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Abstract. As a result of a major technological trend towards high speed digital
communications and circuits, phase noise turns out to be a relevant concern for
scientists and engineers. This paper describes methods and instruments to mea-
sure the phase noise of oscillators, components and more complex devices in the
radiofrequency and microwave bands, from approximately 100 kHz to 30–40 GHz,
and even beyond. After a brief introduction, two sections deal with basic definitions
and traditional methods, and one section presents a set of schemes that cover most
actual needs. Then a new approach – known as the interferometric method – is
discussed in detail, providing design strategies and examples; this method exhibits
the highest sensitivity in real time, which can alse be exploited to dynamically
correct the phase noise of amplifiers and oscillators. The last section deals with
an improved version of the interferometric method, in which correlation is used to
remove the instrument noise of two equal interferometers that simultaneously mea-
sure the same device. This scheme enables the measurement of low noise processes,
even below the thermal floor, and therefore it represents the state of the art in the
high sensitivity phase noise metrology.

1 Introduction

This paper deals with the measurement of the phase noise of radiofrequency
and microwave signals. As one can expect, we are mainly interested in the
measurement of low noise signals.

We first define a quasi-sinusoidal signal of the form

s(t) =
√

2R0Pc [1 + α(t)] cos[2πνct + ϕ(t)] . (1)

were R0 is the characteristic impedance and Pc is the carrier power. ϕ(t)
and α(t) are realizations of random processes that we call phase noise and
(relative) amplitude noise, respectively. By definition α(t) and ϕ(t) have zero
mean, which results from an appropriate choice of Pc and of the time axis
origin. Phase noise is our main concern, while amplitude noise can also be
of interest in a smaller set of problems and applications. The phase noise
is commonly described in terms of Sϕ(f), i.e. the power spectrum density
(PSD) of ϕ(t).
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Why scientists are so worried by phase noise? As this question involves
many fields of science and technology, we try to answer it through some
examples.

First of all, the replacement of analog circuits with digital electronics at
higher and higher clock frequencies is a major technological trend. In a digital
circuit the bit, i.e. the quantum of information, is represented as a voltage
saturated to the high or low level, 1 or 0, which makes small amplitude
fluctuations not so relevant. On the other hand, for proper operation digital
circuits need precise timing, within a fraction of the clock period.

Secondly, we consider a synthesizer that – by definition – transforms the
driving frequency νi into an output frequency νo = n

d νi, where n and d
are integers. Restricting our attention to an ideal synthesizer consisting of
zero-delay noise-free circuits, if the driving signal is affected by a time jitter
δti, the same time jitter is present at the output. Therefore, the synthesizer
transforms the input phase fluctuations ϕi(t) into fluctuations ϕo(t) = n

d ϕi(t)
of the output signal. So, any attempt to increase the frequency also increases
phase noise. Even worse, if the rms value of ϕo(t) exceeds some 1 rad, the
carrier vanishes due to cycle loss and extra cycle insertion at random time.

Thirdly, we consider a feedback oscillator whose nominal frequency ν0

is set by a resonator of merit factor Q. The oscillator loop gain must be
equal to 1 for the oscillation to be stable, which means unity modulus and
0◦ phase. In practice the oscillation frequency is determined by the 0◦ phase
condition only, while the unity gain condition results from saturation or from
amplitude control. Thus, a phase perturbation ϕa present along the loop path
is compensated by the resonator, whose phase changes by ϕr = −ϕa, which
produces a frequency change δν = ν0

2Qϕa. The output phase error, which is
the integral of δν, may diverge. This description of the oscillator behaviour
is known as the Leeson model [1].

Finally, get a look at the long range radar. The main lobe illuminates both
the target and the ground. Obviously, a pulsed radar can not discriminate
between the target and the ground clutter at the same range. But fortunately
the echo from a moving target is frequency shifted by ∆ν/νc = 2v/c, due to
the Doppler effect; v is the range rate of the target and c = 3×108 m/s is the
speed of light. As a consequence, a Doppler radar can divide a moving target
from the clutter, but this is possible only if the source linewidth is sufficiently
narrow to allow dividing the received frequency from the transmitted one;
in addition, the radar oscillator must keep its frequency constant from the
emission to the reception instant. Both these features rely upon the low phase
noise of the oscillator and its components [2,3].

2 Background

Phase noise is a random process, and consequently its power spectrum density
Sϕ(f) can only be defined as the Fourier transform of the autocorrelation
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function Rϕ(τ). The one-side spectrum is preferred because this is what
spectrum analyzers display. Complying to the usual terminology, we use the
symbol ν for the frequency and f for the Fourier frequency, i.e. the frequency
of the detected signal when the sidebands around ν are down converted to
baseband.

The power-law model is most frequently used for describing phase noise.
It assumes that Sϕ(f) is equal to the sum of terms, each of which varies as
an integer power of frequency. Thus each term, that corresponds to a noise
process, is completely specified by two parameters, namely the exponent and
the value at f = 1 Hz. Five power-law processes, listed underneath, are
common with electronics.

noise type Sϕ(f)

white phase b0f
0

flicker phase b−1f
−1

white frequency b−2f
−2

flicker frequency b−3f
−3

random-walk frequency b−4f
−4

All these noise types are generally present at the output of oscillators, while
two-port devices show white phase and flicker phase noise only. For reference,
Fig. 1 reports the typical phase noise of some oscillators and devices.
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Fig. 1. Typical phase noise of some oscillators and devices

Phase noise can be measured by means of a phase-to-voltage converter
in conjunction with a spectrum analyzer, which can be of the low frequency
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type. On the other hand, it could be measured directly by inspecting around
the carrier with a spectrum analyzer. The first method is related to the double
sideband (DSB) representation of noise, while the second refers to the single
sideband (SSB) representation.

