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Abstract—This paper deals with the modeling of noise spectra in 
high Q–factor oscillators so as to better understand the noise 
mechanism and to improve the low noise oscillator design. The 
dipolar method used is first demonstrated on a simple 
behavioral oscillator. Noise analysis consists in calculating the 
steady state and the transient response in the vicinity of the 
steady state with asymptotic methods. Then, the oscillator noise 
is calculated by introducing a small sinusoidal perturbation to 
the steady state. This allows to analyze both additive and 
parametric noise. The model provides time-domain waveforms, 
AM and PM noise spectra, and analytically explains the Leeson 
model. 

I. INTRODUCTION 
In the past decades a large amount of work and effort has 

been spent in understanding the origin of the phase noise, in 
analyzing its influence on the oscillator stability, and in 
improving the oscillator design. In the meanwhile, the demand 
of low phase noise for space, communication and radar 
systems is ever and ever increasing. Emerging technologies, 
however promising, still have no viable alternatives to the 
quartz resonator. Thus, further theoretical and experimental 
investigations are necessary, aimed at understanding better the 
resonator, the oscillator loop, the simulation techniques, and 
the instruments. In most quartz oscillators the sustaining 
amplifier is a transconductance amplifier, implemented as a 
negative-real-part impedance connected in parallel to the 
resonator. 

The standard numerical simulation tools, like SPICE, turn 
out to be unsuitable to the direct analysis of the oscillator 
because the oscillator is determined by a large-ratio pair of 
time constants, the period T and the relaxation time τ = QT/π. 
The ratio τ /T is up to 1.5 106. In this condition, the simulation 
fails because of round-off errors and convergence problems. 

 

II. DIPOLAR METHOD 
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Figure 1.  Simple Colpitts oscillator and dipolar modeling. 

As shown in Fig. 1, an oscillator can be thought of as an 
association between a resonator whose impedance is strongly 
varying with frequency but weakly varying with the current 
amplitude and a sustaining active dipole whose impedance 
strongly vary with the current amplitude but weakly vary with 
the frequency [1]–[3]. 

Direct analysis of the whole circuit is often difficult 
because of the very high time constant introduced by the 
resonator branch. Thus, to overcome this issue, the circuit is 
split into two parts characterized independently.  

Because of the high selectivity of the resonator series 
branch, it can be considered as a quasi-perfect sinusoidal 
source whose frequency is close to the resonant frequency. On 
the other side, in the vicinity of the resonant frequency, the 
amplifier dipole can be considered as a series combination of a 
resistance and a reactance which are nonlinear function of the 
current amplitude and can be characterized by replacing the 
resonator series-branch by a sinusoidal current source. 

By giving the current source amplitude larger and larger 
values, it is possible to calculate the dipolar impedance as a 
function of the current amplitude and the curves obtained look 
as shown in Fig. 2. 
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Figure 2.  Dipolar impedance of a Colpitts oscillator. 

When the resonator is connected to the dipolar impedance, 
the steady state oscillation condition is quite simple: the sum 
of the two impedances is null: 0=+ dq ZZ  meaning that the 
two resistances and the two reactances have each equal and 
opposite values and this occurs for only one amplitude and 
one frequency. The amplitude is the current for which the 
dipolar resistance cancels the series branch resistance of the 
resonator: qd RyR −=)( 0 , and the corresponding reactance 
value is straight related to the oscillation frequency: 
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III. BEHAVIOURAL TRANSCONDUCTANCE OSCILLATOR 
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Figure 3.  Behavioral transconductance oscillator. 

The dipolar analysis can be demonstrated on the simple 
example shown in Fig. 3 which is a Colpitts-like circuit [3]. 
The sustaining amplifier is an ideal amplifier except it has a 
nonlinear cubic transconductance. This example is interesting 
because all features can be obtained by simple mathematics 
under analytical form. As previously described, the resonator 
is replaced by a sinusoidal current source of frequency ωq: 

tyx qωsin= . By calculating the dipolar voltage and retaining 
only the fundamental component of its Fourier expansion, the 
dipolar impedance can be expressed as a function of the 
current amplitude y. In this particular case, the reactance is 
constant: 
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Figure 4.  Dipolar impedance of the transconductance oscillator. 

