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Abstract— The oscillator, inherently, turns the phase noise of
its internal components into frequency noise, which results into
a multiplication by 1/f2 in the phase-noise power spectral
density. This phenomenon is known as the Leeson effect. This
article extends the Leeson effect to the analysis of amplitude
noise. This is done by analyzing the slow-varying complex
envelope, after freezing the carrier. In the case of amplitude noise,
the classical analysis based on the frequency-diomain transfer
function is possible only after solving and linearizing the complete
differential equation that describes the oscillator.

I. INTRODUCTION

The oscillator noise, which in the absence of environmental
or aging effect is cyclostationary, is best described as a
baseband process, after freezing the periodic oscillation. The
polar coordinate representation of the limit cycle splits the
model of the oscillator into two subsystems, in which all
signals are the amplitude and the phase of the main system,
respectively. Putting things simply, these two subsystems are
(almost) decoupled and all the nonlinearity goes to amplitude.
This occurs because amplitude nonlinearity is necessary for
the oscillation to be stationary. Conversely the phase, which
ultimately is time, is not stretchable.

The baseband equivalent of a resonator, either for phase
or amplitude is a lowpass filter whose time constant is equal
to the resonator’s relaxation time. Hence, the phase model
of the oscillator consists of an amplifier of gain exactly
equal to one and the lowpass filter in the feedback path,
as extensively discussed in [1]. The amplitude model is a
nonlinear amplifier, whose gain is equal to one at the stationary
amplitude and decreases with power, and the lowpass filter in
the feedback path. In the baseband representation both AM
and PM perturbations map into additive noise, even in the
case of flicker and other parametric noises. This model gives
a new perspective on the classical van der Pol oscillator.

The elementary theory of nonlinear differential equations
tells us that nonlinearity stretches the feedback time constant.
Asymptotically, the time constant is split into two constants,
one at the oscillator startup and one in stationary conditions.
If the gain varies linearly with amplitude, which is always true
for small perturbations, the oscillator can be solved in closed
form.

It is well known that the instability of the resonator natural
frequency contribute to the oscillator fluctuations, which in
some cases turns out to be the most important source of
frequency fluctuations. Nothing is known about the amplitude
fluctuation of the resonator. That said, the resonator instability

will not considered here. Standing upon our earlier works [1],
[2], this article presents an unified approach to AM and PM
noise in oscillators by analyzing the mechanism with which
the noise of the oscillator internal components is transferred
to the output.

After the pioneering work of D. B. Leeson [3], a number
of different analyses were published. Hajimiri and Lee [4],
[5], [6] proposed a model based on the “impulse-sensitivity
function” (ISF), which emphasizes that the impulse has the
largest effect on phase noise if it occurs at the zero-crossing
of the carrier. This model, mainly oriented to the description
of phase noise in CMOS circuits, is extended in [7]. Demir
& al. proposed a theory based on the stochastic calculus
[8], in which they introduce a decomposition of phase and
amplitude noise through a projection onto the periodic time-
varying eigenvectors (the Floquet eigenvectors), by which they
analyze the oscillator phase noise as a stochastic diffusion
problem. This theory was extended to the case of 1/f noise
[9], and inspired our work on the phase noise in opto-
electronic oscillators[10]. Though the article cited make use of
sophisticated mathematics, as compared to the simple methods
we propose, they give no or tiny attention to amplitude noise.
Finally, this article provides a unified theory for amplitude
and phase noise. This theory turns out to be particularly suit-
able to high stability oscillators, based on high quality-factor
quartz resonators, microwave whispering gallery resonators,
etc. Work is in progress to extend our method to the opto-
electronic oscillator.

II. BASICS

The simplest form of oscillator is a resonator with an
amplifier of gain A in closed loop that compensates for the
resonator loss1 1/β. Stationary oscillation takes place at the
angular2 frequency ω0 that verify Aβ = 1, which is known
as the Barkhausen condition. The actual oscillator can be
represented with the scheme of Fig. 1, which includes a gain
compression mechanism and noise. The gain compression is
necessary for the amplitude not to decay or diverge. Without
loss of generality we can normalize the loop elements so that
A = 1 and β = 1 at the oscillation frequency ω = ω0

and at the nominal output amplitude v = 1. The equivalent

1The quantity β is the resonator gain, so that 1/β is the resonator loss.
2We use interchangeably ω as a shorthand for 2πν for the carrier frequency,

and as a shorthand for 2πf for the offset (Fourier) frequency, making the
meaning clear with appropriate subscripts when needed but omitting the word
‘angular.’
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Fig. 1. Feedback oscillator and its decomposition in PM and AM models.

phase noise and amplitude noise at the amplifier input originate
frequency and amplitude fluctuations of the oscillator.