2.1 Double Sideband (DSB) Representation of Noise

Let us consider a noise process of spectrum density N(ν) symmetrical around
the carrier frequency νc, which means that N(νc+f) = N(νc−f). That noise
process is regarded as a pair of sidebands responsible for phase and ampli-
tude noise. In order to derive Sϕ(f) we consider two symmetrical noise slots of
bandwidth B at ±f apart from νc, as shown in Fig. 2. The rms voltage of the
carrier is

√
R0Pc. The two noise sidebands must be in quadrature to the car-

rier for only the phase to be perturbed. Assuming that the noise contributes
equally to amplitude and phase, the rms voltage of the quadrature sidebands
is

√
R0NB/2. These sidebands cause a phase modulation whose peak an-

gle is ϕp = arctan
√

2NB/Pc, as it results from the phasor representation
of Fig. 2; the corresponding phase fluctuation is ϕrms = arctan

√
NB/Pc.

Under the assumption of low noise-to-carrier ratio, that modulation angle
becomes ϕrms =

√
NB/Pc. Hence the spectrum density is

Sϕ(f) =
N(νc + f)

Pc
. (2)

The physical dimension of Sϕ(f) is rad2/Hz. In addition, the technical unit
dBrad2/Hz is frequently used.
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Fig. 2. Double sideband (DSB) repre-
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In some relevant situations, the noise does not equally contribute to phase
and amplitude. This occurs for instance with all digital circuits, in which the
amplitude noise is nearly suppressed by saturation. In these cases, amplitude
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and phase noise must divided and dealt with separately representing the
spectrum density as N(ν) = Nα(ν) + Nϕ(ν). Hence, the rms voltage of the
quadrature noise is

√
R0NϕB for each sideband, and consequently the phase

fluctuation is ϕrms =
√

2NϕB/Pc. The phase noise spectrum density thereby
obtained is

Sϕ(f) =
2Nϕ(νc + f)

Pc
. (3)

2.2 Single Sideband (SSB) Representation of Noise

Let us now consider one sideband of the noise process N(ν) around the carrier,
as shown in Fig. 3. Taking one slot of bandwidth B at the frequency f apart
from the carrier, the corresponding rms voltage is

√
R0NB. The latter causes

a phase modulation ϕrms =
√

NB/2Pc, plus an amplitude modulation. The
quantity used to describe the spectrum density thereby obtained is

L(f) =
N(νc + f)

2Pc
. (4)

The physical dimension of L(f) is Hz−1; the unit of angle (rad) should be
omitted. L(f) is usually expressed in dBc/Hz, where “c” is intended to re-
mind that the L(f) results from the noise referred to the carrier power.

Assuming that noise contributes equally to phase and amplitude modu-
lation, for small modulation angles it holds L(f) = 1

2 Sϕ(f).
It should be noticed that the above derivation of (4) does not contain

any explicit reference to phase, while phase noise comes from the equiparti-
tion of noise between the two degrees of freedom, i.e. phase and amplitude.
Obviously, whenever the equipartition does not apply – as it occurrs with fre-
quency multiplication – definition (4) yields a misleading result. In addition,
nowadays L(f) is almost always measured by means of a phase to voltage
converter, which is insensitive of amplitude. For this reason, the definition
(4) is now being changed [4] into

L(f) =
1
2

Sϕ(f) . (5)

Finally, L(f) is preferred to Sϕ(f) by most manufacturers; nevertheless, we
use Sϕ(f) because we find it more clear.

3 Traditional Methods

The double balanced mixer (DBM), used as a phase-to-voltage converter as
shown in Fig. 4, is the main tool for phase noise measurements. The mixer is
driven by two signals in quadrature (γ = 90◦) with nearly equal power

r(t) =
√

2R0Pc cos [2πνct + γ] (6a)

s(t) =
√

2R0Pc [1 + α(t)] cos [2πνct + ϕ(t)] . (6b)
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Basically, the mixer is a multiplier. Thus the signal at the output of the
lowpass filter is [r(t)s(t)] ∗ hlp(t) = R0Pc[1 + α(t)] sin[ϕ(t)]; the symbol ‘∗’
stands for the convolution operator and hlp(t) is the low pass function that
eliminates the 2νc component of the IF signal. For proper operation, the
mixer is saturated at both inputs. Hence the output signal is independent of
the input power, and the amplitude noise α(t) vanishes. Linearizing sin(ϕ)
for small ϕ, the output signal is

v(t) =
√

Kϕ ϕ(t) (7a)
Sv(f) = Kϕ Sϕ(f) , (7b)

which also defines the power gain Kϕ. For commodity we tend to use either
Kϕ or kϕ =

√
Kϕ, depending on the measurement method; anyway, the

numerical value in dB is the same.
Obviously, the measurement of Sv(f) gives Sϕ(f). Often, the fast Fourier

transform (FFT) analyzer is the most suitable instrument because of the wide
dynamic range, typically of some 80–90 dB.

LO

RF

IF

s(t)

r(t)

FFT

Fig. 4. Basic scheme of the traditional
phase noise measurement system

LO RF

IF

Fig. 5. Scheme of a typical radiofre-
quency double balanced mixer

The double balaced mixer can take various forms [5–7], depending on
frequency and technology. Figure 5 shows the scheme most widely used in
the HF to UHF bands (bands 7 to 9).

3.1 Instrument Sensitivity

The white noise limit comes from the input noise of the amplifier inserted
between the mixer and te spectrum analyzer (not shown in Fig. 4), In fact,
commercial FFT spectrum analyzers show a typical input noise of the order
of 20 nV/

√
Hz, limited by the relatively high input impedance. On the other

hand, the mixer output impedance is low, typically 50 Ω. Consequently, the
sensitivity can be significantly improved by inserting an amplifier with lower
input impedance between the mixer and the analyzer. The input noise Sv0(f)
of that amplifier can be of 1 nV/

√
Hz (−180 dBV) or lower [8]. In this condi-

tions, assuming that Kϕ = −10 dBV2/rad2, a noise floor of −170 dBrad2/Hz
can be attained. This high sensitivity refers to good or best conditions only.
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It should be remarked that the best noise impedance Rb =
√

Sv(f)/Si(f)
of the operational amplifiers is in the kΩ range; Sv(f) and Si(f) refer to the
spectral density of the voltage and current noise of the amplifier. For this
reason, the operational amplifiers are misused when connected to a mixer
that shows an output impedance as low as 50 Ω.