Fig. 4 shows that the dipolar resistance, which is a 
quadratic curve, is obviously negative at low amplitude, this 
condition being mandatory to insure the starting of oscillation. 

Plotting on the same graph the opposite of the resonator 
resistance –Rq, evidences the oscillation current amplitude y0 
and the resistance margin Rm which characterizes the ability of 
the amplifier to start oscillations: 
 qm RZGZR −= 21 . (2) 

The reactance of the amplifier plotted on the same graph 
gives the oscillation frequency expressed here as the 
frequency shift with respect to the quartz resonant frequency: 
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IV. NOISE SOURCES MODELING 
Two main noise sources will be considered here: additive 

noise source such as thermal or shot noise, and parametric  
–mainly low frequency– perturbation coming for a large part 
from external influences. Most of the critical information 
concerning the noise sources can be obtained by replacing 
them with small independent sinusoidal sources and, 
according to the kind of perturbation, only considered in a 
small frequency range. 

Because of the nonlinearity the effect of noise sources 
depends on their location, in particular, linear reduction of the 
noise sources to a single location may lead to wrong result. 

Fig. 5 resumes the previous example with an additive 
noise source introduced in the amplifier input. Its magnitude is 
supposed very small with respect to the loop current 
amplitude: yxn <<ˆ  and only a small frequency range close to 
the oscillation frequency will be considered: 
 

qq ωωω <<Ω><ΩΩ+= 0 . (4) 
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Figure 5.  Transconductance oscillator with additive noise source. 

Calculation of the dipolar impedance shows that it can be 
expressed under the following form: 
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where each component is the sum of two terms: the first part is 
the unperturbed impedance previously obtained and the 
alternating part depicts the perturbation effect which can be 
expressed under the following form: 
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where Ω represents the beat frequency between the 
perturbation source and the oscillation frequencies. The 
coefficient are shown here: 
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Parametric noise source can be simulated by considering a 
sinusoidal low frequency modulation of the capacitor C1 
where the modulation index is very small and only low 
modulation frequencies are considered: 
 ( ) qtCC ωαα <<Ω<<Ω+= 1sin111

. (8) 

In this case, the dipolar impedance takes the same form as 
for the additive noise, only the expression of the coefficients is 
different: 
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Figure 6.  Dipolar impedance of a perturbed oscillator. 

The dipolar method explains how noise sources affect both 
amplitude and frequency of the oscillation. Fig. 6 shows, in 
solid lines, the unperturbed dipolar impedance. The noise 
sources causes a low frequency change of the dipolar 
resistance, in dotted lines, and because of the equilibrium 
condition the amplitude is modulated at the same low 
frequency. Likewise, the noise induced reactance change 
produces a frequency modulation. 

V. NOISY OSCILLATOR DIPOLAR ANALYSIS 
Time-domain analytical calculation of the amplitude and 

frequency perturbation is possible by considering the 
oscillation loop shown in Fig. 1 (b). The two impedances 
facing each other are first expressed in the Laplace’s form. 
The resonator series-branch impedance is given by: 
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and the dipolar impedance by: 
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where Rd and Xd are given by (5) and (6). The oscillation 
condition states that the two impedances have opposite values 
and this leads to the following equation: 
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Replacing the Laplace’s operator by the differential 
operator leads to the following nonlinear and non-autonomous 
differential equation: 
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Without entering in the detail, we can see here that the 
right hand side term is composed of an autonomous nonlinear 
term and a slowly varying perturbation term due to the noise 
sources. 

