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The frequency flicker of an oscillator, which appears as a 1/f3 line in the phase noise spectral
density, and as a floor on the Allan variance plot, originates from two basic phenomena, namely: (1)
the 1/f phase noise turned into 1/f frequency noise via the Leeson effect, and (2) the 1/f fluctuation
of the resonator natural frequency. The discussion on which is the dominant effect, thus on how to
improve the stability of the oscillator, has been going on for years without giving a clear answer. This
article tackles the question by analyzing the phase noise spectrum of several commercial oscillators
and laboratory prototypes, and demonstrates that the fluctuation of the resonator natural frequency
is the dominant effect. The investigation method starts from reverse engineering the oscillator phase
noise in order to show that if the Leeson effect was dominant, the resonator merit factor Q would
be too low as compared to the available technology.

I. INTRODUCTION AND SUMMARY

In the domain of ultra-stable quartz oscillators used
in the most demanding applications, like space and
atomic fountain clocks, we notice that the frequency
flicker is often the most critical parameter. The re-
quired stability is sometimes in the upper 10−14 (Allan
deviation) at 1–30 s or so, which can only be achieved
in the lower HF band (5–10 MHz), and after selection.
In such cases, identifying the dominant flicker mecha-
nism is far from being trivial. Whereas some authors
strongly suggest that the amplifier noise can be the pa-
rameter that limit the frequency stability, rather than
the flickering of the resonator natural frequency [1, 2],
the general literature seems not to give a clear answer.
This conclusion results from a set of selected articles,
which includes the measurement of the frequency sta-
bility [3, 4] and the interpretation of the flicker noise
of crystal resonators [5, 6]; the design fundamentals
of the nowadays BVA resonators [7]; some pioneering
works on the low-frequency noise in quartz oscillators
[8, 9]; more recent articles focusing on specific design
solutions for ultra-stable oscillators [10–14]; and, as
a complement, a thorough review of the SiO2 crystal
for the resonator fabrication is found in [15]. Con-
versely, in everyday-life oscillators, which span from
the low-cost XOs to the OCXOs used in telecommu-
nications and instrumentation, the relative simplicity
of the low-noise electronics required indicates that the
frequency flicker is chiefly the 1/f fluctuation of the
resonator.

In a previous work [16], now extended to more
commercial products and laboratory prototypes, we
have analyzed the phase noise spectrum of some os-
cillators, aiming at understanding the internal mech-
anisms and parameters. We look at the phase-noise
spectrum from the right hand to the left, hence from
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the higher Fourier frequencies to the lower, matching
theory, technology and physical insight. In this way
we get information on the sustaining amplifier on the
output buffer, on the Leeson effect and on the res-
onator.

In this article we first explain the phase noise mech-
anisms in amplifiers. Then we introduce the Leeson
effect, which consists of the phase-to-frequency con-
version of noise below the resonator cutoff (Leeson)
frequency fL = ν0

2Q . Finally, we analyze the phase
noise spectral density Sϕ(f) of a few oscillators. The
conclusion that the resonator natural frequency is the
main cause of frequency flickering is based on experi-
mental facts. After taking away the effect of the out-
put buffer, we calculate the frequency f ′′

L at which the
oscillator f−3 line crosses the f−1 line of the sustain-
ing amplifier. Provisionally assuming that f ′′

L is the
the Leeson frequency, we observe that the resonator
merit factor Qs = ν0

2f ′′
L

thereby calculated is far too
low for a high-tech resonator. Conversely, under any
reasonable assumption about the true merit factor,
the Leeson effect is found at a frequency fL � f ′′

L.
Therefore the Leeson f−3 line on the Sϕ(f) plot is
well hidden below the resonator fluctuation.

II. PHASE NOISE FUNDAMENTALS

Let the quasi-perfect oscillator sinusoidal signal of
frequency ν0

v(t) = V0[1 + α(t)] cos[2πν0t + ϕ(t)] . (1)

where α(t) is the fractional amplitude noise, and ϕ(t)
is the phase noise. The AM noise is not essential to
this work. The phase noise is best described in terms
of Sϕ(f), i.e., the one-sided power spectral density of
ϕ(t), as a function of the Fourier frequency f . In ad-
dition to f , we use the angular frequency ω for both
carrier-related frequencies (ω = 2πν), and Fourier fre-
quencies (ω = 2πf) without need of introducing it,
and the normalized frequency fluctuation y = ν−ν0

ν0
.