The flicker noise of the instrument comes from the mixer diodes, and it
is insufficiently documented in the literature. According to our experience,
the actual limit turns out to be of some −140 dBrad2/Hz, depending on the
mixer type and the driving power. The flicker of a low noise amplifier can
be lower than 3 nV/

√
Hz at f = 1 Hz, i.e. −170 dBV, which is negligible

compared to the mixer noise.
Figure 6 shows the typical limit of the phase noise measurement system

based on the double balanced mixer.
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Fig. 6. Typical instrument noise of a
mixer based phase noise measurement
system

Fig. 7. Example of instrument noise
Sϕ 0(f), measured in the absence of the
device to be tested. Vertical scale is
dBrad2/Hz

3.2 Additional Instrument Limitations

Due to disturbances from the mains, the measured spectrum includes many
lines at 50 Hz (or the appropriate frequency, out of the Europe) and multiples.
These disturbances are picked up at the input of the operational amplifier,
where the signal level is the lowest. Signal processing is only partially useful
to clean up the measurement results because the spectrum analyzer shows a
finite bandwidth, and consequently two contiguous harmonics of the mains
may hide the useful information in between, thus limiting the sensitivity.
Figure 7 provides a typical example of actual results.

The mixers designed for radiofrequency bands are based on ferrite tore
transformers and Schottky diodes. They show a bandwidth of up to 3 decades
in the region from 20 kHz to 2 GHz approximately. At higher frequencies, the
transformer is replaced with a microstrip network, whereat the bandwidth
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is limited to 1–3 octaves. The maximum operating frequency is of the order
of 40 GHz, although some special devices may be usable up to 100 GHz, or
even beyond.

The adoption of a saturated mixer as the phase-to-voltage converter turns
into a severe limitation of the instrument power range. The conversion gain
is roughly proportional to driving power. Accounting for the diode saturation
level and maximum power, the useful dynamic range tends to be of some 10
dB. Mixers are hardly usable below approximately 5 dBm, while flicker noise
increases as the power approaches the maximum value.

4 Useful Schemes

Figures 8 to 15 show some experimental configurations that cover most prac-
tical needs.

General Two Port Devices. A two port device (DUT, i.e. the device
under test) can be measured with the scheme of Fig. 8. This scheme is a
direct application of the principles shown in Section 3. Both r(t) and s(t)
originate from a single source, but only s(t) is affected by the DUT noise.
The quadrature condition is ensured by the variable phase shifter γ, that
must be adjusted to compensate for the phase lag of the DUT and cables.
The quadrature condition can be first checked observing the dc voltage at
the mixer output, that must be 0 V. For highest accuracy, the dc offset that
results from the diode asymmetry must be taken into account; a true phase
measurement may be necessary instead of just trimming γ for 0 Vdc at the
IF output.

The scheme of Fig. 8 works well if the DUT shows relatively low insertion
loss because the mixer must be driven with the same level at the two inputs.
In addition, the DUT group delay must be relatively small. This is necessary
to ensure the rejection of the phase noise of the driving oscillator. Anyway,
this problem will be explained underneath dealing with the discriminator.

LO

RF

IF
FFT

γ

DUT

Fig. 8. Phase noise measurement of a 2
port device

LO

RF

IF
FFT

γ

l g

Fig. 9. Measuring an amplifier as the
DUT, the amplifier must be preceeded
by an attenuuator of loss ` equal to the
gain g



Phase Noise Metrology 197

Amplifiers. The phase noise of an amplifier can be measured with the
scheme of Fig. 9. The amplifier gain g is compensated by an attenuator of loss
` ' g. Obviously the attenuator and the amplifier can not be interchanged,
unless the amplifier dynamics is sufficienly large to avoid saturation. Anyway,
it should be noticed that the close-to-the-carrier flicker noise of the amplifier
comes from the near-dc flicker of the bias current, up converted by nonliear-
ity [9,10], and hence it strongly depends upon the output power. In addition,
the presence of the attenuator increases by a factor ` the overall noise figure
of the attenuator-amplifier compound, whereat the white noise floor of the
measurement is also increased by `.

High Insertion-Loss Two Port Devices. The mixer requires nearly equal
driving power at the two inputs. Accordingly, if the DUT shows a significant
loss `, an attenuator of equal loss must be inserted in the other arm, and the
oscillator power must be set to an appropriately higher value. This solution
requires that the increased power is tolerated by the DUT without noise in-
crease or damnage. Alternatively, the DUT loss can be compensated inserting
an amplifier of gain g ' `, as shown in Fig. 10. The amplifier is also needed
to measure the DUTs that must work in low power conditions. Unfortunately
the power required to drive the mixer is relatively high and sufficient to make
the amplifier flicker, which impairs the instrument sensitivity. For this reason
some low noise devices, like the high stability quartz resonators [11], can not
be measured with this scheme.

LO

RF

IF
FFT

γ

DUT g

Fig. 10. In some cases an amplifier is
needed to compensate for the DUT loss

LO

RF

IF
FFT

γ

lDUT

DUT

Fig. 11. Whenever possible, two equal
DUTs should be measured simultane-
ously

Equal DUT Pair. When two equal DUTs are available, they can be inserted
each in one arm of the circuit, as shown in Fig. 11. To reduce the circuit
complexity, the attenuation of the variable phase shifter γ is compensated by
the variable attenuator `, while the phase lag of the latter is compensated by
γ. If the two devices are equally noisy there results a 3 dB improvement of
sensitivity.

The presence of two equal DUTs is sometimes useful to improve the rejec-
tion of the source noise by compensating for the discriminator effect of each
DUT.
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The scheme of Fig. 11 turns out to be useful for the measurement of
frequency multipliers, dividers and synthesizers in general. In fact, if two
independent oscillators were used to measure a single sinthesizer – one os-
cillator drives the synthesizer and the other one serves as the reference of
the mixer – it would be necessary to use two noise-free oscillators because no
rejection of the fluctuations of these oscillators would take place.