The oscillator is characterized by two time constants, the
inverse of the angular frequency ω0 and the resonator relax-
ation time τ . We assume that, as it occurs in most practical
cases, 1/ω0 and τ differ by at least two decades. In such
cases the oscillator behavior can be mathematically described
in terms of the slow-varying amplitude and phase as they were
decoupled from the oscillation. From a physical standpoint, the
resonator eliminates all the harmonics multiple of ω0 present
at the amplifier output, hence the only practical effect of the
nonlinearity is to reduce the gain at the fundamental frequency
ω0. Additionally, the resonator attenuates all the signals of
frequency not exactly equal to ω0, so that after a few roundtrips
only a quasi-sinusoidal signal is permitted in the loop.

In the slow-varying-signal representation the oscillator splits
into two subsystems, one for the phase and one for the
amplitude, as shown in the lower part of Fig. 1. Since phase
represents time, which cannot be stretched3, all the non-
linearity goes in the amplitude subsystem. Noise is introduced
in the loop. Interestingly, in this representation phase noise,
and amplitude noise as well, is additive even if it is of
parametric nature. Additionally, the amplifier gain is allowed
to fluctuate.

We are interested in the mechanism that governs the noise
propagation of the internal components to the oscillator output.
Virtually all oscillators are stable enough for the noise to
be a small perturbation to the stationary oscillations, and

3This is no longer true in extreme nonlinear oscillators, like the femtosecond
laser, which are out of our scope.

consequently for a linear model to be accurate for any practical
purpose. Linearization gives access to the Laplace-Heaviside
formalism. The response4 y(t) to the input x(t) is therefore
given by

y(t) = x(t) ∗ h(t) ↔ Y (s) = X(s)H(s)

where h(t) is the impulse response, i.e., the response to the
Dirac δ(t) function, H(s) is the transfer function, the symbol
‘∗’ is the convolution operator, the double arrow ‘↔’ stands
for Laplace transform inverse-transform pair, and s = σ+jω is
the Laplace complex variable. Given the input power spectral
density Sx(f), the output power spectral density is given by

Sy(f) = |H(jf)|2 Sx(f) .

Finding a representation suitable to linearization and the
transfer function of the oscillator parts rises some difficulties,
which will be solved in the next Sections.

III. RESONATOR LOW-PASS MODEL

The resonator is governed, or locally well approximated by
the differential equation

ẍ+
ωn
Q
ẋ+ ω2

n = ξ(t) ,

where ωn is the natural frequency, Q is the quality factor,
and ξ(t) the external force. After normalization, the resonator
responds to a sinusoid at the exact resonant frequency (ω0 =
ωn) with a sinusoid of the same phase and amplitude.

4Here x(t) and y(t) are generic functions of time, thus not the phase
time and the fractional frequency fluctuation commonly used in the oscillator
literature.
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Fig. 2. AM and PM response of a resonator.

Let us analyze the impulse response of the resonator phase
and amplitude at ω0 = ωn. Feeding δ(t) in the input phase,
the resonator responds with the phase bϕ(t)

input cos[ω0t+ δ(t)]
output cos[ω0t+ bϕ(t)]

Similarly, feeding δ(t) in the input amplitude, the resonator
responds with the amplitude bα(t)

input [1 + δ(t)] cosω0t

output [1 + bα(t)] cosω0t

It turns out that the resonator’s impulse response is the same
for amplitude and phase

bα(t) = bϕ(t) = b(t) ,

hence the subscript will be omitted. The proof for the phase
response is discussed extensively in [1], for only the guidelines
are given here. The proof for the amplitude response is almost
the same. Referring to Fig. 2, the response is calculated
replacing the perturbation with the Heaviside function

u(t) =
∫ ∞
−∞

δ(t) dt

and using the property of linear systems that the response to
u(t) is

∫
b(t) dt. The system is linearized by using a small

step κu(t) instead of u(t). After some boring, yet simple
mathematics we get

b(t) =
1
τ
e−sτ ↔ B(s) =

1/τ
s+ 1/τ

(1)

where

τ =
2Q
ωn

(relaxation time)
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ψ(t) ↔ Ψ(s) φ(t) ↔ Φ(s)

Fig. 3. Phase-noise model of the feedback oscillator.

is the resonator relaxation time. The inverse of τ is known as
the Leeson (cutoff) frequency of the resonator

ωL =
1
τ

=
ωn
2Q

fL =
1

2πτ
=
νn
2Q

.

Note that Equation (1) is that of a simple RC low-pass
filter, which we will use in all block diagrams.