The quantities ν, f and y refer to one-sided trans-
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FIG. 1: Typical phase noise of an amplifier.

forms, ω to two-sided transforms. Frequency fluctua-
tions are described in terms of Sy(f), related to Sϕ(f)
by

Sy(f) =
f2

ν2
0

Sϕ(f) . (2)

A model that has been found useful in describing
the oscillator noise spectra is the power-law

Sy(f) =
2∑

i=−2

hif
i ⇔ Sϕ(f) =

0∑
i=−4

bif
i . (3)

Our main concern is the frequency flickering term
b−3f

−3, which is related to the Allan variance by

σ2
y = 2 ln(2) h−1 = 2 ln(2)

b−3

ν2
0

, (4)

constant, i.e., independent of the measurement time.
Finally, the general background on phase noise and

frequency stability is available from numerous refer-
ences, among which we prefer [17], [18], [19], and [20,
Vol. 1, Chapter 2]. A IEEE standard is also available
[21].

III. PHASE NOISE IN RF (AND
MICROWAVE) AMPLIFIERS

a. White noise. The equivalent noise spectrum
density at the amplifier input is N = FkT0, where F
is the noise figure and kT0 is the thermal energy. This
type of noise is additive. In the presence of a carrier
of power P0, the phase noise spectral density is

Sϕ(f) = b0f
0 (constant) (5)

with

b0 =
FkT0

P0
. (6)

When amplifiers are cascaded, the noise contribution
of each stage is divided by the gain of all the preced-
ing stages (Friis formula [22]). Accordingly, in most
practical cases the total noise is chiefly the noise of
the first stage. Of course, this also holds for phase
noise.

b. Flicker noise. Understanding the close-in
noise starts from the bare observation that the output
spectrum is of the white type—flat in a wide frequency
range—when the carrier power is zero, and that noise
shows up close to the carrier only when a sufficiently
large carrier power is present at the amplifier output.
The obvious consequence is that the close-in flickering
results from a parametric effect by which the near-dc
flicker noise modulates the carrier in amplitude and
phase.

The simplest way to understand the noise up-
conversion is to model the amplifier signal as a non-
linear function truncated to the 2nd order

vo(t) = a1vi(t) + a2v
2
i (t) + . . . , (7)

in which the complex input signal

vi(t) = Vi e
jω0t + n′(t) + jn′′(t) (8)

contains the carrier and the internally generated near-
dc noise n(t) = n′(t) + jn′′(t). Rather than being an
easy-to-identify voltage or current, n(t) is an abstract
random signal that also accounts for the efficiency of
the modulation process. Combining (7) and (8) and
selecting the terms close to the carrier frequency ω0,
we get

vo(t) = Vi

{
a1 + 2a2

[
n′(t) + jn′′(t)

]}
ejω0t . (9)

Hence, the random fluctuations are

α(t) = 2
a2

a1
n′(t) and ϕ(t) = 2

a2

a1
n′′(t) . (10)

Deriving Eq. (10), the statistical properties of n′(t)
and n′′(t) are not affected by the carrier power. This
accounts for the experimental observation that the
amplifier phase noise given in rad2/Hz is about in-
dependent of power in a wide range [23–25]. Thus

Sϕ(f) = b−1f
−1 b−1 ≈ constant . (11)

Of course, some dependence on P0 remains. We as-
cribe it to terms of order higher than 2 in (7), and to
the effect of the large signal regime on the dc bias. In
the case of bipolar amplifiers used in HF/VHF ampli-
fiers, b−1 is in the range of 10−12 to 10−14 rad2/Hz
(−120 to −140 dBrad2/Hz).