Discriminator and Delay Line. A single oscillator can be measured with
the scheme of Fig. 12, in which the resonator is used as a reference frequency
discriminator. The resonator responds to a frequency change y = ν−νc

νc
with

a phase ϕm = 2Qy, where Q is the merit factor of the resonator. Accord-
ingly, the spectrum density Sϕm(f) of the measured phase is related to the
frequency fluctuation Syo(f) of the oscillator by

Sϕm(f) = 4Q2Syo(f)

= 4Q2 f2

ν2
0

Sϕo(f) . (8)

The above hold at low Fourier frequencies (f ¿ νc

2Q ), where the resonator
phase lag can be derived from a quasistatic model. For f > νc

2Q , the resonator
filters out the frequency fluctuations of the oscillator. These fluctuations are
still present at the other input of the mixer, and therefore the instrument
measures the phase noise of the oscillator.

In most cases the discriminator shows poor sensitivity, due to the insuffi-
cient Q factor of the resonator. On the other hand, the poor sensitivity turns
into a wide dynamic range.

A delay line does the same work as the resonator. The equivalent merit
factor is Qe = πτνc, where τ is the delay of the line. Unfortunately, delay
lines are scarcely useful in the frequency domain of our interest because of
the insufficient value of the τνc product. Nevertheless, the delay line is of
great interest for optics.

LO

RF

IF
FFT

γ

ϕd = 2Q y0

Discri.

Fig. 12. A discriminator converts the
frequency fluctuation of the driving os-
cillator into phase fluctuations that are
measured by means of a mixer

v

LO

RF

IF FFT
0

inVCO

2

1

cH  (p)

Fig. 13. Phase noise measurement of
two equal oscillators
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Oscillator Pair The measurement of oscillators requires a phase locked loop
(PLL) as in Fig. 13 – or some other locking mechanism – otherwise it would
be impossible to keep the mixer inputs in quadrature. The PLL is usually
regarded as a low pass filter, in which the voltage contolled oscillator (VCO)
tracks the input. The corresponding transfer function is

Sϕ2(f)
Sϕ1(f)

=
|kokϕHc(f)|2

4π2f2 + |kokϕHc(f)|2 , (9)

where ko is the VCO gain, given in rad/sV. In order to measure phase noise,
the error signal v is used as the PLL output signal, and therefore the transfer
function is

Sv(f)
Sϕ1(f)

=
4π2f2k2

ϕ

4π2f2 + |kokϕHc(f)|2 , (10)

which is a high pass function. Obviously, the loop response must be suffi-
ciently slow for the oscillator no. 2 not to track the other one.

Alternatively, the scheme of Fig. 13 can be exploited to increase the dy-
namic range of the system. In this case, an amplifier is inserted as the Hc

block, setting the loop gain to a suitable value that pushes the high pass
cutoff frequecy just below the corner of the oscillator frequency flicker.

The frequency flicker is of the f−3 type, while the PLL response is pro-
portional to f2. The combined effect yields a measured spectrum of the f−1

type, from which the flicker coefficient can be calculated.
The PLL scheme of Fig. 13 can be used to compare an oscillator to a

reference one, considered noise free, or to compare two equal oscillators. In
this case, a 3 dB factor must taken into account.

Frequency Multiplier. In some cases the frequency multiplier turns out
to be a useful tool to enhance the instrument sensitivity (Fig. 14). In fact,
if the frequency is multiplied by n, the phase also is multiplied by n. Hence
the output power spectrum Sϕo(f) is related to the input spectrum Sϕi(f)
by Sϕo(f) = n2Sϕi(f). The obvious extension to the general case of the
synthesizer is νo = n

d νi, which means ϕo(t) = n
d ϕi(t) and conssequently

Sϕo(f) = (n
d )2Sϕi(f).

The multiplier contributes with its own noise, which must be lower than
that of the mixer for the multiplier to be useful. In pratice this constraint
turns into a serious difficulty for the white noise, but it is relatively easy to
meet with the frequency flicker noise of the oscillator, whose slope is f−3.

Narrow Tuning Range Oscillators. With some high quality oscillators,
the tuning range is significantly narrower than the initial frequency accuracy.
This occurrs when the Q factor of the resonator is extremely high, 106 to
109, and for technical reasons the resonance frequency can not be changed
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LO

RF

IF FFT

c

2

1

VCOin H  (p)

x n

x n

Fig. 14. Frequency multiplication en-
hances the instrument gain
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RF
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c

FFT

|ν  − ν  |1 2

|ν  − ν  |1 2

ν1

VCO
in

ν2

SYNT.

H  (p)

Fig. 15. Phase noise measurement of
two oscillators not at the same fre-
quency

with a resolution better than νc

2Q . This is typical of the oscillators based on
whispering gallery sapphire resonators or on cryogenic resonators. The noise
of these oscillators is so low that no synthesizer would be adequate, and there
is no chance to get two oscillators at the same frequency. Yet, the phase noise
measurement is still possible by means of the scheme of Fig. 15. Choosing
two oscillators whose frequencies are as close as possible to one another, the
phase noise measurement is performed at the beat frequency νd = |ν1 − ν2|,
by comparison with an auxiliary synthesizer.

The configuration of Fig. 15 shows an additional advantage as it prevents
the measurement error due to injection locking. In fact, when high Q res-
onators are used, the oscillators tend to lock to one another if the frequencies
are sufficiently close.

5 Interferometric Noise Measurement Method

It has been shown in Section 3 that the saturated mixer used as a phase-
to-voltage converter suffers from three basic problems, namely the narrow
power range, the flicker noise of the mixer, and the relatively high white noise
floor due to the poor phase-to-voltage conversion gain. An improved solution
consists of the interferometric scheme, shown in Fig. 16. This scheme, inspired
to [12], has been subsequently ameliorated and extended to the HF and VHF
bands [13].

Fig. 16. Basic scheme of the radiofrequency interferometer
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The left hybrid is used as a power splitter. It should be remarked that
actual two way power splitters are 4 port hybrids with one port terminated
to an internal resistor, otherways they could not be impedance matched; for
details on these devices consult [14]. The right hybrid coupler makes the
vector addition, i.e. the interference of its input signals. Thus, setting `′ and
γ′ so that the two paths from the oscillator to the ∆ output of that hybrid
are equal in amplitude and opposite in phase, all the oscillator power goes
to the Σ output, while the carrier is suppressed at the ∆ output. The DUT
noise sidebands, which are not suppressed by the interference mechanism, are
amplified by the low noise amplifier and downconverted to baseband by the
mixer. After filtering out the 2νc component, the instant voltage at the mixer
output is

v(t) = k [ϕ(t) sin γ′′ + α(t) cos γ′′] . (11)

Thus the mixer detects PM noise, AM noise or a combination of them, de-
pending on the detection phase γ′′. Because of the particular type of conver-
sion, the instrument gain k is written without the index ϕ.