IV. THE LEESON EFFECT

Figure 3 shows the phase-noise model of the oscillator.
In this figure, all signals are the phase fluctuation of the
oscillator sinusoidal signal. Here, the resonator turns into a
lowpass filter of time constant τ , as explained in Section III.
A noise-free amplifier has a gain exactly equal to one because
the amplifier repeats the phase of the input signal. The real
amplifier introduces? the random phase ψ(t), which in this
representation is additive noise, regardless of the physical
origin. For the sake of simplicity, we put in ψ(t) all the phase-
noise sources.

We define the phase-noise transfer function as

H(s) =
Φ(s)
Ψ(s)

.
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Applying the elementary feedback theory to the circuit of
Fig. 3 we find

H(s) =
1

1 + B(s)
,

where B(s) is the resonator transfer function (1), and therefore

H(s) =
1 + sτ

sτ
(Fig. 4) . (2)

This is the Leeson effect, by which the oscillator integrates the
slow phase fluctuation, turning it into frequency fluctuation.
The phase-noise transfer function is plotted in Fig. 4.

V. LOW-PASS MODEL OF THE OSCILLATOR AMPLITUDE

Figure 5 shows the low-pass model that describes the
oscillator amplitude. Since the gain A depends on amplitude,
the Laplace/Heaviside formalism cannot be used directly. We
first need to

A. Differential equation

Cutting the feedback loop at the amplifier input, we get

u = ε+ v2 ,

where v2 results from the lowpass filter

v2 =
1
τ

∫
(v1 − v2) dt .

Replacing v1 = Au and v2 = u− ε and combining the above
equations, we get

u̇− 1
τ

(A− 1)u =
1
τ
ε+ ε̇ (general equation) . (3)

Notice that (3) is general because A is still unspecified.
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Fig. 6. Most common types of gain saturation. The quantities u and v are
the rms amplitude at the carrier frequency.

B. Gain saturation

In large signal conditions, all amplifiers have some kind
of nonlinearity that limits the maximum output power.
Neglecting the band limitation, when a sinusoidal signal
Urf(t) = U1 cos(ω0t) at the input of an amplifier, the sat-
urated output can be written as the Fourier series Vrf(t) =∑∞
n=1 Vn cos(nω0t). The n = 1 term is the fundamental

and the n > 1 terms are the harmonics generated by the
nonlinearity. The effect of the band limitation is to change
(in most cases to reduce) the amplitudes Vn and to introduce
a phase in each sinusoidal term. In a linear amplifier only the
fundamental is present at the output, thus Vn = 0 ∀n ≥ 2.

In the case of the oscillator, the resonator allows only the
fundamental to be feed back to the input, for the harmonics
can be neglected. Hence, the oscillation amplitude is described
using the slow-varying signals u and v instead of the instan-
taneous peak amplitudes U1 and V1. The amplifier gain is

A =
v

u
,

which of course is equivalent to A = V1/U1.
Figure 6 shows the gain saturation types most frequently

encountered and described underneath. The plot is normalized
for A = 1 when the input signal is u = 1, where it can be
linearized as

A = 1− γ(u− 1) . (4)

Of course u = 1 is the oscillation regime we refer to. In all
cases the small-signal gain is denoted with A0. Notice that A
is referred to the input amplitude. It is necessary that

0 ≥ dA

du
> −1 , (5)

thus

0 ≤ γ < 1 . (6)

The first condition means that A can only decrease increasing
the input. The second condition is equivalent to state that
output amplitude cannot decreases when the input is increased.
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Fig. 7. Oscillator startup.

1) Quadratic (van der Pol): In the classical van der Pol
oscillator [], the amplifier input-output function is defined as
y = x − x3. Feeding the signal Urf(t) = U1 cos(ω0t) in
such amplifier and taking only the fundamental frequency, the
output is Vrf(t) = U1

[
1− 3

4U
2
1

]
cos(ω0t). Accordingly, the

gain becomes A = 1− 3
4U

2
1 , which is a ‘cap’ parabola.

2) Hard clipping: In small-signal condition the gain is A0,
independent of the signal level. Increasing the input level the
output is clipped when it hits a threshold, where the sinusoid
progressively turns into a square wave. The asymptotic am-
plitude of the fundamental is 4/π (2.1 dB) higher than the
threshold. This behavior is often encountered in amplifiers
linearized by a strong feedback, as most circuits based on
operational amplifiers. Of course the feedback is no longer
effective when the output is expected to exceed the supply
voltage.

3) Soft clipping: With moderate feedback, the output clip-
ping starts gradually when the output approaches the dynamic-
range boundary. This behavior is typical of microwave ampli-
fiers. The knee of the gain curve occurs approximately at the
1 dB compression power.

4) Linear gain compression: The gain is described by A =
1− γ(u− 1) in the whole dynamic range. Though this model
seems no more than an academic exercise, it provides useful
results in a simple and compact form.