When m amplifiers are cascaded, the The Friis for-
mula does not apply. Instead, the phase noise barely
adds

(b−1)cascade =
m∑
i=1

(b−1)i . (12)

This occurs because the 1/f phase noise is about in-
dependent of power. Of course, the amplifiers are sup-
posed independent.
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FIG. 2: Oscillator model and its phase-space equivalent.
For the sake of simplicity all the dependence on s is moved
to β(s), hence the gain A is assumed constant. The scheme
emphasizes the amplifier phase noise. Amplitude noise is
not considered.

c. Phase noise spectrum. Combining white noise
[Eq. (5)] and flicker noise [Eq. (11)], there results the
spectral density Sϕ(f) shown in Fig. 1. It is impor-
tant to understand that the white noise term b0f

0 de-
pends on the carrier power P0, while the flicker term
b−1f

−1 does not. Accordingly, the corner frequency
fc at which b−1f

−1 = b0 is a function of P0, thus fc
should not be used to describe noise. The parameters
b−1, F , and P0 should be used instead.

IV. PHASE NOISE IN OSCILLATORS

A. The Leeson effect

Figure 2 shows a model for the feedback oscillator,
and its equivalent in the phase space. All signals are
the Laplace transform of the time-domain quantities,
as a function of the complex frequency s = σ+jω. The
oscillator transfer function is derived from Fig. 2 A
according to the basic rules of linear systems

H(s) =
1

β(s)
1

1
Aβ(s)

− 1
=

A

1−Aβ(s)
(13)

Stationary oscillation occurs at the angular frequency
ω0 at which Aβ(jω) = 1, thus |Aβ(jω)| = 1 and
arg[Aβ(jω)] = 0. This is known as the Barkhausen
condition for oscillation. At s = jω0 the denominator
of H(s) is zero, hence oscillation is sustained with zero

input signal. Oscillation starts from noise or from the
switch-on transient if <{Aβ(s)|s=jω0} > 1 (yet only
slightly greater than 1 for practical reasons). When
the oscillation reaches a threshold amplitude, the loop
gain is reduced to 1 by saturation. The excess power
is pushed into harmonics multiple of ω0, and blocked
by the resonator. For this reason, at ω0 the oscillator
operates in quasi-linear regime.

In most quartz oscillators, the sustaining amplifier
takes the form of a negative resistance that compen-
sates for the resonator loss. Such negative resistance is
interpreted (and implemented) as a transconductance
amplifier that senses the voltage across the input and
feeds a current back to it. Therefore, the negative-
resistance oscillator loop is fully equivalent to that
shown in Fig. 2.

In 1966, D. B. Leeson [26] suggested that the oscil-
lator phase noise is described by

Sϕ(f) =
[
1 +

1
f2

ν2
0

4Q2

]
Sψ(f) (Leeson) , (14)

This formula calls for the phase-space representation
of Fig. 2 B, which deserves the following comments.

The Laplace transform of the phase of a sinusoid is
probably the most common mathematical tool in the
domain of PLLs [27–30]. Yet it is unusual in the anal-
ysis of oscillators. The phase-space representation is
interesting in that the phase noise turns into additive
noise, and the system becomes linear. The noise-free
amplifier barely repeats the input phase, for it shows
a gain exactly equal to one, with no error. The res-
onator transfer function, i.e., the Laplace transform
of the impulse response, is

B(s) =
1

1 + sτ
τ =

2Q

ω0
. (15)

The inverse time constant is the low-pass cutoff angu-
lar frequency of the resonator

ωL =
1
τ

=
ω0

2Q
. (16)

The corresponding frequency

fL =
ωL
2π

=
1

2πτ
=

ν0

2Q
(17)

is known as the Leeson frequency. Equation (15) is
proved in two steps:

1. Feed a Heaviside step function κU(t) in the ar-
gument of the resonator input sinusoid. The lat-
ter becomes cos [ω0t + κU(t)].