Let us now introduce the following symbols

Nϕ(ν) the power spectrum density (PSD) of the quadrature noise
at the DUT output, around the carrier frequency νc,

Nα(ν) the PSD of the in-phase noise at the DUT output, around
the carrier frequency νc,

`h the power loss of the hybrid, not including the 3 dB in-
trinsic loss. Therefore, driving one input with a power P ,
a power P/2`h is expected at each output,

`m the power loss of the mixer, icluding the 3 dB intrinsic
loss. Hence, driving the RF input with a power P , a power
P/`m is expected in each output band,

R0 the mixer output impedance,
g the power gain of the amplifier.

A few words are to be spent about the contrast between the definition of `m,
that includes the 3 dB intrinsic loss of the mixer, and the definition of `h,
that does not include the 3 dB intrinsic loss of the hybrid. Apart from the
fact that the physical origin of the intrinsic losses is not the same, the above
definitions of `m and `h are consistent with the technical documentation of
most commercial components.

From the scheme of Fig. 16, the noise PSD is

S∆(ν) =
Nϕ(ν) + Nα(ν)

2 `h
(12)

at the ∆ output of the hybrid, and

SRF(ν) = g
Nϕ(ν) + Nα(ν)

2 `h
(13)
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at the RF input of the mixer.
The noise behaviour of actual DUTs is such that the sidebands are sym-

metrical with respect to the carrier, which means that Nϕ(νc−f) = Nϕ(νc+f)
and Nα(νc−f) = Nα(νc +f). Hence, the DUT noise down converted to base-
band is

SV (f) =
2R0g

`h`m

[
Nϕ(νc + f) sin2 γ′′ + Nα(νc + f) cos2 γ′′

]
. (14)

Still assuming the sideband symmetry, the PM noise is related to Nϕ by

Sϕ(f) = 2
Nϕ(νc + f)

Pc
. (15)

If γ′′ is set to 90◦, combining the two above equations with the instrument
gain Kϕ = SV (f)/Sϕ(f), we obtain

Kϕ =
R0gPc

`h`m
. (16)

The expected noise floor of the instrument can be easily derived as follows.
We first remove the DUT, replacing it with a cable; obviously, `′ and γ′ must
be set to 0 dB and 0◦ respectively. The carrier suppression is still effective, and
the whole circuit is still impedance matched. As a consequence, the thermal
noise present at the input of the amplifier comes from the termination R0 of
left side hybrid.

Accounting for the amplifier noise figure F , the equivalent noise density at
input of the amplifier is S∆0 = FakBT0, where kB = 1.38×10−23 W/Hz is the
Boltzmann constant, and T0 = 290 K is the absolute reference temperature.
It is assumed that the temperature of the interferometer is close to T0. Thus,
the voltage noise at the mixer output is

SV 0(f) = 2
R0g

`m
FkBT0 . (17)

Assuming that the carrier is perfectly suppressed at the input of the amplifier,
the amplifier noise FkBT0 can not be related with the phase of the carrier.
Accordingly, FkBT0 gives equal contributions to phase and amplitude noise.
Hence, combining (16) with (17) we obtain the phase noise floor

Sϕ0(f) = 2`h
FkBT0

Pc
. (18)

Quite a similar development yields the AM noise floor

Sα0(f) = 2`h
FkBT0

Pc
. (19)

The practical consequences of the above theory can be better understood
through the following example.
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Design Example 1. We assume that `h = 0.5 dB and `m = 6 dB, which are
typical values for hybrids and mixers. We choose a g = 37 dB amplifier and we
set the driving power for Pc = 15 dBm at the DUT output. From equation
(16) we get Kϕ = 32 dBV2/rad2. Assuming that the noise figure of the
amplifier is F = 2 dB, equation (18) yields Sϕ0 = −185 dB rad2/Hz. These
results compare favorably to the performance of a traditional system based
on a saturated mixer that operates in similar conditions. The interferometer
shows a gain 42 dB higher and a noise floor 15 dB lower.

5.1 Design Strategies

Whereas the potential benefit of high carrier suppression is clear, a suppres-
sion specification can hardly be drawn. This occurs because the interferom-
eter takes benefit of some features of the electronic components that are not
adequately documented. Therefore, we can only give some hints derived from
experience.

1. The amplifier gain g should be in the 20–40 dB range. Higher values
make a sufficient carrier suppression difficult to achieve, while lower values
cause the mixer noise to be taken in, impairing the sensitivity.

2. The residual carrier power at the amplifier output must be much lower
than the maximum amplifier power Pm; the latter is usually specified as
the “1 dB compression level”. A margin Pm/(gPr) of 35–40 dB or more
is needed, depending on the amplifier; Pr is the residual carrier power at
the amplifier input.

3. The close-to-the-carrier flicker of the amplifier results from the combined
effect of near-dc flicker and nonlinearity. Although we have no informa-
tion on the former, we can infer the latter from the 3rd harmonic intercept
power, which is always specified for commercially available amplifiers. Ob-
viously, the devices showing the highest intermodulation intercept power
tend to be the best ones.

4. For a given configuration, flicker noise of the amplifier is entierly deter-
mined by the power available at the output of the amplifier, that is mostly
due to the residual carrier. As a consequence, the suppression ratio Pc/Pr

should be regarded just as a way to specify Pr, rather than a parameter
relevant by itself.

5. The presence of a low noise amplifier precedig the mixer relaxes the noise
specifications for the latter.

Let us consider two examples.