VI. SLOWLY VARYING FUNCTION METHOD 
The slowly varying function method, specially developed 

more than 60 years ago to solve asymptotically that kind of 
problem [4], consists in transforming the high frequency 
second order differential equation into a first order differential 
system in the slowly varying amplitude y(t) and phase ϕ(t) 
variables by using the variable change: 

 ( ))(cos)( ttyx q ϕω +=  (14) 

that leads to the so-called associated system: 
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As, Ac, Bs, and Bc are time-constant coefficients that are 
function of the low frequency Ω and of the coefficients Rds, 
Rdc, Xds, and Xdc defined by (7) or (9). The associated system is 
composed of an autonomous part and a slowly time varying 
perturbation term due to the dipolar impedance modulation. 
Because of the smallness of the perturbation terms, their 
influence can be expressed by using a perturbation method 
around the oscillation steady state obtained by solving the 
unperturbed associated system: 
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The steady state is reached when the amplitude becomes 
constant, i.e. when 0=y . This occurs for the steady state 
amplitude y0 and the oscillation frequency ω0 represented in 
Fig. 4 that are given by:  
 

2
3
1

2
00 3

4)(
ZZ

RyRyR m
qd ε

=⇒−= , (17) 

 
q

d
q L

yXy
2

)()( 0
0000

−==+= ϕννωω . (18) 

Perturbation terms will only induce small changes around 
the steady state. They can be expressed under the form:  
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Retaining only first order terms, the linearized perturbation 
equations take the following form: 
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where: 
 

q

m
R L

R=Ω , (21) 

Rm being the resistance margin given by (2). The elementary 
linear system (20) has a sinusoidal solution of the form: 
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where ϕz and ϕη are some insignificant constant phase shifts. 

System (22) expresses that a noise current source induces 
both AM and FM modulation of the loop current at frequency 
Ω. For additive noise, Ω is the beat frequency between 
excitation and oscillation frequencies while for low frequency 
parametric noise, Ω is merely the modulation frequency. 

VII. AM AND FM LINES AND NOISE SPECTRA 
AM and FM line amplitudes are obtained by putting (22) 

in (20) and solving it for ẑ  and η̂ . Replacing in the result As, 
Ac, Bs, and Bc by their expression with the coefficients Rds, Rdc, 

Xds, and Xdc defined by (7) leads to the following result for the 
additive noise source: 
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The same processes applied to parametric noise source 
leads to the following result: 
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The amplitude noise spectrum is nothing else than the 
variation of the AM line with respect to the modulation 
frequency, thus it takes the simple form:  
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It is more usual to represent the phase noise spectrum 
rather than the frequency noise spectrum. Phase ϕ and 
frequency η are related by a linear transfer function so their 
spectra obey the classical relation: 
 )(1)( 2 ω

ω
ω

ω
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j

=⇒= , (26) 

and the phase noise spectrum can be obtained from the FM 
line variation by the relation: 
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VIII. NOISE SPECTRA OF THE LOOP CURRENT 
To illustrate the result previously obtained, let’s consider 

the case of a white current source associated with a 50 Ω 
resistance, the amplitude of which is of the order of a few 

HzpA/ . 

As shown in Fig. 7, the phase noise spectrum of the loop 
current (solid line) is merely a straight line of slope  
–20 dB/decade, while the amplitude noise spectrum (dashed 
line) exhibits a resonance shape the half bandwidth of which is 
given by (21) where Rm given by (2) is related to the 
nonlinearity of the amplifier. 

The cut-off frequency ΩR of the amplitude modulation 
resonance allows us to define what can be considered as the 
oscillator closed loop Q-factor: 
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QR that can be greater or lower than the resonator unloaded Q-
factor is straight related to the starting time of the oscillator. 
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Figure 7.  Additive noise amplitude and phase spectra of the loop current. 

Let’s consider now the case of a parametric noise source 
represented by a low frequency modulation of the input 
capacitor C1. In addition, the modulation is supposed to have a 
1/f spectrum with a floor modulation index α0 = 10–8 and a 
corner frequency Ωk/(2π) ≈ 1 Hz: 
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0

2
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In this case, the phase noise spectrum shown in Fig. 8 
(solid line) exhibits a – 30dB/dec slope up to the corner 
frequency, beyond it recovers the usual –20 dB/dec slope. 

The amplitude spectrum (dashed line), has a –10dB/dec 
slope within the bandwidth of the modulation resonance, 
followed by a –30 dB/dec up to the corner frequency and the 
usual –20dB/dec beyond the corner frequency. In the 
particular case shown in Fig. 8, the corner frequency coincides 
with the closed loop cut-off frequency. 
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Figure 8.  Parametric noise amplitude and phase spectra of the loop current. 