2. Linearize the system for κ → 0. This is correct
in low phase noise conditions, which is certainly
our case. Accordingly, the input signal becomes
cos(ω0t)− κ sin(ω0t)U(t).
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FIG. 3: Oscillator phase noise, not accounting for the out-
put buffer.

3. Calculate the Laplace transform of the step re-
sponse, and use the property that the Laplace
transform maps the time-domain derivative into
a multiplication by the complex frequency s.
The Dirac function δ(t) is the derivative of U(t).

The full mathematical details of the proof are avail-
able in [16, Chapter 3].

Applying the basic rules of linear systems to
Fig. 2B, we find the transfer function

H(s) =
Φ(s)
Ψ(s)

=
1

1−B(s)
=

1 + sτ

sτ
, (18)

thus

|H(jω)|2 =
1 + ω2τ2

ω2τ2
. (19)

The Leeson formula (14) derives from Eq. (19) by re-
placing

ω = 2πf and τ =
Q

πν0
. (20)

The transfer function H(s) has a pole in the ori-
gin (pure integrator), which explains the Leeson ef-
fect, i.e., the phase-to-frequency noise conversion at
low Fourier frequencies. At high Fourier frequencies
it holds that H(jω) = 1. In this region, the oscillator
noise is barely the noise of the sustaining amplifier.

The amplifier phase noise spectrum contains flicker
and white noise, i.e., Sψ(f) = (b−1)ampli f

−1 +
(b0)ampli. Feeding such Sψ(f) into the Leeson for-
mula (14), the oscillator Sϕ(f) can only be one of
those shown in Fig. 3. Denoting with fc the corner
frequency at which flicker noise equals white noise, we
often find fL < fc in HF/VHF high-Q oscillators, and
fL > fc in microwave oscillators. In ultra-stable HF
quartz oscillators (5–10 MHz), the spectrum is always
of the type A (fL < fc).

B. Output buffer

The phase noise Sψ b(f) of the output buffer barely
adds to the oscillator phase noise

Sϕo(f) =
[
1 +

1
f2

ν2
0

4Q2

]
Sψ(f) + Sψ b(f) . (21)

This a consequence of the flicker noise mechanism ex-
plained Section III 0 b, and inherent in the model of
Fig. 2B.

C. Resonator stability

The oscillator frequency follows the random fluctua-
tion of the resonator natural frequency. However com-
plex or tedious the formal proof for this statement can
be, the experimentalist is familiar with the fact that
the quartz oscillator can be frequency-modulated by
a signal of frequency far higher than the Leeson fre-
quency. For example, a 5 MHz oscillator based on
a Q = 2×106 resonator shows a Leeson frequency of
1.25 Hz (see Table I), while it can be modulated by a
signal in the kHz region. Additionally, as a matter of
fact, the modulation index does not change law from
below to beyond the Leeson frequency. This occurs
because the modulation input acts on a varactor in
series to the quartz, whose capacitance is a part of
the motional parameters.

D. Other effects

The sustaining amplifier of a quartz oscillator al-
ways includes some kind of feedback; often the feed-
back is used to implement a negative resistance that
makes the resonator oscillate by nulling its internal
resistance. The input admittance Yi seen at the am-
plifier input can be represented as

Yi = Y
(v)
i + Y

(r)
i , (22)

that is, the sum of a virtual term (v) plus a real term
(r). The difference between ‘virtual’ and ‘real’ is that
in the case of the virtual admittance the input cur-
rent flows into the feedback path, while in the case of
the real admittance the input current flows through
a grounded dipole. This is exactly the same concept
of virtual impedance routinely used in the domain of
analog circuits [31, Chapter 1]. The admittance Y

(r)
i

also includes the the effect of the pulling capacitance
in series to the resonator, and the stray capacitances
of the electrical layout. As a consequence, the fluctu-
ation δY

(v)
i is already accounted for in the amplifier

noise, hence in the model of Fig. 2, while the fluctu-
ation δY

(r)
i is not. On the other hand, Y

(r)
i interacts

with the resonator parameters, thus δY
(r)
i yields fre-

quency fluctuations not included in the Leeson effect.
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FIG. 4: Interpretation of the oscillator phase noise.