Design Example 2. The amplifier shows g = 40 dB, Pm = 15 dBm and
needs a power margin Pm/(gPr) = 35 dB for full linearity. In this condition,
Pr must be less than –60 dBm. Consequently, if the DUT output power is
Po = 15 dBm than a carrier suppression of 75 dB must be ensured.
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Design Example 3. With the same instrument of the example 2, we now
measure the phase noise of two piezoelectric quartz resonators, each dissipat-
ing Pd = 10 µW. For this purpose we insert two equal DUTs, one in each
arm of the interferometer. Each DUT is a text fixture consisting of a resistive
matching network that incorporates one quartz. The DUT output power is of
the same order of Pd, depending on the test fixture network. Hence, assuming
Pc = −20 dBm, a carrier suppression of 40 dB would be sufficient.

For referece, a carrier suppression of 80 dB results from an error δγ′ = 100
µrad of the phase shifter, or from an error δ` = 8.7×10−4 dB of the vari-
able attenuator. Accounting for both, the accuracy specification is even more
stringent.

Microwave Design. Phase matching is the greatest technical difficulty at
microwave frequencies. In fact, because the wavelength inside cables is about
22 mm at 10 GHz, a phase matching within 100 µrad – that is necessary for a
carrier suppression of for 80 dB – is equivalent to an electrical length matching
within 0.4 µm. Obviously, phase matching must be stable at that level for the
duration of the experiment, say half an hour. Some commercially available
phase shifters are adequate to do so, after a really patient adjustment.

A low instrument noise requires particular care with mechanical vibra-
tions. In fact, at 10 GHz a noise floor of −180 dBrad2/Hz corresponds to
an electrical length fluctuation of 4×10−12 m/

√
Hz. According to our expe-

rience, a sufficient stability can be obtained by fixing all the parts onto an
antivibrating table – of the same type of those commonly used for optics –
and securing to the table all the cables connecting the system to the external
world.

Microwave hybrids and mixers show poor isolation, typically of the order
of 20 dB. The obvious consequence is an unwanted feedback of the amplified
signal through the mixer and the hybrid. In order to prevent oscillation or
measurement alteration, isolation must be increased by inserting some ferrite
isolators; the best configuration must be determined experimentally.

Microwave amplifiers show a wide bandwidth, in some cases more than
10 GHz. Noise integrated over such a wide band can push the amplifier out
of linearity. If, for example, the amplifier shows a noise figure F = 2 dB, a
gain g = 40 dB, and a bandwidth B = 10 GHz, the total integrated noise is
Pn = FkBT0gB = −32 dBm. Unfortunately, saturation is due to the peak
power, which is some 20 dB higher than Pn. A bandpass filter can be needed.

VHF and HF Design For technical reasons, the 5–10 MHz quartz oscillator
exhibits the lowest frequency flicker, compared to similar devices at other
frequencies. Besides, the quartz oscillator exhibits the lowest white noise floor
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when crystal resonates around 100 MHz. Therefore, a great effort is wortly to
be spent to characterize the electronic devices designed for these frequencies.

Phase matching, phase stability, and a sufficient damping of mechanical
vibrations are much easier to achieve than in the microwave bands because the
wavelength is 102–103 times longer. The adoption of semirigid cables, SMA
type connectors and antivibrating table ensures sufficient stability. Working
at νc = 10 MHz, a 120 mm thick sand layer proved to be sufficient to damp
the vibrations of the floor if some care were spent to do the measurements
at certain hours, when only a few people were present in the laboratory.

In spite of the apparent simplicity, for a series of reasons the design for
the HF and VHF bands turns out to be more difficult than that for the X
band.

The most difficult problem arises from the variable phase shifters. Some
microwave devices, consisting of a transmission line whose length can be var-
ied by means of a micrometer, proved to be a bad choice. Apart from the
small delay range (0.1–1 ns), that can be extended with a set of calibrated
cables, these phase shifters turned out to be scarcely useful because of their
high flicker noise; the same devices work successfully in the microwave range.
We guess that this anomalous behaviour could be due to the parasitic capac-
itance in parallel with non-perfect contacts, which behaves as short circuit at
10 GHz and takes in acoustic noise when used at 100 MHz. Presently, a type
of phase shifter specific for this application, based on a LC network with a
variable capacitance, is the best known solution.

Variable attenuators suitable to the VHF band are generally based on po-
tentiometers and for this reason they tend to flicker more than the microwave
ones, based on movable absorbing surfaces. We are still searching for a more
satisfactory solution, consisting either of better potentiometers or a different
physical principle.

It should be remarked that the flicker performance of variable attenuators
and phase shifters is usually not documented in the device specifications, and
consequently the possibility to find low noise devices relies upon experience
and a pinch of good luck.

Eliminating the harmonics at frequencies multiple of νc is a critical point
because the carrier suppression mechanism has no effect on them. As almost
all the components show a bandwidth of 2–3 decades, these unwanted signals
would be present in the entire circuit, pushing the amplifier out of linearity
and making it flicker. The only known solution consists of inserting low Q
bandpass filters in certain points of the circuit.

Ferrite isolators are not available for the HF and VHF bands and must be
replaced with active isolators. Although noise is not critical at the Σ output
of the hybrid, where the isolators are to be placed, it is really important to
drive both the active isolator and the mixer at the appropriate power level.

The presence of electromagnetic pollution can be a relevant problem at
some frequencies. In fact, in highly populated areas of Europe and the U.S.A.
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– well covered by FM broadcastings – the electromagnetic field is often of the
order of +100 dBµV/m in the 88–108 MHz band. Besides, the Ethernet –
that is probably the most popular standard for local area network – operates
either at 10 Mb/s or 100 Mb/s and for this reason it turns into a source of
pollution particularly difficult to eliminate from some experiments. Solutions
are strongly dependent on the local situation, as well as the design.

Finally, the design for the measurement of quartz crystal resonators, that
shows high Q factor and operate at low power, is subject to specific design
rules [15,16].

5.2 Further Remarks

The scheme of Fig. 16 can be improved by deriving the mixer LO signal from
the oscillator instead of taking it at the Σ output of the hybrid. This makes
the mixer pump level independent of the DUT power.

Working in the microwave bands, the 90◦ hybrids turn out to be the best
choice. They are cheaper, smaller, and show better isolation and insertion loss
than the 180◦ ones. The bandwidth of a 90◦ hybrid can be of 1–3 octaves,
depending on the design and on the device size. The HF and VHF hybrids
are based on lumped parameter networks. Hence, in these bands the 180◦

hybrids are superior to the 90◦ ones with respect to loss, isolation, size and
cost. In addition, the 180◦ hybrids show a typical bandwidth of 2 decades,
while the bandwidth of the 90◦ devices is of the order of half an octave.