IX. OSCILLATOR OUTPUT VOLTAGE 
In any oscillator, the output signal is not the loop current 

but a voltage, and the noise spectra of the output voltage can 
be obtained from the loop current noise spectra if the relation 
between the loop current and the output voltage is known. 
Obviously the transfer function between the two signals has 
the dimension of an impedance called here Transfer 
impedance Zt. It can be proved that this transfer function 
should always be considered as the sum of the resonator series 
impedance Zq and a more or less involved transimpedance Zc 
which can be obtained by using the same processes as the 
dipolar impedance and possibly linearized in the vicinity of 
the steady state: 

 cqtt ZZZxZv +=⋅=  (30) 

In the particular case of the transconductance oscillator 
represented in Fig. 3, Zc is merely the impedance of the input 
capacitance C1 so that, in the vicinity of the oscillation 
frequency, the transfer impedance can be written: 
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Output voltage v and loop current x being related by a 
linear relation, the usual spectrum transformation applies: 
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where Z0 is a normalization factor. 

One of the key parameters of the oscillator noise analysis 
can be introduced by first representing the normalized 
impedance of the resonator series branch. In the vicinity of the 
resonant frequency it is given by: 
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The corresponding curve represented in dashed line in 
Fig. 9 has a cut off frequency Ωq which is half the bandwidth 
of the unloaded resonator admittance related to the resonator 
unloaded Q-factor by the well known relation: 
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Figure 9.  Normalized unloaded resonator and transfer impedances. 

The normalized transfer impedance, written as: 
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represented in solid line on the same graph, has a cut-off 
frequency which is nothing else the Leeson’s cut-off 
frequency straight related to the oscillator loaded Q-factor: 
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X. NOISE SPECTRA OF THE OUTPUT VOLTAGE 
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Figure 10.  Additive noise spectra of the output voltage. 

Applying the conversion relation (32) to the 
transconductance oscillator leads to the popular output voltage 
phase noise spectrum characterized by the Leeson’s cut-off 
frequency as shown in Fig. 10 (solid line). Likewise, the 
output voltage amplitude noise spectrum has the shape shown 
in dashed line, characterized by the Leeson’s cut-off frequency 
ΩL and the closed loop half bandwidth frequency ΩR. Another 
popular feature can also be evidenced by this model: the 
asymptotic phase noise floor that takes the simple form: 
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formally demonstrates the well known fact that the noise floor 
decreases as the resonator drive level increases. 
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Figure 11.  Parametric noise spectra of the output voltage. 

Applying the same processes to the parametric noise 
spectra leads to the curves shown in Fig. 11 where the phase 
noise (solid line) exhibits a –30dB/dec slope below the corner 
frequency, a –20dB/dec slope between ΩK and ΩL and a flat 
noise floor above ΩL. The amplitude noise spectrum has then 
the shape in dashed line in Fig. 11 where the relevant 
frequencies are indicated. 

The asymptotic phase spectrum given by the relation: 
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confirms that the parametric phase noise floor doesn’t depend 
on the resonator drive level. 

When several independent noise sources are involved, the 
resulting noise spectrum is obtained by adding the individual 
noise spectra. Combining the contribution of the additive 
phase noise spectrum of the output voltage with the parametric 
phase noise spectrum, leads to the resulting phase noise shown 
in Fig. 12. Obviously, the resulting shape depends on the 1/f 
corner frequency and on the relative level of the individual 
contributions as shown in comparing Fig. 12 (a) where  
ΩK < ΩL and Fig. 12 (b) where ΩK > ΩL. 
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Figure 12.  Additive and parametric noise spectra of the output voltage. 

The analysis of the parametric noise of the resonator leads 
to the same result as obtained for the input capacitance 
parametric noise, thus it is not possible to discriminate their 
respective contributions. 

XI. CONCLUSION 
The dipolar model and asymptotic method turn out to be 

powerful tools to efficiently analyze high Q-factor circuits like 
quartz oscillator as they give quickly and accurately most of 
the relevant feature of the oscillator characteristics such as 
start up condition, steady state, transient and noise spectra. 

It is in fact a general approach the scope of which really 
goes beyond the limited area of the quartz oscillator analysis. 
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