The hard assumption is made in our analysis, that
|δY (r)

i |2 � |δY (v)
i |2. In words, we assume that the

fluctuation of the electronics are chiefly due to the
gain mechanism of the amplifier. Whereas the variety
of circuits is such that we can not provide a proof for
this hypothesis, common sense suggests that electron-
ics works in this way.

V. ANALYSIS OF THE OSCILLATOR NOISE

This section address the core question, wether the
1/f3 noise observed on the oscillator Sϕ(f) plot is due

to the Leeson effect, or it originates in the resonator.
The interpretation method is shown in Fig. 4, and
discussed below.

1. We start from the spectrum, measured or taken
from the oscillator specifications. The first step
is to remove the residual of the mains (50 or
60 Hz and multiples) and other stray signals,
and to fit the spectrum with the power-law
[Eq. (3)]. This process is called parametric es-
timation of the spectrum. With a pinch of ex-
perience, sliding old-fashion squares on a A4-
size plot gives unexpectedly good results. Oth-
erwise, the mathematical methods explained in
[38, 39] are useful. After this, the spectrum
looks like that of Fig. 4 A,

2. The term b0f
0 is chiefly due to the sustaining

amplifier, hence the amplifier input power can
be calculated using Eq. (6)

P0 =
FkT0

b0
. (23)

In the absence of information, it is wise to take
F = 1.26 (1 dB). To the extent of our analysis,
estimating P0 is only a check of plausibility.

3. Feeding the oscillator b−3 term into Eq. (4), we
calculate the floor of the Allan deviation σy.
We check on the consistency between calculated
value and specifications or measures, if available.

4. At first sight, the cutoff frequency f ′
L (Fig. 4A)

can be taken for the Leeson frequency because
there the slope changes from f−3 to f−1. Yet
the term b−1f

−1 contains the flicker of the sus-
taining amplifier and of the output buffer, which
add [Equations (12) and (21)]. For this reason,
f ′
L can not be the Leeson frequency.

5. Actual oscillators have 2–4 buffer stages, the
main purpose of which is to isolate the feedback
loop from the environment in order to ensure
frequency stability and to prevent injection lock-
ing. Owing to the Leeson effect, a wise designer
will spend the lowest-noise technology in the
sustaining amplifier, rather than in the buffer.
Thus, we assume that the buffer contributes 3/4
of the total noise, and that sustaining amplifier
contributes 1/4 (−6 dB). Accordingly, we plot
the line b−1 a f−1 in Fig. 4 B, 6 dB below the
total flicker.

6. After taking away the buffer noise, the continu-
ation of the b−3f

−3 line meets the b−1 af
−1 line

at f = f ′′
L. The latter is a new candidate for

the Leeson frequency. Feeding f ′′
L into Eq. (17),

we calculate the resonator merit factor Qs (the
subscript s stands for ‘spectrum’)

Qs =
ν0

2f ′′
L

. (24)



TABLE I: Estimated Parameters of some Ultra-Stable Oscillators.