In our experience the low frequency magnetic fields originated from the
mains turn into a serious design problem because copper shields are not ef-
fective at these frequencies. The traditional systems, of the type described in
Sections 3 and 4, are prone to that kind of disturbances because the signal,
i.e. the DUT noise, is first down converted and then amplified; therefore the
smallest signal, that is present at the mixer output, is a baseband one. Mag-
netic shielding can be used, but this solution makes the whole instrument
more complicated. By contrast, the interferometer can be more effectively
shielded. This occurs because the smallest signal, that consists of noise side-
bands around the carrier, is amplified before being down converted. Moreover,
low frequency magnetic fields have no effect on the high frequency noise side-
bands. Figure 17, taken from [13], shows an example of instrument noise of an
interferometer operating at νc = 9.1 GHz with a carrier power Pc = 15 dBm.
The residual of the mains can hardly be distinguished from the instrument
noise.

Finally, it should be remarked that the interferometer provides the instant
value of ϕ(t) in real time, which makes it suitable to the dynamical removal
of noise by means of a voltage controlled phase shifter in closed loop [17].
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Fig. 17. Noise floor of a microwave interferometer prototype operating at νc = 9.1
GHz. The DUT output power is 15 dBm

6 Correlation Techniques

The noise limitation of the traditional saturated mixer can be partially over-
come by exploiting a correlation technique, in which two equal mixers mea-
sure the same noise process at the same time, as shown in Fig. 18. This type
of measurement extracts the shared-path noise and rejects the single-arm
noise processes, provided that they are independent. Obvously, the scheme of
Fig. 18 can be easyly modified to measure oscillators, amplifiers, synthesizers
etc., taking example from the single mixer schemes described in Section 4
(Figures 8 to 15).
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Fig. 18. Basic dual mixer correlation scheme

Searching back through the bibliography, the correlation scheme was prob-
ably used for the first time in the early ’60s to measure the phase noise of
hydrogen masers [18]. The dual channel correlation spectrum analyzers were
not available at that time, and the correlation was evaluated through a calori-
metric method. Since there, similar schemes were reproposed with updated
technologies; see, for example, [19,20].
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The (cross) correlation function Rab(τ) of two random voltages a(t) and
b(t) is defined as

Rab(τ) = lim
θ→∞

1
θ

∫

θ

a(t) b∗(t−τ) dt , (20)

where the symbol “∗” stands for complex conjugate and can be omitted
because we deal with real signals. The Fourier transform of Rab(τ) is the
cross spectrum density

Sab(f) =
∫

∞
Rab(τ) exp(−2πfτ) dτ . (21)

Dynamic signal analyzers usually evaluate the cross spectrum density through
the property

Sab(f) = F{a(t)} F{b(t)} , (22)

that holds for real signals; F{.} is the Fourier transform operator. The math-
ematics used in this section is clearly preseted in [21].

The signals a(t) and b(t) are proportional to the instant phase of the
DUT, plus a random component due to the single-arm noise. Averaging on
m measures, a rejection of the single-arm noise spectrum density by a factor
2
√

m is expected. The ultimate noise limit of the dual mixer method is not
be discussed here. The noise theory of the double interferometer, that is a
more sensitive instrument based on the correlation, is be given instead.

6.1 Double Interferometer

An improved version of the correlation scheme, first proposed in [22], makes
use of two equal interferometers that simultaneously measure the phase noise
of a shared device, as shown in Fig. 19. The spectrum analyzer rejects the
noise of the individual interferometers, under the assumption that the corre-
sponding processes are independent.

The two low noise amplifiers of Fig. 19 are impedance matched, which
implies that thermal noise is present at their input. In the absence of the
DUT – the latter is replaced with a short cable – all the thermal noise comes
from the terminations R1, R2 and R3 of the hybrids used as power splitters.
Because the noise coming from R1 R2 and R3 is shared by the two amplifiers,
at first sight one could believe that the thermal noise limits the instrument
sensitivity. The full explanation, derived from [23] and explained underneath,
is much more complex.

6.2 Noise Theory of the Double Interferometer

In order to derive the noise theory of the double interferometer we analyze the
case in which an attenuator of loss ` is inserted as the DUT. Then we define six
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Fig. 19. Scheme of the double interferometer

thermal noise processes indicated with n1(t), n2(t), . . . , n6(t), each of which
coming from a resistor of value R0, i.e. the characteristic impedance of the
whole circuit. n1, n2 and n3 are the available noise voltages across the resistors
R1, R2 and R3, respectively. n4 and n5 are the equivalent thermal noise of
the resistive network of the variable attenuators, while n6 is the equivalent
thermal noise due to the resistive loss of the DUT. The power spectrum
density Ni(f) of each of these processes is equal to R0kBT0. The temperature
of the whole instrument is assumed to be close to T0, uniform and constant.
As the DUT is an attenuator, it attenuates by ` any signal present at its input,
including the thermal noise. As a consequence, only a fraction

√
(`−1)/` n6.

of the DUT noise n6 is present at the output. This occurs because the total
output noise at the attenuator output must be R0kBT0 when the attenuator
input is terminated to a resistor. Similarly, the noise contributions of the
two variable attenuators are

√
(`−1)/` n4 and

√
(`−1)/` n5. In addition, we

assume that the DUT adds extra noise ň6 that can be of any type, including
flicker. We use the word “extra” deliberately avoiding “excess” because the
latter tend to be used as a synonym of flicker. Under the above hypotheses,
the DUT output noise is

ndut(t) =

√
`−1
`

n6(t) + ň6(t) . (23)

In the vicinity of the carrier frequency, a noise process can be divided in
in-phase and quadrature components as

n(t) = nx(t) cos(ωt)− ny(t) sin(ωt) . (24)

As we deal with thermal noise, the PSDs of the baseband noise processes
nx(t) and ny(t) are Nx(f) = R0kBT0 and Ny(f) = R0kBT0, so that the
PSD of the radiofrequency process n(t) is N(f) = R0kBT0. Taking the os-
cillator signal V cos(ωt) as the phase reference, the DUT output signal is√

2R0Pc sin(ωt). This means that the x noise component is responsible for
phase noise; accordingly, Sϕ(f) = Nx(f)/R0Pc.
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For the sake of simplicity, we neglect the loss `h of the hybrids and power
splitters, and the amplifier noise. The former can be introduced subsequently,
and the latter vanishes in the correlation function because the two amplifiers
are independent.