C. Oscillation start

Assuming that a strong switch-on transient is not present,
oscillation start from noise. This means that u is initially close
to zero and that A takes the small-signal value A0, locally
constant for u→ 0 (Fig. 6). Thus the homogeneous equation
associated to (3) becomes

u̇− 1
τ

(A0 − 1)u = 0 .

The solution is (Fig. 7, the blue curve labeled ‘small signal’)

u = Ce(A0−1) t/τ .

Simulations based on actual circuits (Colpitts and other oscil-
lators) fit exactly the theoretical expectation.
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Fig. 8. Parametric fluctuation of the amplifier gain.

D. Stationary oscillation

In the absence of noise and perturbations the oscillation
takes the value u = 1, where the gain is A = 1 (Barkhausen
condition). If a small perturbation is introduced, u is still close
to 1 and the gain is A = 1−γ(u−1). The homogeneous form
of (3) becomes

u̇+
γ

τ
(u− 1)u = 0 ,

which yields

u = Ce−γt/τ . (7)

In simple words, the oscillator responds to an amplitude
perturbation with a decaying exponential whose time constant

τr =
τ

γ
(restoring time)

is the oscillator restoring time.

E. Simplified oscillator model

Under the assumption that the gain follows the linear
approximation A = 1 − γ(u − 1) in the whole range, the
solution of the homogeneous form of (3) is (Fig. 7, the black
curve labeled ‘saturated’)

u =
1(

1
u(0) − 1

)
e−γt/τ + 1

Of course, the gain of actual amplifiers can only be linearized
in a narrow region around u = 1. Hence case is only
of academic interest. Nonetheless, simulations show that the
oscillator startup is similar to the solution obtained here.

VI. EXTENSION OF THE LEESON EFFECT TO AM NOISE

We analyze the oscillator (Fig. 5) in the presence of noise
around the stationary oscillation u = 1, where the amplitude
is

ampli input u = 1 + αu (8)
ampli output v = 1 + αv . (9)

This is done by letting A fluctuate (Fig. 8)

A = 1− γ(u− 1) + η (10)
η(t)↔ N (s) .
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After linearizing the system for low noise, we search for the
transfer functions

Hu(s) =
Au(s)
N (s)

and Hv(s) =
Av(s)
N (s)

,

where

αu(t)↔ Au(s) and αv(t)↔ Av(s) ,
we search

A. Amplifier input

By replacing A = 1 − γ(u − 1) + η in the homogeneous
form of (3) [i.e., u̇ = 1

τ (A− 1)u], we get

u̇+
γ

τ
(u− 1)u =

η

τ
u .

We notice that u̇ = α̇u and u− 1 = αu, thus

α̇u +
γ

τ
αuu =

η

τ
u .

Since αu and η are small fluctuations, we linearize the above
using u ' 1

α̇u +
γ

τ
αu =

1
τ
η .

The Laplace transform(
s+

γ

τ

)
Au(s) =

1
τ
N (s) (11)

gives the transfer function (Fig. 9)

Hu(s) =
1/τ

s+ γ/τ
. (12)

B. Amplifier output

We first need to relate αv to αu. This is done by replacing
A = −γ(u− 1) + 1 + η in v = Au

v = [−γ(u− 1) + 1 + η]u ,

expanding v = 1 + αv and u = 1 + αv

1 + αv = 1 + η − γαu + αu − αuη − γα2
u ,

neglecting the terms αuη and α2

αv = (1− γ)αu + η ,
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Fig. 10. Amplitude-noise transfer function (oscillator output).
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Fig. 11. Simulated oscillator startup.

and inverting

αu =
αv − η
1− γ ↔ Au(s) =

Av(s)−N (s)
1− γ .

Then, by replacing the above Au(s) in Eq. (11) we get(
s+

γ

τ

)
Av(s) =

(
s+

1
τ

)
N (s) ,

and finally

Hv(s) =
s+ 1/τ
s+ γ/τ

. (13)

The transfer function Hv(s) is shown in Fig. 10 Notice that
the case γ > 1 (dotted green) is not allowed by the condition
(5)–(6) about the real amplifier.

VII. SIMULATIONS

A number of computer simulations were done independently
by one of us (RB), well before the approach presented here
was developed [11], [12]. This led to the preliminary work
published in [13].

Figure 11 show the oscillator startup. The left-hand side
of the envelope, until t ≈ 100 µs, fits well the theoretical
prediction (7).

Figure 12 shows the close-in noises pectrum of a van der Pol
quartz oscillator. The blue curve (phase noise) fits the Leeson
effect as described by (2), while the red curve (amplitude
noise) is in a close agreement with Eq. (13).
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