Oscillator ν0 (b−3)tot (b−1)tot (b−1)amp f ′L f ′′L Qs Qt fL (b−3)L R Note References

Oscilloquartz
8600

5 −124.0 −131.0 −137.0 2.24 4.5 5.6×105 1.8×106 1.4 −134.1 10.1 (1) [14, 32]

Oscilloquartz
8607

5 −128.5 −132.5 −138.5 1.6 3.2 7.9×105 2×106 1.25 −136.5 8.1 (1) [14, 32]

CMAC
Pharao

5 −132.0 −135.5 −141.1 1.5 3 8.4×105 2×106 1.25 −139.6 7.6 (2) [12, 13, 33]

FEMTO-ST
LD protot. 10 −116.6 −130.0 −136.0 4.7 9.3 5.4×105 1.15×106 4.3 −123.2 6.6 (3) [34]

Agilent
10811

10 −103.0 −131.0 −137.0 25 50 1×105 7×105 7.1 −119.9 16.9 (4) [35]

Agilent
prototype 10 −102.0 −126.0 −132.0 16 32 1.6×105 7×105 7.1 −114.9 12.9 (5) [36]

Wenzel
501-04623

100 −67.0 −132 ? −138 ? 1800 3500 1.4×104 8×104 625 −79.1 15.1 (6) [37]

unit MHz
dB

rad2/Hz
dB

rad2/Hz
dB

rad2/Hz
Hz Hz (none) (none) Hz

dB
rad2/Hz

dB

Notes
(1) Data are from specifications, full options about low noise and high stability.
(2) Measured by CMAC on a sample. CMAC confirmed that 2×106 < Q < 2.2×106 in actual conditions. See Fig. 5.
(3) LD cut, built and measured in our lab, yet by a different team. All design parameters are known, hence Qt.
(4) Measured by Hewlett Packard (now Agilent) on a sample.
(5) Implements a bridge scheme for the degeneration of the amplifier noise. Same resonator of the Agilent 10811.
(6) Data are from specifications. See Fig. 7.

7. Technology suggests a merit factor Qt (the sub-
script t stands for ‘technology’) significantly
larger than Qs, even in actual load conditions.
Feeding Qt into Eq. (17), we calculate fL based
on the actual merit factor

fL =
ν0

2Qt
, (25)

as shown in Fig. 4C. There follows a phase noise
term (b−3)L, which account for the Leeson effect
alone.

8. Given Qt � Qs, thus fL � f ′′
L, the Leeson ef-

fect is hidden. Consequently, the oscillator f−3

phase noise is chiefly due to the fluctuation of
the resonator natural frequency.

We introduce the stability ratio R, defined as

R =
(σy)oscill
(σy)Leeson

(floor), (26)

and related to the other oscillator parameters by

R =

√
(b−3)tot
(b−3)L

=
Qt

Qs
=

f ′′
L

fL
. (27)

This can be demonstrated from the b−3 term of the
Leeson formula (14), using Equations (4) and (17).
The parameter R states how bad is the actual os-
cillator, as compared to the same oscillator governed

only by the Leeson effect, with the resonator fluctu-
ations removed. Thus, R = 1 (0 dB) indicates that
the oscillator f−3 phase noise comes from the Leeson
effect. Equal contribution of resonator and Leeson ef-
fect yield R =

√
2 (3 dB), while R �

√
2 is found

when resonator instability is the main cause of f−3

phase noise. In all cases we have analyzed, discussed
in the next Section, we find R of the order of 10 dB,
with a minimum of 6.6 dB. This means that the Lee-
son effect is hidden below the frequency fluctuation of
the resonator.

Coming back to the estimation of the 1/f noise of
the sustaining amplifier it is to be remarked that if the
1/f noise of this is lower than 1/4 of the total flicker,
f ′′
L is further pushed on the right hand on Fig. 4 B-C,

which reinforces the conclusion that the resonator is
the main cause of frequency fluctuation.