The reference signals at the mixer LO ports are of the form

ra(t) = −Vp cos(ωt) (25a)
rb(t) = Vp sin(ωt) . (25b)

Consequently, arm a detects the cos(ωt) signal, while arm b detects the sin(ωt)
component. Due to the circuit phase relationships, the signals at the mixer
RF inputs are

va(t) =
√

g

[
− 1√

2`
n1x +

1
2
√

`
n2x +

1
2

n3y +

√
`−1
2`

n4x +

− 1
2

√
`−1
`

n6x − 1
2

ň6x

]
cos(ωt) +

√
g

[
non

detected
terms

]
sin(ωt) (26a)

vb(t) =
√

g

[
1√
2`

n1x +
1

2
√

`
n2x +

1
2

n3y −
√

`−1
2`

n5x +

+
1
2

√
`−1
`

n6x +
1
2

ň6x

]
sin(ωt) +

√
g

[
non

detected
terms

]
cos(ωt) . (26b)

After filtering out the 2ω components, the detected signals present at the IF
output of the mixers are

a(t) =
√

2g

`m

[
1√
2`

n1x − 1
2
√

`
n2x − 1

2
n3y +

−
√

`−1
2`

n4x +
1
2

√
`−1
`

n6x +
1
2

ň6x

]
(27a)

b(t) =
√

2g

`m

[
1√
2`

n1x +
1

2
√

`
n2x +

1
2

n3y +

−
√

`−1
2`

n5y +
1
2

√
`−1
`

n6x +
1
2

ň6x

]
. (27b)

Substituting the expression (27a) and (27a) in the definition (20), all the
cross terms vanish. Hence the cross spectrum density is

Sab(f) =
g

`m

[
1
`

N1x − 1
2`

N2x − 1
2

N3y +
`−1
2`

N6x +
1
2

Ň6x

]
. (28)
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Under the hypothesis of temperature uniformity, it holds Ni = R0kBT0 for
all i = 1 . . . 6. Consequently most of the terms of (28) cancel with one another
and there results

Sab(f) =
g

2`m
Ň6x(f) . (29)

The above equation states that the instrument compensates for the thermal
noise, and therefore Ň6x(f) only contributes to the measured phase noise.

Finally, the gain of the double interferometer is

Kϕ =
gR0Pc

2`m
, (30)

which is half that of the single interferometer. This is is reasonable because
in this case only half of the DUT noise is processed by each interferometer.
For the same reason, the single arm noise floor is 3 dB higher than that of
the single interferometer.
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Fig. 20. Noise floor of the 100 MHz double interferometer prototype. A and B:
single-arm. C: correlation

6.3 Noise Properties of the Double Interferometer

The double interferometer shows some relevant noise properties that, al-
though quite innatural at first sight, are well predicted by the general theory.

Noise Floor. The first consequence of the thermal noise compensation
mechanism is that the noise floor of the double interferometer can be lower
than the thermally originated phase noise Sϕ th = kBT0/Pc.
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Figure 20 shows an example of noise floor averaged on m = 32767 mea-
sures. This floor refers to a prototype operating at the carrier frequency
νc = 100 MHz, and fully described in [24]. In this prototype, the amplifiers
show gain g = 40 dB and noise figure F = 2 dB. The signal power at the
mixer LO inputs is 8 dBm, and the DUT power is Pc = 8 dBm. The hybrids
show losses `h = 0.8 dB, while the mixer loss is `m = 6 dB. Obviously, the
DUT is replaced with a cable.

The single-arm noise floor (curves A and B of Fig. 20) is −172 dBrad2/Hz,
which is close to the expected value Sϕ a(f) = Sϕ b(f) = 4FkBT0`

2
h/Pc '

−172.3 dBrad2/Hz. The thermal noise calculated for the same conditions is
Sϕ th = kBT0/Pc ' −182 dBrad2/Hz. Yet, the measured floor (curve C) is
Sϕ 0 ' −194 dBrad2/Hz, which is 12 dB lower than Sϕ th.
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Fig. 21. Measurement of a reference noise Ň6 injected along the DUT path

Noise Measurement Below the Thermal Floor. The possibility of mea-
suring extra noise below the thermal floor can be experimented by injecting
noise in the DUT path through a directional coupler, as shown in Fig. 21
(top). Neglecting the thermal noise N6 because it is expected to be rubbed
out, this circuit injects calibrated noise Ň6(f) = gaR0FakBT0/(`vkc). Ň6 can
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be set to the desired value adjusting `v. The equivalent phase noise thereby
injected is Sϕ i(f) = gaR0FakBT0/(`vkcPc). Fig. 21 (bottom) shows the mea-
sured Sϕ as a function of the injected Sϕ i. Going to the left of that figure, `v

increases and the injected noise becomes negligible compared to the equiv-
alent noise at the amplifier inputs. Therefore, the single-arm Sϕ approaches
the value of −172 dBrad2/Hz previously measured in the absence of the
DUT. By contrast, the correlated noise fits the straight line Sϕ = Sϕ i even
below Sϕ th = kBT0/Pc.

Noise of an Attenuator. The same noise mechanism responsible for the
compensation of the shared resistor noise (R1, R2 and R3) is also effective
on the noise of an attenuator inserted along the DUT path. Figure 22 shows
two extreme situations, in which the attenuator noise is generated separately
in each arm of the double interferometer (left), or in the shared path (right).
Experiments performed with 16 dB attenuators show that the instrument
noise floor is the same for both the configurations, that it is lower than the
thermal noise, and that it is limited by the averaging size m only [23].

Fig. 22. Measurement schemes with independent attenuators in each arm, and with
a shared attenuator. The attenuation ` = 16 dB was usen in the experiments
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