noise measured on a sample of
AD9854. This Figure shows a smooth flicker process spanning
on 2–3 decades, with a coefficient h�1 between �105 and
�115 dBrad2/Hz. A minimum is present around 20 MHz. We
believe that this odd behavior is an outcome of the converter
technology, possibly related to some change in the operation
mode from low frequencies to high frequencies.

The core of a Spectra Dynamics LNFS 100 synthesizer is
an AD9852. The AM noise of this synthesizer was measured
at European Gravitational Observatory. The AM noise is of
the order of �110 dBrad2/Hz. Yet, we could not identify a
frequency range where the flicker noise is lower, as it happens
with the AD9854. However, general experience suggests that
the AM noise of amplifiers is significantly lower. Accordingly,
the observed AM flicker is ascribed to the DDS.
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