VI. EXPERIMENTAL DATA AND
DISCUSSION

Figure 5 shows the phase noise spectrum of a 5 MHz
oscillator, out of a small series intended as the flywheel
for the space Cesium fountain clock Pharao [40, 41].
On this plot, the reader can follow the interpreta-
tion process explained in Section V, and illustrated in
Fig. 4. Guessing on technology, the merit factor was
estimated to be 2×106. Afterwards, the manufacturer
confirmed [42] that Qt is between 2×106 and 2.2×106

in actual load conditions for that series of oscillators,
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and that the flicker noise of the sustaining amplifier
is less than 1/4 (−6 dB) of the total flickering. This
validates our conclusions.

Table I shows the results of our analysis on some os-
cillators. The ability to estimate the resonator merit
factor is necessary to understand the oscillator inside.
Experience indicates that the product ν0Q is a tech-
nical constant of the piezoelectric quartz resonator,
in the range from 1×1013 to 2×1013. As a matter of
fact, the highest values are found in the 5 MHz res-
onators. In load conditions, the resonator merit factor
is somewhat lower. The actual value depends on fre-
quency, on the designer skill, and on the budget for
implementation. A bunch of data are available from
[1, 6, 43], and from our early attempts to measure
the resonator frequency stability [4]. The oscillators
we have analyzed exhibit the highest available stabil-
ity, for we are confident about published data. The
Agilent 10811 (hence the Agilent prototype) is closer
to the routine production, and probably closer to the
cost-performance tradeoff, as compared to the other
ones, thus understanding oscillator the inside is more
difficult. Nonetheless, in this case the value of Qs is

−160

103 104

Fourier frequency, Hz

−170

−180

P
h
as

e 
n
o
is

e,
 d

B
ra

d

−100

−130

−110

−120

−140

−150

5101
102 10

’

Q=8x104 =>guess

dBrad2/Hzb0=−173

specifications

Wenzel 501−04623
b−3 =−67 dBrad2/Hz
−30dB/dec

is about here
Leeson effect (hidden)

L =625Hzf
Lf ’ =3.5kHz

/H
z

2

ampli noise (?)

FIG. 7: Phase noise of the Wenzel 100 MHz OCXO [37].

so low that there is no doubt that it can not be the
resonator merit factor.

In the case of the Oscilloquartz 8607 (Fig. 6), the
f−3 noise is too low for it to be extracted from the
Sϕ(f) spectrum available on data sheet, which starts
from 1 Hz. Yet, we can use the device specifications
Sϕ(f)|1 Hz = −127 dBrad2/Hz, Sϕ(f)|10 Hz = −142
dBrad2/Hz, and Sϕ(f)|1 kHz = −153 dBrad2/Hz. In
fact, looking at the spectrum and at the Allan vari-
ance it is clear that at f = 1 Hz and f = 10
Hz the terms b−3f

−3 and b−1f
−1 determine Sϕ(f),

with at most a minor contribution of b0. It is also
clear that Sϕ(f)|1 kHz ' b0. Thus b−3 and b−1 are
obtained by solving a system of two equations like
Sϕ(f) = b−3f

−3 + b−1f
−1 + b0, at 1 Hz and 10 Hz.

In the case of the Wenzel 501-04623 oscillator
(Fig. 7), the specifications available on the manufac-
turer web site consist of a few points, while the whole
spectrum is not published. Experience indicates that
in the case of 100 MHz oscillators the f−1 line tends
to be hidden by the frequency flickering. That said,
we can only guess that the f−1 noise of the sustaining
amplifier is similar to that of other oscillators. This is
sufficient to estimate f ′′

L, and to notice that the merit
factor Qs is far too low as compared to the state of
the technology, and to conclude that the f−3 phase
noise is due to the fluctuation of the resonator natu-
ral frequency. It is to be remarked that the power at
the amplifier input is of the order of 10–20 µW in all
other cases, and of 1 mW here. In addition, the 100
MHz resonator is smaller in size than the other res-
onator. A relatively high frequency flicker is therefore
not surprising.

The examples shown above indicate that, under the
assumption of Sections III–IV, the oscillator frequency
flickering is chiefly due to the fluctuation of the res-
onator natural frequency.
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